
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 23, No. 5, October 2025, pp. 1323∼1332
ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v23i5.26897 ❒ 1323

Improved classification for imbalanced data using ensemble
clustering

Sharanjit Kaur1, Manju Bhardwaj2, Adi Maqsood1, Aditya Maurya1, Mayank Kumar1, Nishant
Pratap Singh1

1Department of Computer Science, Acharya Narendra Dev College, University of Delhi, Delhi, India
2Department of Computer Science, Maitreyi College, University of Delhi, Delhi, India

Article Info

Article history:

Received Jan 6, 2025
Revised May 29, 2025
Accepted Aug 1, 2025

Keywords:

Auxiliary features
Classification
Ensemble clustering
Imbalanced data
Minority class

ABSTRACT

Imbalanced datasets frequently occur in fields like fraud detection and medical
diagnosis, where the number of instances in the majority class vastly exceeds
those in the minority class. Traditional classification algorithms often become
biased towards the majority class in these scenarios. To address this challenge,
we introduce a novel method called improved classification using ensemble clus-
tering (ICEC) for imbalanced datasets in this paper. ICEC merges classification
with the strengths of consensus clustering to improve the classifier’s generaliza-
tion ability. This approach utilizes a cluster ensemble to capture the structural
characteristics of both the majority and minority classes, and the stable clus-
tering scheme thus delivered is used to generate new auxiliary features. These
features enhance the existing feature set, helping classifiers develop a more ro-
bust predictive model. Extensive testing on fifteen imbalanced datasets from the
knowledge extraction based on evolutionary learning (KEEL) repository demon-
strates the effectiveness of our proposed method. The approach was evaluated
for random forest (RF) and linear support vector machine (SVM) classifiers on
these data sets. Results indicate that ICEC proved to be effective for both clas-
sifiers, with an observed F1-score improvement of more than 10% for SVM and
3% for RF.
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1. INTRODUCTION
Imbalanced datasets are commonly observed in applications like intrusion detection, e-commerce,

stock prediction, spam identification, and medical diagnosis, where the identification of rare class is a crucial
issue. In such imbalanced datasets, one class (majority class) significantly outnumbers the other (minority
class) [1]. Traditional classification methods may struggle in this context, as they fail to effectively utilize the
information contained in the minority class. This imbalance can lead to classifiers that are biased towards the
majority class, resulting in poor predictive performance, especially for the minority class [2], [3].

Several techniques have been developed to tackle the class imbalance problem, including resampling
methods such as under-sampling and oversampling, cost-sensitive learning [4], and ensemble approaches [5].
Among these, oversampling with synthetic minority oversampling technique (SMOTE) and its variants has
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been reported to be quite effective by researchers [6], [7]. But these techniques cannot effectively tackle data
complexities like noise and class overlap, and may introduce outliers and bias in modeling [8].

To address these challenges, this research suggests employing clustering for classification of imbal-
anced datasets. As an unsupervised technique, clustering is capable of detecting patterns in unlabeled data.
Several researchers have supported the application of clustering to enhance classifier performance on balanced
datasets [9]-[11]. Similarly, clustering-based techniques have proven effective in addressing imbalanced data
classification problems [1], [12]-[14]. These methods successfully mitigate issues such as overfitting and bias
toward majority classes. Lin Sun et al. [12] proposed a feature reduction method for imbalanced datasets,
which combined similarity-based clustering with adaptive weighted k-nearest neighbor algorithm. Khandokar
et al. [13] suggested two clustering-based priority sampling techniques for the imbalanced datasets in Liu of
random undersampling/oversampling methods. An adaptable framework proposed by Liu et al. [14] for in-
cremental learning, employed clustering to group similar instances and selecting representative instances from
each cluster, especially from the minority class to create a balanced set of representatives from each class.

In this paper, we propose an intuitive method improved classification for imbalanced datasets using
ensemble clustering (ICEC) which leverages clustering to generate distribution-based auxiliary features to im-
prove the performance of a classifier. This research aims to leverage the strengths of both approaches to address
the challenge of class imbalance in data as:

- Clustering for better representation: Clustering techniques identify natural groupings within the data, which
might not be apparent when simply classifying [15]. The essential idea for clustering imbalanced data is to
capture the distribution of each class. By clustering the data, instances of each class (even the minority class)
are included in the clustering scheme, although the density of clusters may vary for the minority class.

- Enhanced feature space: Clustering contributes to the creation of new features that capture the underlying
structure of the data [16]. These features not only enhance the original feature set but also provide deeper
insights into the inherent structure of the data. The enhanced feature set is quite useful for building a robust
predictive model and thus, boosts the performance of the classifier. Statistics like minimum, maximum
and average distance serve as additional inputs to the classifier, giving the model more context about the
relationships of different samples in the same cluster.

- Focus on minority class: The clustering process, being unsupervised, gives equal weight to the minority
class. This ensures that the classifier is trained with a balanced perspective without getting biased towards
majority class.

Non-conclusive results on the usage of a particular clustering algorithm for generating features moti-
vated us to utilize cluster ensemble to generate auxiliary features for distinguishing classes in imbalanced data.
While the literature presents various clustering methods, each comes with its unique strengths and weaknesses
[17]. Ensemble clustering, also known as consensus clustering, integrates the insights gained from multiple
clustering techniques to better understand the inherent similarities among data points [17]-[19].

To the best of the authors’ knowledge, no existing work has used cluster ensemble to generate addi-
tional distribution-based features to enrich the dataset. The major contributions of the proposed work include:

- A novel method for enriching the dataset with distribution based auxiliary features.
- Use of robust clustering scheme delivered by cluster ensemble to generate auxiliary features.
- Extensive experimentation with 15 imbalanced datasets to evaluate the efficacy of the proposed ICEC method.

Organization of the paper: The proposed method for generating auxiliary features to boost classifier
performance on imbalanced datasets is outlined in section 2. The imbalanced datasets, accompanied by a
statistical analysis of the results are briefed in section 3, followed by conclusion in section 4.

2. METHOD

In this section, we describe the ICEC approach adopted to enhance classification robustness by inte-
grating clustering with supervised learning. As depicted in Figure 1, ICEC consists of two phases: i) auxiliary
feature generation using cluster ensemble, and ii) model building and prediction, as described below. A step-
wise delineation of both the phases is presented in Algorithm 1, and described in the subsections below.
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Figure 1. Workflow of ICEC method

Algorithm 1 ICEC method
Input: Data set D with #Instances N , #Clustering schemes B, #Classes M , classifier C
Output: Enriched data set D̂, Classifier model L
Phase 1: Generate auxiliary features using ensemble clustering to get D̂

1. Generate B clustering schemes. Let Cij represent the jth cluster in ith clustering scheme (See section 2.1.1. for details)

2. Compute co-association matrix X using (1)

3. Use X to generate final ensemble clustering scheme F = {C1...CK} with K = 2M using K-means algorithm.

4. for each cluster Cj ∈ F do

5. for each point p in Cj do

6. Compute auxiliary features MINj
p, AVGj

pand MAXj
p using data members of Cj (See section 2.1.2.)

7. Concatenate features MINj
p, AVGj

pand MAXj
p with the feature vector of p to get augmented feature vector

8. end for

9. end for

10. Enriched Data D̂←D with auxillary features

Phase 2: Model building and prediction

1. L← TrainClassifier(C, D̂)

2. T ← Unseen test instance

3. Use nearest neighbour approach to identify the cluster Ct in the clustering scheme F = {C1...CK} to which T belongs

4. Compute auxiliary features MINT , AVGT and MAXT using data members of Ct
5. Concatenate features MINT , AVGT and MAXT with the feature vector of T to get augmented feature vector Taug

6. PredictedLabel← EvaluateClassifier(L, Taug)

2.1. Auxiliary feature generation
Following the recommendation of Piernik and Morzy [15], we generate distance-based clustering

features, referred to as auxiliary features. Rather than focusing on the distance from the centroid - a method
that poses challenges for various clustering algorithms - we leverage the distribution of points within each
cluster to create additional features. These auxiliary features are then combined with the existing ones, as
suggested in [15], to improve classification performance. The resulting dataset is referred to as the enriched
dataset.

2.1.1. Cluster ensemble generation
The proposed method uses ensemble clustering to produce robust and consistent cluster labels to

generate auxiliary features, thus improving class separability in the labeled dataset D. Each clustering algo-
rithm has its own unique strengths: for instance, K-means and K-medoids are particularly good at detecting
spherical clusters, while agglomerative and spectral clustering excel at capturing hierarchical relationships or
graph-based structures. By combining these different clustering methods, the ensemble approach ensures a
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comprehensive and well-rounded representation of the entire data [20], leading to improved representational
accuracy as compared to a single clustering algorithm.

Of all the clustering methods, we chose the methods that are suitable to generate a defined number
of clusters. We selected three clustering approaches, viz. K-means, spectral clustering and agglomerative hi-
erarchical clustering to generate three base clustering schemes respectively for observing clustering structures
from different views. K-means clustering is a traditional and well-defined approach and is used for its simplic-
ity and computational effectiveness [17], [21]. Spectral clustering uses graph-based structures and the graph
cut method to deliver the desired number of connected components called clusters [22], [23]. It works well for
arbitrary shape non-convex datasets and makes no assumptions for the global structure of the data. Agglomer-
ative hierarchical clustering makes use of a greedy approach which starts with each point as a singleton cluster,
merges a pair of clusters at a time as per selected linkage method till all points are part of a single cluster. The
resultant output is in the form of a dendrogram that represents classificatory relationships in the data based on
the proximity method used [24].

After the three base clustering schemes are generated, the evidence accumulation model is used for
combining the information of multiple partitions in base clusterings to make cluster ensembles. We use a
co-association matrix X to store the association of each pair of points (p, q) as gathered from B clustering
schemes. Each entry X (p, q), denoting number of times two points p and q appear in the same cluster across
all B clustering schemes is computed as:

X (p, q) =
1

B

B∑
i=1

K∑
i=j

S(p, q, Cij) (1)

Here K is number of clusters, and S(p, q, Cij) is an indicator function for the cluster membership Cij in cluster
j of base clustering scheme Bi for any two points p and q as defined:

S(p, q, Cij) =

{
1 if both points p, q ∈ Cij

0 Otherwise
(2)

The co-association matrix X serves as a data matrix for the K-means algorithm to produce the desired
number of clusters. Each generated cluster consists of a subset of rows aka points of X that exhibit greater
similarity to one another than to other points. Thus, the final clustering scheme consisting of K clusters is
represented as F = {C1...CK}. It is important to highlight that the number of clusters (K) is determined by the
actual number of classes (M ), with K set to 2M to avoid creating very small clusters. Since we are considering
binary class imbalanced datasets in this study, each dataset results in the creation of four clusters.

2.1.2. Feature engineering from clustering scheme
Once the ensemble clustering process is complete, new features are generated to enrich the original

dataset D so as to enhance class separability. It is worthwhile mentioning here that the number of class labels
(M ) provided with the labeled dataset D are not modified, only additional features are curated to assist classifier
to build model with improved predictability. These features capture intra-cluster relationships, offering valuable
insights into the internal structure and distribution of data within each cluster. Since the clusters do not overlap,
each point is associated with only one cluster Cj . For each data point, the following three new auxiliary features
are calculated based on the distribution of the members of the cluster Cj to which it belongs to.

As clusters are non-overlapping, each point p belongs to one cluster Cj only and three new auxiliary
features are computed for each data point using the distribution of members of Cj as given:
- Minimum distance (MINj

p ): this measures the distance of the data point p (p ∈ Cj) to the closest point x in
the same cluster. This feature captures local density and compactness around a point in a cluster. Formally,
it is computed as:

MINj
p = min(D(p, x)) ∧ p ̸= x ∀x ∈ Cj (3)

where D(p, x) denotes distance between two data points p and x.
- Average distance (AVGj

p ): this metric captures the overall cohesion of the cluster by calculating the mean
distance of a sample p from all other members of its cluster (Cj).
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AVGj
p = avg(D(p, x)) ∧ p ̸= x (4)

- Maximum distance (MAXj
p ): this represents the farthest distance of a sample p from other points in the same

cluster Cj , which reflects its spread or boundary, thus capturing the wideness of the cluster.

MAXj
p = max(D(p, x)) ∧ p ̸= x (5)

Cluster-derived features significantly enhance the original dataset D with n features by embedding
structural information for each point, resulting in an enriched dataset D̂ with n+ 3 features. The new features
reflect relationships rooted in the data distribution within each cluster, offering insights not provided by the
original n features. The time complexity for generating these auxiliary features is O(BKN +N2), where B is
the number of base clustering schemes, K is the number of clusters in each scheme, and N is the total number
of points in the dataset.

2.2. Model building and prediction
Once the dataset is enriched with auxiliary features (D̂), the classification algorithm is used to build a

model L which is used to predict class labels of unseen instances. Given a test instance T , the cluster label is
computed employing the nearest neighbor approach. The centroids of the generated clusters in the clustering
scheme F = {C1...CK} are used to identify the cluster label of T . Subsequently, three auxiliary features are
computed for T and augmented with the original feature vector of size n. Once the updated feature vector Taug

of size n+ 3 is obtained, it is fed to the trained classifier L to predict the class label.

3. RESULTS AND DISCUSSION
In this section, we analyze how enriching a dataset with clustering-based auxiliary features affects

classifier performance. For the sake of simplicity, we have opted to analyse the performance of two simple and
widely recognized classifiers: random forest (RF) and linear support vector machine (SVM) in this study.

3.1. Datasets used
Table 1 lists the fifteen imbalanced datasets downloaded from knowledge extraction based on evo-

lutionary learning (KEEL) repository [25], used in this study. Each dataset is a binary class dataset and is
characterized by a skewed class distribution, meaning that the number of instances in one (majority) class
substantially exceeds that of the other (minority) class. The column imbalance ratio (IR) in the table shows
the ratio of the number of instances in the majority class to those in the minority class as mentioned for each
dataset.

Table 1. Imbalanced datasets used in the study; IR-imbalance ratio
S. No Name IR #Attributes #Instances

1 Ecoli1 3.36 7 336
2 Glass0 2.06 9 214
3 Glass5 22.78 9 214
4 Glass6 6.38 9 214
5 Haberman 2.78 3 306
6 New-thyroid1 5.14 5 215
7 New-thyroid2 5.14 5 215
8 Vehicle0 3.25 18 846
9 Vehicle1 2.9 18 846
10 Vehicle2 2.88 18 846
11 Vehicle3 2.99 18 846
12 Vowel0 9.98 13 988
13 Wisconsin 1.86 9 683
14 Yeast1 2.46 8 1484
15 Yeast6 41.4 8 1484

3.2. Evaluation metrics
It is a well established fact that the F1-score is an effective metric for assessing the performance of

any classifier on an imbalanced dataset compared to the accuracy metric [26]. F1-score is defined as harmonic
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mean of Precision and Recall (See (6)). We have used the extension of F1-score, macro F1-score, to assess
the classifier performance across both classes taken together.

MacroF1-score =
∑

(F1-score)
No. of Classes

where F1-score =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

3.3. Performance Analysis
In this subsection, we assess the effectiveness of the enhanced feature sets developed by the proposed

method by performing a comparative analysis of classifier performance on select imbalanced datasets.

3.3.1. Impact of auxiliary features
Our first goal is to analyze the impact of additional clustering-based features on the performance of RF

and linear SVM classifiers on 15 imbalanced datasets (Table 1). Experiments were performed on the original
feature sets (ORG) and the enhanced feature sets curated by extending the original feature set by generating all
possible seven combinations of the three clustering-based auxiliary features (MAX, MIN and AVG) outlined
in section 2.1.2. Ten-fold cross-validation was carried out for each data set, and average macro F1-score was
computed. Table 2 presents the average macro F1-scores obtained for the two classifiers using original (column
4) and enhanced feature sets (column 5-11) respectively.

Table 2. Macro F1-scores obtained using original and seven curated feature sets for the selected datasets
S.

Dataset CFR
ORG ORG ORG ORG ORG+MIN ORG+MIN ORG+AVG ORG+MIN

No +MIN +AVG +MAX +AVG +MAX +MAX +AVG+MAX
1 Ecoli1 RF 85.77 86.67 84.17 84.35 85.61 85.14 86.07 86.44

SVM 84.98 84.86 84.49 85.74 84.12 85.31 86.20 86.33
2 Glass0 RF 78.00 79.37 81.03 78.64 81.11 81.18 81.61 81.41

SVM 41.06 42.05 42.14 41.65 43.15 42.74 42.49 42.74
3 Glass5 RF 82.60 82.60 79.15 84.40 79.15 82.60 82.60 82.60

SVM 77.47 74.02 77.47 83.51 74.02 83.51 83.51 83.51
4 Glass6 RF 85.77 86.67 84.17 84.35 85.61 85.14 86.07 86.44

SVM 84.98 84.86 84.49 85.74 84.12 85.31 86.20 86.33
5 Haberman RF 54.50 56.11 54.03 51.06 57.06 54.42 56.07 54.23

SVM 42.87 45.07 42.87 42.87 45.07 47.05 42.87 45.07
6 New-thyroid1 RF 97.22 98.07 98.07 96.28 98.07 98.07 96.52 97.37

SVM 96.08 96.08 96.08 96.08 97.16 96.08 96.08 97.16
7 New-thyroid2 RF 95.76 96.37 96.89 96.37 94.94 97.08 93.04 96.46

SVM 93.70 93.70 96.06 93.70 96.62 93.70 96.62 96.62
8 Vehicle0 RF 95.64 95.58 96.00 96.47 95.63 95.43 95.69 96.30

SVM 95.00 95.11 96.15 95.28 95.61 95.25 96.70 96.73
9 Vehicle1 RF 66.82 68.23 68.27 67.96 65.15 67.20 66.20 67.59

SVM 71.84 71.59 72.48 71.75 72.69 71.81 72.10 72.41
10 Vehicle2 RF 95.92 96.02 95.74 96.08 96.26 96.11 96.09 96.16

SVM 95.15 95.01 94.86 95.10 95.63 95.07 95.10 95.30
11 Vehicle3 RF 66.54 67.05 67.20 66.93 68.63 68.15 66.99 67.28

SVM 72.24 71.44 72.94 72.34 72.73 72.49 73.32 72.21
12 Vowel0 RF 98.77 98.77 99.28 98.77 98.62 98.52 99.54 99.03

SVM 90.99 90.58 94.45 97.54 94.66 95.78 97.54 96.41
13 Wisconsin RF 96.42 96.13 96.78 96.95 96.81 96.78 96.79 96.63

SVM 95.89 96.42 96.78 96.78 96.26 96.43 96.78 96.26
14 Yeast1 RF 69.13 70.66 71.34 70.46 68.77 71.37 69.93 70.88

SVM 59.42 60.81 59.62 59.31 62.36 60.22 59.25 62.74
15 Yeast6 RF 69.97 70.34 66.28 73.08 68.71 71.28 69.01 69.81

SVM 49.40 51.90 49.40 49.40 56.45 51.90 51.40 60.47

Comparison of F1-scores across each row reveals improved performance over original feature set on
all data sets because of enhanced feature set. Sometimes, adding just one auxiliary feature to the original fea-
ture set can yield the highest F1-score for a given dataset. For instance, the Ecoli1 (S.No 1) dataset reports
a maximum F1-score of 86.67 for the feature set (ORG+MIN) for RF classifier, as compared to a score of
85.77 on the ORG feature set and 86.44 for (ORG+MIN+AVG+MAX) feature set. On the other hand, con-
sider the Yeast6 (S.No 15) data set, where an increase of more than 10% for SVM classifier is observed for
(ORG+MIN+AVG+MAX) feature set as compared to original feature set. In a limited number of instances,
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either no improvement or a decline in performance is noted; however, these cases are quite rare. Thus, in gen-
eral, a positive effect of the clustering-based features on classifier performance cannot be ruled out, as addition
of auxiliary features to the original feature set tends to improve classifier performance significantly in most of
the datasets.

In order to identify the best performer among all feature sets, we compute the average rank score for
each feature set. For each data set and classifier, the scores on the eight feature sets are ranked from 1 to 8,
with 1 indicating the lowest score and 8 the highest. Average rank is assigned whenever there is a tie in ranks
of two or more feature sets. Mean ranks for each feature set are computed by averaging the ranks across the
feature set column. Table 3 shows the mean ranks of classifiers for the eight feature sets. It can be seen from the
Table 3 that the mean rank for the ORG feature set is the lowest in the three rows, while the enhanced feature
set that includes all three clustering-based auxiliary features MIN, AVG and MAX (last column of Table 2)
has the highest mean rank. Mean ranks for the original feature set are plotted along with that of the two best
performer feature sets - (ORG+MIN+MAX) (Figure 2(a)) and (ORG+MIN+AVG+MAX) (Figure 2(b)). Visual
comparison further supports the superiority of the enriched feature set with all three auxiliary features.

Table 3. Mean ranks of macro F1-scores over all datasets for ORG and curated feature sets

S.No Classifier
ORG ORG ORG ORG ORG+MIN ORG+MIN ORG+AVG ORG+MIN

+MIN +AVG +MAX +AVG +MAX +MAX +AVG+MAX
1 RF+SVM 2.9 3.8 4.4 4.2 5.1 5.1 4.9 5.6
2 RF 3.2 4.3 4.8 4.5 4.4 5.1 4.4 5.2
3 SVM 2.6 3.3 3.9 3.8 5.8 5.1 5.4 6.1

(a) (b)

Figure 2. Mean ranks of macro F1-scores for three feature sets of (a) RF and (b) linear SVM

3.3.2. Statistical analysis
In this subsection, we validate the superior performance of classifiers on enhanced feature sets by

applying the Friedman rank sum test [27] to the multicolumn data in Table 2. Friedman test is a non-parametric
statistical method used to assess multiple related groups for significant statistical differences in data distribu-
tions. According to the test, the null hypothesis states that there is no significant statistical difference among
the F1-scores obtained for eight feature sets. Given N(= 30) sets of scores for f(= 8) feature sets, the F1-
scores are ranked as described in the subsection above. The rank sum (Rj) is computed for each feature set
(j = 1 . . . 8) to calculate the Q test statistic as:

Q =
12

N.f.(f + 1)

f∑
j=1

R2
j − 3N(f + 1) (7)

The Q test statistic follows a Chi-square distribution with 8− 1 = 7 degrees of freedom. The critical
value of test statistic at 95% significance level is 14.067, which is less than the calculated statistical value Q of
26.67. Hence, the null hypothesis is rejected, indicating significant differences in the classifier performance on
different feature sets. Higher rankings of enhanced features sets (as seen in Table 3) thus statistically confirm the
positive effect of clustering-based auxiliary features on the performance of classifiers on imbalanced datasets.
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4. CONCLUSION
The proposed ICEC method uses ensemble clustering to create auxiliary features that improve classi-

fier performance on imbalanced datasets, as demonstrated by experiments on fifteen imbalanced data sets using
RF and linear SVM classifiers. The study vindicates that the auxiliary features assist the classifier by providing
comprehensive understanding of data patterns to generate a robust classification model. Hence, this approach
proves useful for critical applications such as cyber attack monitoring, fraud detection and disease diagnosis,
where effective identification of rare case is crucial. However, the results of the proposed method are highly
dependent on the number of clusters (K) generated. Indeed the idea of utilizing various ensemble strategies to
create an effective clustering scheme may be explored in near future, so that a prior specification of K is not
required. Additionally, optimization techniques can be utilized for identification of best auxiliary features for a
given dataset.
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