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 Accurate channel quality indicator (CQI) estimation is crucial for optimizing 

resource allocation, improving link adaptation, and sustaining high 

performance in long term evolution (LTE) networks. In real-world scenarios, 

where channel conditions fluctuate rapidly due to user mobility, inaccurate 

CQI estimation can lead to suboptimal scheduling, degraded throughput, and 

reduced quality of service (QoS) for both users and network operators. 

Traditional Kalman filter (KF) approaches often struggle with the non-linear 

and time-varying nature of wireless channels, especially under unpredictable 

mobility patterns. This paper proposes an improved CQI estimation method 

based on the extended Kalman filter (EKF), which models non-linear system 

dynamics more effectively. The method is implemented in LTE-Sim, 

analyzed using MATLAB, and evaluated under random and Manhattan 

mobility models. Results show that across mobility regimes, KF outperforms 

EKF in the structured Manhattan model, while in the non-linear random-

direction model, EKF yields markedly higher signal-to-interference-plus-

noise ratio (SINR) stability and robustness to channel variation with SINR 

values above 10 dB between 300-450 s and a peak of approximately 60 dB. 

These results underscore the importance of mobility-aware estimation 

strategies in enhancing LTE network adaptability and throughput. 
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1. INTRODUCTION 

In long term evolution (LTE) networks and other wireless mobile communication networks, 

accurate knowledge of channel conditions is fundamental to ensuring efficient spectrum utilization, optimal 

scheduling, and consistent service quality [1]. In modeling wireless communication systems, understanding 

the inherent characteristics of the channel helps in capturing the dynamism associated with channel state 

variation. The channel characteristics could be quantified as channel quality indicator (CQI) or channel state 

information (CSI). While the CSI provides detailed information about the channel conditions and is used for 

link adaptation, beamforming, and other transmission techniques, the CQI provides a quantized measure of 

channel quality and is used to determine the modulation and coding scheme (MCS) most suitable for signal 

transmission [2]. In LTE systems, CQI estimation plays a pivotal role in dynamic resource allocation, 

enabling the eNodeB to assign appropriate MCS based on real-time channel conditions. Accurate CQI 

reporting is crucial for maintaining quality of service (QoS), reducing retransmissions, and ensuring spectral 

efficiency, particularly in heterogeneous networks and for users located in regions with poor signal coverage, 

such as cell edges. In other words, CQI accuracy directly impacts throughput and reliability [3]. Estimating 
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the CSI accurately in a wireless fast-fading channel is highly challenging due to its complexity and the 

associated level of uncertainties, unlike the CQI, which is relatively straightforward. However, CQI 

estimation in mobile environments poses a significant challenge due to the highly dynamic nature of wireless 

channels, which are influenced by factors such as fading, interference, and varying user mobility patterns [4]. 

These factors are more pronounced in high mobility scenarios, as it becomes more challenging to estimate 

the channels accurately [5]. As users move, channel conditions can change unpredictably, resulting in 

outdated or inaccurate CQI reports that degrade link adaptation and overall network performance [5], [6]. 

In determining channel conditions as a function of time, it is necessary to put into perspective the 

reality of value depreciation or ageing arising from the effect of the difference between the time of 

measurement and the time of usage of the measured values. If substantial time elapses between the 

submission of the CQI report and its use in decision-making (such as scheduling decisions), the report’s 

relevance may be significantly degraded, potentially leading to reduced network spectral efficiency [7]. 

Consequently, it is recommended that the estimation bias is very close to zero, such that the estimated value 

does not deviate much from the actual condition of the channel. The traditional Kalman filter (KF) is a 

model-based iterative technique that utilizes a series of observations to obtain a more accurate estimate of the 

state parameters [8]. Although the KF techniques are effective for linear systems, they often exhibit reduced 

accuracy in the presence of non-linear channel variations, commonly observed in random or irregular 

mobility scenarios [9]. 

Several techniques have been adopted in wireless networks for estimating the CQI. Rao and Naidu 

[10] proposed a signal-to-noise ratio (SNR) estimation algorithm for orthogonal frequency division multiple 

access (OFDMA) systems in which the orthogonal frequency division multiplexing (OFDM) training 

symbols are employed in evaluating the noise variance, while second-order moments of the received symbols 

are used in estimating the signal plus noise power. Simulation results demonstrate comparable performance 

with theoretical analysis, complemented by its outstanding performance when benchmarked against selected 

estimation methods. Similarly, to improve SNR estimation in OFDM networks, Ling [11] adopted an 

approach that aligned with the network’s non-linearity features by employing the extended Kalman filtering 

technique. Comparative analysis revealed that the extended Kalman filter (EKF) estimator outperforms the 

least squares (LS) and minimum mean square error (MMSE) techniques. In pursuit of even lower bit error 

rate (BER), Kapil et al. [12] proposed a modified extended Kalman filter (MEKF) to jointly estimate the 

channel response and auto-regressive (AR) model coefficients, combining the fast convergence rate of EKF 

and the correlation feature of 2D interpolation using least squares (2DILS). Although it achieved lower BER 

than EKF and 2DILS, MEKF is prone to estimation errors and comes with higher computational complexity. 

In another study, Tang et al. [13] proposed a KF-based channel estimation method for 2×2 and 4×4 

space-time block coding multiple-input and multiple-output orthogonal frequency division multiplexing 

(STBC MIMO-OFDM) systems in dynamic environments, using orthogonal space-time codewords and pilot 

sequences to suppress antenna interference before applying the KF’s prediction–update process with noise 

suppression. This approach achieved strong BER and normalized mean square error (NMSE) performance, 

but at the cost of increased computational load due to iterative KF processing and pilot design. Kumar and 

Malleswari [14] integrated the EKF with a sliced multi-modulus algorithm (SMMA) for improving OFDM-

MIMO systems, outperforming traditional multi-modulus algorithms in terms of BER and inter-symbol 

interference metrics. Rajender et al. [6] provides a comprehensive review of Kalman filter-based channel 

estimation capabilities across OFDM and MIMO-STBC systems, highlighting both accuracy and 

computational demands. Similarly, Drakshayini and Kounte [8] classified techniques into model-based and 

deep learning-based categories, noting that while KF yields highly accurate estimates through iterative 

observation, it comes with substantial computational complexity.  

Building on the strengths of KF approaches, several works have adapted them specifically for CQI 

prediction and dynamic resource optimization. For instance, Sulthana and Nakkeeran [15] addressed the 

unrealistic assumption of perfect CQI in earlier research by predicting SNR from imperfect CQI using 

Kalman filtering. The predicted SNR was then used to estimate transmission rates and design priority utilities 

for scheduling decisions. Teixeira and Timoteo [16], LTE resource allocation was enhanced by using a KF-

based prediction method for determining the data rate. However, parameter fine-tuning was not considered. 

In a related study Biswas et al. [17], multiple linear regression was used to estimate future throughput, 

followed by KF correction to mitigate prediction and measurement errors. This approach delivered timely 

and accurate throughput predictions without overfitting, making it suitable for energy-constrained LTE 

devices, though with limited performance in highly dynamic channels. Extending the predictive framework 

to spectrum management, Timóteo et al. [18] applied the Kalman-Takens filter (KTF) for real-time 5G 

spectrum allocation. By minimizing root mean square error (RMSE), the method effectively captured traffic 

dynamics, optimized throughput and latency, and adapted well to high-demand scenarios. Nonetheless, its 

performance depends heavily on dataset-specific parameter tuning and understanding inter-parameter 

dependencies. 
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With the rise of machine learning, deep learning-based approaches for CQI and channel estimation 

have been extensively investigated, offering new opportunities for pattern extraction and long-term 

prediction. A comparative analysis in Jiang and Schotten [19] showed that while recurrent neural network 

(RNN)-based predictors exhibit higher computational complexity than KF-based predictors, both achieve 

comparable single-step accuracy, though RNNs demonstrate superior performance in multi-step prediction. 

In vehicular systems, Kim and Han [4] proposed an received signal strength indicator (RSSI)-driven long 

short-term memory (LSTM)-based CQI predictor that outperformed conventional time-series models, while 

Qu et al. [20] proposed a temporal-spatial collaborative framework combining binary particle swarm 

optimization (BPSO), max-relevance and min-redundancy (MRMR) feature selection, deep neural network 

(DNN), and attention mechanisms, yielding proactive long term evolution-railway (LTE-R) base station 

maintenance, though with significant computational demands. For unmanned aerial vehicle (UAV) ultra-

reliable low-latency communications, Bartoli and Marabissi [21] applied deep recurrent neural networks 

(DRNNs) with LSTM, which reduces decode error probability and improves throughput. However, this 

approach is limited to temporal CQI data and neglects spatial/frequency correlations.  

Furthermore, Cwalina et al. [22] modeled a non-linear relationship between channel parameters and 

block error rate (BLER), achieving a gain of up to 40% over linear models with low computational 

complexity. Similarly, Diouf et al. [23] applied DNN and LSTM to real 4G datasets, achieving low RMSE 

and strong prediction accuracy, but requiring large, high-quality datasets for training. Advanced wireless 

scenarios, such as vehicle-to-vehicle (V2V), industrial IoT (IIoT), RIS-based systems, and mmWave MIMO, 

have motivated the development of specialized and hybrid schemes. In V2V and IIoT networks, Liao et al. 

[24] designed two Bayesian filter-based channel estimation techniques-basis extended model-unscented 

Kalman filter (BEM-UKF), offering strong robustness at high complexity, and Basis Extended Model-

extended Kalman filter (BEM-EKF), with moderate robustness at lower complexity. For industrial 

subnetworks, Gautam et al. [25] introduced a variational deep state space model (vDSSM) with sparse 

student-t process regression and modified unscented KF, ensuring ultra-reliable BLER control despite the 

need for real-time validation. In 5G/6G CSI prediction, Soszka [26] highlighted the potential of LSTM RNNs 

across sub-6 GHz and mmWave, optimizing features and hidden layers but stressing the need for more 

measurement-driven studies. In mmWave MIMO systems, Huang et al. [27] combined least square 

estimation (LSE) and sparse message passing (SMP) to exploit channel sparsity, reaching near-cramer-rao 

lower bound accuracy within five iterations, though adjacent-entry correlation remains unaddressed. 

Reconfigurable intelligent surfaces (RIS)-assisted systems were targeted in Wei et al. [28], which proposed 

parallel factor analysis (PARAFAC) decomposition using alternating least squares (ALS) and vector 

approximate message passing (VAMP) algorithms, both of which outperformed benchmark schemes and 

achieved near-perfect sum rate performance. Constraints on RIS element numbers and training symbol 

lengths, as well as estimation ambiguity, were noted as limitations. Finally, Serunin et al. [29] developed a 

CSI-RS-based CQI evaluation method involving noise estimation, SNR transformation, and MCS selection, 

achieving accurate CQI reporting under additive white gaussian noise (AWGN) conditions, but requiring 

further evaluation in complex fading environments.  

The KF’s limitation, exemplified by reduced accuracy in modeling non-linear channel behavior, 

motivates exploring the EKF, which uses first-order linearization to accommodate non-linear system 

dynamics and has been shown to improve estimation in time-varying channels. This study proposes an EKF-

based CQI estimation approach for LTE networks and evaluates its performance against the classical KF 

under two distinct mobility models: the structured Manhattan model and the unstructured random direction 

model. Using LTE-Sim for signal-to-interference-plus-noise ratio (SINR) extraction and MATLAB for 

analysis, the work demonstrates how the EKF technique enhances CQI estimation accuracy, particularly 

under non-linear mobility conditions. The results are relevant for improving LTE network adaptability, 

throughput, and QoS in real-world deployments.  

The rest of the paper is structured as follows: section 2 presents the system model, providing a 

detailed explanation of CQI estimation using KF and EKF; section 3 discusses the simulation results; and 

section 4 concludes the paper. 

 

 

2. METHODS 

2.1.  System model 

In LTE networks, the channel quality can be a function of several time-varying factors, including 

SINR, fading effects, interference, noise, and others. These factors assume a time-varying process, and as 

such, channel quality is seen as a continuous variable that evolves in accordance with the dynamics defining 

the wireless environment. This study models the channel estimation process using a linear state-space 
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framework, where the state and observation vectors describe the system’s underlying dynamics and 

measurement processes, respectively [30]: 

 

{
𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝜓𝑡𝜒_𝑡

𝑤𝑡 = 𝐶𝑡𝑥𝑡 + 𝐷𝑡𝑢𝑡 + 𝜂_𝑡
  (1) 

 

Where: 𝐴𝑡, 𝐵𝑡 , 𝜓𝑡, 𝐶𝑡, and 𝐷𝑡  are respectively, 𝑛 × 𝑛, 𝑛 × 𝑚, 𝑛 × 𝑝, 𝑞 × 𝑛, and 𝑞 × 𝑚 constant matrices in 

which 1 ≤ 𝑚, 𝑝, 𝑞 ≤ 𝑛; {𝑢𝑡} is a deterministic input sequence of 𝑚-vectors, i.e., 𝑢(𝑡) ∈ ℛ𝑚; {𝜒_𝑡} is the 

system noise sequence (zero-mean Gaussian white noise process); {𝜂_𝑡} is the observation noise sequence 

(zero-mean Gaussian white noise process). 

The system shown in (1) could be decomposed into the state dynamics of a linear system to give a 

sum of a linear deterministic system and the purely stochastic system shown in (2) and (3), respectively [30]: 

 

{
𝑧𝑡+1 = 𝐴𝑡𝑧𝑡 + 𝐵𝑡𝑢𝑡  

 𝑠𝑡 = 𝐶𝑡𝑧𝑡 + 𝐷𝑡𝑢𝑡
  (2) 

 

{
𝑦𝑡+1 = 𝐴𝑡𝑦𝑡 + 𝜓𝑡𝜒_𝑡

𝑣𝑡 = 𝐶𝑡𝑦𝑡 + 𝜂_𝑡  
  (3) 

 

Therefore, 

 

𝑤𝑡 = 𝑠𝑡 + 𝑣𝑡  (4) 

 

𝑥𝑡 = 𝑧𝑡 + 𝑦𝑡   (5) 

 

While 𝑥𝑡 represents the system state vector which is a function of the system’s dynamics, the 𝑤𝑡  is the 

observation vector which is a function of measurements. 

 

2.2.  Estimation methods 

To estimate the CQI effectively, two filtering approaches were employed: the KF for linear systems, 

and the EKF for systems with non-linear dynamics. These filtering techniques were selected because of their 

effectiveness in handling noisy measurements and their suitability for channel state estimation in wireless 

communication systems. The following subsections detail their underlying principles, mathematical 

formulations, and application to LTE CQI estimation. 

 

2.2.1. Kalman filter 

The KF is a computational method that uses a state-space model to estimate the state of a system or 

process in the time domain. It leverages the relationship between the system’s state and measurement 

equations to recursively estimate the state with minimal mean squared error [31], [32]. For dynamic systems 

with inherent randomness and nonlinearity, the evolution of their state probability distribution over time can 

be modeled using a set of non-linear differential equations [33]. KF are used for estimation in systems that 

can be modeled with linear differential equations, where the state and measurements equations are presented 

as linear functions within a state-space framework [34]. The estimation process involves a prediction-

correction cycle, guided by rules that refine the estimate [6]. The estimation accuracy of KF technique is high 

due to the fact that it involves a series of measurements conducted over a period of time, which provides 

statistically sufficient information for effective predictions of the current state [35].  

In estimating the CQI using the KF, the prediction stage involves calculating the current CQI 

perceived by the user based on the user’s CQI value from the previous transmission time interval (TTI). 

Therefore, the correction stage involves minimization of the error between the observed value and the current 

value [15]: 

 

𝑋𝑡|𝑡−1 = 𝐴𝑡𝑋𝑡−1 + 𝑣𝑡  (6) 

 

𝑍𝑡 = 𝐻𝑡𝑋𝑡 + 𝑤𝑡   (7) 

 

The (6) shows that the KF predicts the unknown state 𝑋𝑡 based on preceding state at time (𝑡 − 1) using the 

measurement vector, 𝑍𝑡. The 𝑣𝑡 is a zero-mean system or process noise while 𝐴𝑡 is the state transition matrix 

[18]. Similarly, the 𝐻𝑡  in (7) represents the measurement matrix, while 𝑤𝑡  is a zero-mean observation noise. 

The Kalman gain is meant to minimize estimation error and is given in (8) as [18]: 
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𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑤𝑡)
−1

  (8) 

 

where 𝑃𝑡|𝑡−1 is the covariance matrix at time 𝑡 based on the estimate 𝑋𝑡|𝑡−1 at time (𝑡 − 1). 

For the Update phase, the optimal estimate at time 𝑡 is given in (9), thus: 

 

𝑋𝑡
% = 𝑋𝑡|𝑡−1 + 𝐾𝑡(𝑍𝑡 − 𝐻𝑡𝑋𝑡|𝑡−1)  (9) 

 

The (10) gives the updated covariance matrix for the optimal estimate as: 

 

𝑃𝑡 = 𝑃𝑡|𝑡−1(𝐼 − 𝐾𝑡𝐻𝑡)  (10) 

 

Where, 𝐾𝑡 is the Kalman gain and 𝐼 is the identity matrix. 

 

2.2.2. Extended Kalman filter 

The KF assumes an accurate mathematical model, but this assumption is often compromised due to 

truncation errors when approximating non-linear systems with linear models [32]. Although the KF is 

effective for many estimation problems, its limitation to finite-dimensional state representations makes it 

unsuitable for systems with non-linear dynamics. To address this limitation, the EKF, which provides a first-

order linearization of non-linear systems, was developed. The enhancement achieved by EKF is a result of its 

capability to approximate non-linear filtering problems using Taylor polynomial expansion [36]. This 

linearization enables the EKF to apply the iterative and correction processes of the KF to systems that are 

non-linear, such as the time-varying channels [37]. EKF comprises two stages, which include the prediction 

stage and the correction stage [38].  

In the prediction stage, an estimated current state of the channel and the error covariance estimate 

are used to calculate the estimates for the next state [12]. 

 

𝑋𝑡|𝑡−1 = 𝑓(𝑋𝑡−1, 𝑢𝑡 , 0)  (11) 

 

The (11) implies that the state transition model is a differentiable function, unlike the case of KF, where it is 

defined as a linear function. Similarly, the (12) shows that the measurement model could be defined as a non-

linear function. 

 

𝑍𝑡 = ℎ(𝑋𝑡) + 𝑤𝑡   (12) 

 

𝑃𝑡|𝑡−1 = 𝐴𝑡𝑃𝑡−1𝐴𝑡
𝑇 + 𝑊𝑡𝑄𝑡−1𝑊𝑡

𝑇  (13) 

 

The (13) provides the error covariance estimate, where 𝐴𝑡 is the state transition matrix, 𝐴𝑡
𝑇 is the transpose 

of the state transition matrix and (𝑊𝑡𝑄𝑡−1𝑊𝑡
𝑇) represents the covariance of the noise.  

In the correction stage, the predicted estimate is subjected to a correctional process using the 

observation model to minimize the error covariance of the estimator, resulting in an improved estimate, as 

shown in (14). The (15) gives an updated error covariance estimate. 

 

𝑋𝑡
% = 𝑋𝑡|𝑡−1 + 𝐾𝑡(𝑍𝑡 − ℎ(𝑋𝑡|𝑡−1, 0))  (14) 

 

𝑃𝑡 = 𝑃𝑡|𝑡−1(𝐼 − 𝐾𝑡𝐻𝑡)  (15) 

 

Where 𝐾𝑡 is the KF given by: 

 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑤𝑡)
−1

  (16) 

 

Where 𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
𝑇 + 𝑤𝑡  is the innovation covariance. The matrix inversion in (15) increases complexity, and 

there is always a trade-off between computational complexity and the EKF estimation accuracy [36]. 

 

2.2.3. Determination of the key parameters in the filtering process 

The performance of KF and EKF depends on the appropriate selection of parameters such as initial 

state, covariance matrices, and process/measurement noise covariances. In implementing KF and EKF for 
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CQI estimation in this study, key parameters were chosen through a combination of empirical analysis, 

simulation-based tuning, and reference to LTE specifications. The selection process is detailed as follows: 

a. Initial state (𝑥0): for both the KF and EKF implementations, the initial state was set to the first CQI 

value obtained from the LTE-Sim simulation output, with the assumption that the initial measured CQI 

is a reasonable approximation of the true channel quality. 

b. Initial covariance matrix (𝑃0): the initial error covariance matrix was chosen to be a diagonal matrix 

with relatively large values, reflecting the initial uncertainty. For both estimation techniques, the same 

initial covariance matrix value was used to allow for a fair comparison between KF and EKF. However, 

differences in their underlying assumptions and algorithmic structures led to distinct performance 

characteristics, especially in non-linear systems. 

c. Process noise covariance (𝑄): the 𝑄 matrix was tuned experimentally by running LTE-Sim scenarios 

with varying 𝑄 values and comparing the estimated CQI against reference values. The optimal value, 

minimized mean squared error (MSE), was selected to balance responsiveness to channel variations and 

the smoothing of random fluctuations.  

d. Measurement noise covariance (𝑅): this was derived from the variance of CQI measurement errors in 

the simulation, calculated as the variance between the simulator’s instantaneous CQI output and a 

moving-average reference CQI over the same period. This derivation ensured that 𝑅 accurately reflected 

the inherent noise level of the CQI reporting process in the simulated LTE environment. 

e. Kalman gain: in both KF and EKF, the Kalman gain was computed dynamically at each step from the 

chosen 𝑄, 𝑅, and updated covariance values. No fixed gain was imposed, allowing the filter to adjust 

weighting between prediction and measurement adaptively. 

f. State transition and observation matrices: in KF implementation, both matrices were set to unity to 

model a direct relationship between the previous and current states, as well as between the state and 

observation. In contrast, in EKF implementation, the state transition Jacobian (𝐹𝑘) and measurement 

Jacobian (𝐻𝑘) were recalculated at each iteration based on the non-linear state and measurement models 

derived from the channel mapping. These matrices ensured correct linearization for prediction-update 

cycles. 

 

2.3.  Simulation setup 

Simulations were conducted using LTE-Sim, which provided a robust platform for modeling LTE 

system behavior under various scenarios. MATLAB was subsequently employed for post-simulation data 

processing, statistical analysis, and visualization of the obtained results. The simulation environment was 

configured to emulate realistic LTE downlink conditions.  

 

2.3.1. Simulation parameters  

The LTE-Sim simulation software was used to extract the SINR from the estimated CQI, and the 

plots were carried out using MATLAB. To estimate the channel quality, the adaptive modulation and coding 

(AMC) module in LTE-Sim was modified, and the estimated channel quality was used to determine the 

SINR. Details of the simulation parameters are presented in Table 1. 

 

 

Table 1. Simulation parameters 
Parameter Value used 

Cell scenario Single-cell 

Cell radius 1 km 

Number of RBs 50 
Bandwidth 10 MHz 

Frame structure FDD 

UE speed 3 km/hr 
Propagation model PED-A, Typical Urban 

Mobility models Manhattan, random 

Scheduling type Downlink scheduling algorithm with imperfect CQI (DSA) 
Simulation duration 500 s 

 

 

2.3.2. Mobility models  

The mobility models considered in this work are the Manhattan mobility model and the random 

mobility model. In the context of LTE network simulations, the Manhattan mobility and random direction 

mobility models are commonly used to simulate user movement, with the Manhattan model representing 

movement along a grid-like path, with temporal dependencies, geographic restrictions but with no spatial 

dependencies and the random direction model representing random movement between points, with no 

temporal dependency, nor spatial dependency, nor geographic restrictions [39]. Mobility models significantly 
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affect SINR in LTE networks, since user mobility can lead to changes in signal strength as mobile user 

moves away from the eNodeB, interference levels, and channel conditions such as path loss or fading [40]. 

 

 

3. RESULTS AND DISCUSSION 

The SINR plots for the KF and the EKF estimations are shown in Figures 1 and 2, respectively. In 

Figure 1, the SINR for the random mobility model drops below 10 dB for approximately 85% of the 

observation period. In contrast, for the Manhattan mobility model, the SINR remains above 10 dB for over 

50% of the observation period. This indicates that the KF is better at estimating the SINR for users following 

the Manhattan mobility model than for those with random direction mobility. Figure 2 further illustrate that, 

for users with random direction mobility, the SINR exceeds 10 dB for around 45% of the observation period, 

with a peak value reaching 60 dB. Conversely, users with the Manhattan mobility model experience SINR 

values dropping below 10 dB for about 70% of the observation period. 

 

 

  
  

Figure 1. SINR Estimations using KF Figure 2. SINR Estimation using EKF 

 

 

For the Manhattan mobility model, the SINR estimated using the EKF are higher than those 

estimated with the KF at the early stages of estimation. However, this trend reverses in the later stages. This 

observation may be due to non-linear start-up transients and greater initial uncertainty at the early stage, 

which the EKF manages to capture more effectively. As the estimation progresses, the channel statistics 

becomes more linear, making the KF more suitable for later stages. In contrast, in a random mobility model, 

the movement of users are unpredictable and non-linear. In these situations, the EKF, which, is specifically 

designed to handle non-linear systems, provides a more accurate estimate of the SINR. In summary, while 

both KF and EKF techniques are valid options for SINR estimation, the EKF demonstrates superior 

performance in LTE networks characterized by non-linear dynamics.  

To contextualize the performance of the improved CQI estimation method, a comparative analysis 

of the simulation results obtained was carried out using recent literature findings. Figure 1 shows that KF 

estimates SINR more accurately in structured mobility patterns, aligning with the findings in [13], where KF 

demonstrated strong BER and NMSE performance under structured channel conditions. However, it requires 

iterative processing and pilot design. In a similar manner, [16] reported improvements in throughput and a 

reduction in packet loss with LTE-Sim when using KF-based predictions, particularly in controlled or less 

variable mobility scenarios, which aligns with our results from the Manhattan mobility model. On the other 

hand, Figure 2 supports the findings of [11], which indicated that the EKF outperformed both LS and MMSE 

methods in non-linear OFDM channels. Also, the results are consistent with [14], highlighting the EKF’s 

superior ability to manage inter-symbol interference and non-linearities compared to traditional algorithms. 

Our findings also align with [24], where the authors demonstrated that EKF-based estimators maintain 

robustness in dynamic and unpredictable mobility environments, such as V2V and IIoT networks. In 

comparison to the LSTM-based CQI predictors in [4], our approach provides a more straightforward 

implementation with competitive performance, though less adaptive. Furthermore, the MEKF approach 

described in [12] achieved a lower BER, but this came at the cost of significantly increased computational 

overhead. In contrast, our results indicate that the KF and EKF strike a practical balance between estimation 

accuracy and computational feasibility, particularly under the Manhattan and random mobility models.  
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In summary, our finding contributes to the existing literature by comparing KF and EKF within a 

single cell LTE-Sim framework, assessed under structured and unstructured mobility model. The result 

obtained confirm previous research indicating that KF remains efficient for structured mobility due to its 

lower computational cost. Conversely, EKF effectively manages non-linear systems with unpredictable 

mobility, providing greater stability and robustness regarding SINR in such scenarios. These comparisons 

underscore that while advanced machine learning or hybrid techniques may achieve better accuracy, EKF 

remains a practical and lightweight solution for real-time CQI estimation in LTE network environments with 

varying mobility dynamics. 

 

 

4. CONCLUSION 

This study demonstrates that while both KF and EKF can effectively estimate CQI in LTE networks, 

EKF offers superior robustness in scenarios with unpredictable, non-linear user mobility. Simulation results 

show that the EKF achieves higher SINR stability in random direction mobility, whereas the KF is more 

effective in structured mobility patterns, such as the Manhattan model. These findings suggest that EKF is 

particularly beneficial for LTE networks with significant variations in user movement, as it can better adapt 

to dynamic channel conditions, improving throughput and overall network performance. 

For network operators, adopting mobility-aware estimation strategies such as EKF can lead to more 

efficient resource allocation and enhanced quality of experience (QoE) on the part of users. Future research 

will focus on optimizing EKF estimation parameters through artificial intelligence techniques and extending 

the analysis to additional mobility models (Gauss-Markov mobility model and random waypoint mobility 

model) to further validate its applicability in diverse wireless environments, including vehicle-to-everything 

(V2X) networks and LTE-vehicular ad hoc network (VANET) hybrid networks.  
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