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This paper presents an end-to-end deep learning-based approach for
orthogonal frequency-division multiplexing (OFDM) communication
systems impaired by nonlinear power amplifiers (PAs) and channel fading.
The PA nonlinearity is modeled using the modified Rapp model, and
simulations are performed on a 64-subcarrier OFDM system with a cyclic
prefix (CP) of 8 and 16-quadrature amplitude modulation (16-QAM). The
proposed autoencoder-based OFDM-PA (AE-OFDM-PA) system jointly
optimizes the transmitter and receiver through end-to-end learning, enabling
simultaneous compensation of both PA nonlinearities and channel
distortions without requiring explicit channel state information (CSI)
estimation. Instead, the model leverages embedded pilot sequences to learn
the implicit CSI representation directly from data, allowing the receiver to
correct amplitude and phase distortions adaptively. Simulation results
demonstrate that AE-OFDM-PA significantly outperforms conventional
OFDM and OFDM-PA systems, achieving over 70x block error rate (BLER)
improvement compared with the uncompensated OFDM-PA system at an
input back-off (IBO) of 3 dB. Furthermore, the proposed method achieves
approximately 11.5 dB adjacent channel leakage ratio (ACLR) improvement
over the classical memory polynomial digital predistortion (DPD) technique,
while slightly reducing the peak-to-average power ratio (PAPR). Overall,
AE-OFDM-PA provides a robust, spectrally efficient, and low-complexity
solution for nonlinear and fading environments with unknown or varying
CSl.
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1. INTRODUCTION

The continuous evolution of wireless communication technologies has dramatically increased mobile
connectivity and global data traffic. By 2023, the number of IP-connected devices exceeded three times the
world’s population, with an average of 3.6 networked devices per person, up from 2.4 in 2018 [1]. This growth
is expected to continue with the deployment of fifth-generation (5G) and emerging sixth-generation (6G)
networks, which aim to deliver data rates up to 20 Gb/s and end-to-end latency below 10 ms [2].

These systems rely heavily on multicarrier modulation techniques such as orthogonal frequency-
division multiplexing (OFDM) [3], known for its robustness against multipath fading and inter-symbol
interference (I1SI) [4]. However, OFDM signals exhibit a high peak-to-average power ratio (PAPR), which
leads to severe signal distortion when amplified by nonlinear power amplifiers (PAs) [5]. Operating PAs near
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saturation improves power efficiency but causes in-band distortion and out-of-band spectral regrowth,
resulting in bit error rate (BER) degradation and adjacent-channel interference. This trade-off between
efficiency and linearity has been extensively studied in recent literature [6].

Various PAPR reduction techniques have been proposed, including clipping, selective mapping
(SLM), partial transmit sequence (PTS), tone reservation (TR), tone injection (TI1), and active constellation
extension (ACE) [7]-[11]. Although these methods effectively reduce PAPR, they often increase system
complexity or introduce additional distortion. Therefore, digital predistortion (DPD) remains one of the most
practical and efficient approaches for PA linearization, as it compensates for nonlinearities by applying an
inverse transfer function prior to amplification.

Recently, deep learning-based models have demonstrated outstanding capabilities in modeling
nonlinearities and compensating signal distortions thanks to their strong function approximation properties
[12]. Architectures such as convolutional neural networks (CNNSs), long short-term memory (LSTM)
networks, generative adversarial networks (GANS), and autoencoders (AEs) [13]-[16] have been explored for
transmitter optimization, PA linearization, and signal restoration.

In this work, we propose an autoencoder-based OFDM-PA (AE-OFDM-PA) system that performs
end-to-end learning to jointly linearize the nonlinear response of a modified Rapp-based PA and to
compensate for Rayleigh fading. Unlike conventional DPD approaches, the proposed model learns the
optimal mapping between transmitted and received signals directly through data-driven training, achieving
both distortion mitigation and low computational complexity.

The remainder of this paper is organized as follows. Section 2 presents the proposed methodology,
including the system model and AE-based DPD framework. Section 3 discusses the simulation results and
comparative analysis. Finally, section 4 concludes the paper and outlines possible directions for future work.

2. METHODOLOGY
2.1. Overview of existing techniques

DPD is widely adopted as an effective technique for power amplifier linearization. Conventional
DPD schemes, such as look-up table (LUT), Volterra series, and memory polynomial models [17], [18],
attempt to approximate the inverse behavior of the PA and apply it before amplification. However, their
performance is limited by modeling accuracy, sensitivity to memory effects, and dependence on parameter
tuning. Recent advances in deep learning have introduced data-driven approaches capable of directly learning
complex nonlinear mappings from data [19]. Architectures such as CNNs, LSTMs, and autoencoders AEs
have shown promising results for PA linearization and end-to-end transmitter optimization. The proposed
AE-OFDM-PA model builds upon this paradigm by leveraging an AE-based framework to jointly mitigate
PA nonlinearities and channel distortions while maintaining low computational complexity.

2.2. System model and classical digital predistortion
2.2.1. OFDM signal model

OFDM is a multicarrier modulation technique that enables high data rates and robustness against
ISI. The baseband OFDM signal is generated using the inverse discrete Fourier transform (IDFT) [20], which
maps frequency-domain modulation symbols to the time domain as:

x(t) = = TN X €2k, 0 < t < NT 1)

where N denotes the number of subcarriers, X, is the transmitted symbol on the k-th subcarrier, f, is the
frequency of the k-th subcarrier and T is the OFDM symbol duration.

A cyclic prefix (CP) is inserted by copying the end of each symbol to its beginning to maintain
orthogonality in multipath channels. At the receiver, the CP is removed, and channel equalization enables the
recovery of transmitted data symbols. A significant challenge in OFDM is the presence of a non-constant
envelope, characterized by high power peaks compared to the average signal power. Specifically, as the
number of subcarriers N increases, the signal x(t) follows a complex Gaussian process based on the central
limit theorem (CLT) [21]. To measure, the amplitude fluctuations in the OFDM signal, the peak to average
power ratio is commonly employed. The PAPR ratio is expressed as:

PAPR =10 lo (—Oswgﬁ-llx(t)lz) )
910\ Elxn 2]

where, E{. } is the statistical expectation operator, and x(t) is the baseband OFDM signal in the time domain.
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The probability that the PAPR exceeds a given threshold & is characterized using the complementary
cumulative distribution function (CCDF):

CCDF[PAPR(x(t))] = prob[PAPR (x(t)) > 8] ©)

where prob|.] denotes the probability operator, and & is the PAPR threshold. A large PAPR can drive
nonlinear components such as power amplifiers into saturation, causing signal distortion and spectral
regrowth.

2.2.2. Power amplifier model (Rapp modified)

The power amplifier is an essential component in the transmission chain as it is responsible for
amplifying the signal. Its behavior is described by its transfer function, which defines the relationship
between the input and output signals. The amplitude modulation to amplitude modulation (AM/AM)
characteristic indicates how the amplitude of the output signal varies with respect to the input signal’s
amplitude. On the other hand, AM/PM characteristic describes the phase shift between the input and output
signals [22]. The amplified signal can be expressed as:

Xamp(t) = F(X(t)) = FA(p(t))ef(ﬂ(t)+F9(p(t))) @

where, p(t) and 6(t) are respectively the modulus and the phase of the signal x(t). F,(.) describes the
AM/AM conversion and Fg(.) describes AM/PM conversion of the amplifier.

In this study, the Rapp modified model is employed to represent the static nonlinear behavior of the
PA. It captures both AM/AM and AM/PM distortions as follows. Figure 1(a) illustrates the AM/AM
characteristic of the Rapp modified model and Figure 1(b) shows AM/PM characteristics.

F(p(t)) = % ®)
((5222)")
F(p(t)) = <gg) (6)

where, p(t) is the modulus of the input OFDM signal, G, is the PA gain. The parameter p adjusts the
characteristic by controlling the transition between the linear area and the saturation area of the AM/AM
characteristic. V,,; is the saturation voltage of the PA. The A and A’ parameters control the level of phase
distortion introduced by the PA.
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Figure 1. Characteristics of the modified Rapp model: (2) AM/AM conversion and (b) AM/PM conversion

The input back-off (IBO) is an important parameter that defines the operating point of the amplifier
relative to its saturation level. It is expressed as the ratio between the saturation power Py, and the average
input power. A higher IBO value indicates that the amplifier operates in a more linear region, ensuring lower
distortion but reduced power efficiency, while a lower IBO value increases efficiency at the cost of stronger
nonlinear effects. The IBO is mathematically defined as:
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Pgq,
IBO(dB) = 101log,, (E“x(t)ﬂz]) o

where, P, denotes the saturation power of the PA, E[|x(t)|?] denotes the average input power.

2.2.3. Classical memory polynomial DPD

To compensate for PA nonlinearities, DPD techniques are applied before amplification. The
principle is to introduce a nonlinear inverse function, denoted as P(.), such that the cascade P(.)F(.)
(predistorter followed by amplifier) behaves approximately linearly. The concept is depicted in Figure 2.

x(t) P(.) ppn (1) Xamp (£)
Predistorter

Xppalt (t) Xamp(t)

Lo+ =

Xppp(t) x(1)

Figure 2. Digital predistortion mechanism for power amplifier linearization

In this work, the memory polynomial model is adopted as a classical benchmark for PA
linearization. The predistorted signal xpp (t) is expressed as:

xXppp () = XiZg Li-s, aix(t — Dlx(t — DI ®

where, L denotes the polynomial order, I the memory depth, and a; ; the complex coefficients obtained via
least squares estimation.

In the implemented algorithm, the basis functions are built from the PA output signal, and the
coefficients are optimized to approximate the inverse of the amplifier’s nonlinear response. This approach,
known as memory polynomial DPD, offers a good trade-off between performance and computational
complexity, making it widely used in practical radio frequency (RF) systems [23]. However, its effectiveness
decreases for highly nonlinear or memory-intensive PAs, motivating the use of deep learning—based DPD
architectures explored in this paper.

2.3. End-to-end learning for communication systems

Deep learning has emerged as a transformative tool in communication systems, offering the ability
to model complex nonlinear relationships through data-driven learning. Rather than designing each block of
the transmission chain separately, the end-to-end learning paradigm trains the entire system jointly, from the
transmitter to the receiver, through differentiable models.

The concept was first inspired by the structure of autoencoders AEs, where the encoder represents
the transmitter, the channel acts as a stochastic layer introducing impairments, and the decoder represents the
receiver. The network is trained to minimize the difference between the transmitted and recovered messages,
thus automatically learning optimal signal representations for the given channel and hardware impairments.

Recently, several neural DPD frameworks have been proposed, including CNN- and LSTM-based
architectures as well as temporal convolutional networks (TCN)-DPD for modeling PA nonlinearities and
memory effects [24], [25]. However, most of these approaches treat predistortion and equalization as separate
tasks. In contrast, the proposed AE-OFDM-PA framework jointly performs PA linearization and channel
compensation in an end-to-end learning process, providing enhanced robustness and adaptability without
explicit CSI modeling.

2.3.1. Autoencoder principle

An autoencoder is a type of neural network designed for unsupervised end-to-end learning [26]. It
learns to reconstruct its input s at the output § after passing through a bottleneck representation:

S = G(thh_l + bh); h= 1, ,H (9)

where, W, and b, denote the weight matrix and bias vector, a(.) is the activation function and H the number
of hidden layers.
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The encoder f(s) maps the input data into a latent representation, while the decoder g(s)
reconstructs it as presented in Figure 3. Common activation functions include the ReLU, sigmoid, linear, and
SoftMax functions.

Training aims to minimize the categorical cross-entropy loss:

L(s,8) = —X;s;log(s)) (10)
where, s and § are the true and predicted one-hot encoded symbols, respectively, Network parameters
6 (W, b) are optimized using stochastic gradient descent (SGD) [27]:

0t =0 —uVy L(s,%) (11)
The transmitter’s output is constrained to satisfy average power or amplitude limits, such

as E[|x(t)]?] < 1. As illustrated in Figure 4, this structure allows the autoencoder to act as a complete
communication system, with the encoder functioning as the transmitter, and the decoder as the receiver.

Encoder f(s)

Decoder g(s) r ~
N / Output Layer \
~ / |“puiayer Normahzaﬁ.%

One-Hot Vecto -~

1

Input Data (s)

1

Encode Data

1

Reconstructed Data g(f(s))

Figure 3. Architecture of an autoencoder for
latent representation learning

o

Hidden Layers
Dense Layers

N

Hidden Layers
Dense Layers

Transmitter

Channel

Receiver

Figure 4. Autoencoder architecture for end-to-end
communication system design

2.4. Proposed AE-OFDM-PA framework

We propose an end-to-end autoencoder-based OFDM system (AE-OFDM-PA) that jointly mitigates
nonlinear power amplifier distortions and Rayleigh channel effects. The model, shown in Figure 5, integrates
an AE-TX (encoder) and an AE-RX (decoder) trained together through end-to-end learning. A modified
Rapp model is used to emulate PA nonlinearity, while embedded pilot sequences allow the AE-RX to
estimate the channel implicitly, eliminating the need for explicit CSI estimation. By learning from data, the
AE-OFDM-PA system compensates both amplitude and phase distortions, achieving joint linearization and
channel equalization. This data-driven approach enhances robustness and spectral efficiency compared with
conventional DPD methods that rely on explicit PA or channel modeling. The AE-OFDM-PA model in
Figure 5 includes:
One AE-TX block per subcarrier: for 16-QAM modulation
A real/complex conversion block: for converting modulated output into complex symbols
A modulation block by inverse fast Fourier transform (IFFT): for symbol modulation
A cyclic prefix addition block: for eliminating inter symbol interference caused by the multipath
channel
5. A power amplifier addition block
6. A parallel/serial conversion block
7. Acomplex/real conversion block
8
9

o

A channel block: Rayleigh channel one-tap
. Areal/complex conversion block
10. A serial/parallel conversion block
11. Acyclic prefix removal block
12. A FFT demodulation block

Deep learning-based power amplifier linearization in OFDM systems ... (Meryem Mamia Benosman)
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13. An equalization block for each output of the previous block

14. A complex/real conversion block

15. An AE-RX block for each subcarrier: for symbol demodulation, this block has the same architecture as
a single-carrier receiver

16. A parallel/serial conversion block: to recover the sequence of binary words.
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Figure 5. Detailed structure of AE-OFDM-PA

2.4.1. Channel equalization

To enable channel estimation within the AE-RX, pilot sequences are inserted into the OFDM frame.
These pilots are known to both transmitter and receiver, and are orthogonal to data symbols to prevent
interference. The estimated channel E; is obtained as:

E, = pI, e (12)

T
|Prel?

where, E,is the estimated channel, PI, and PI. represent the transmitted and received pilot symbols,
respectively.

The AE-RX receives four inputs, the real and imaginary parts of the received signal (y.,,¥.,), and
the real and imaginary parts of the estimated channel (Es , E,), as depicted in Figure 6. This configuration
enables the AE-RX to jointly correct amplitude and phase distortions by learning to exploit the implicit CSI
rather than relying on explicit analytical channel models.

During training, the autoencoder is fed with batches of size B, each containing OFDM frames
augmented with identical pilot sequences across all subcarriers. Gradients are computed for each batch to
update the network parameters 8(W, b) via stochastic gradient descent, ensuring stable convergence and
consistent channel compensation, as illustrated in Figure 7. Once trained, the AE-OFDM-PA system exhibits
a linearized end-to-end transfer function that effectively compensates for both PA nonlinearity and channel
distortions without explicit CSI modeling. This data-driven learning approach enhances robustness and
adaptability compared to traditional DPD methods that depend on accurate analytical models or explicit
channel information.
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3. RESULTS AND DISCUSSION

The training dataset used in this study was entirely generated through numerical simulations in
Python, using TensorFlow and Keras libraries. The simulated dataset is based on an OFDM system
comprising 64 subcarriers and a CP length of 8, modulated with 16-QAM symbols. The signal passes through
a one-tap Rayleigh fading channel and a nonlinear power amplifier PA modeled by the modified Rapp
model. The amplifier parameters are: Ga=16, Vsat=1.9, p=1.1, q=4, A=345, and A’=0.17. A total of
1,024,000 OFDM symbols were generated for training, organized in batches of 8,000 samples each. The AE-
OFDM-PA network was trained over 500 epochs using the Adam optimizer.

For generalization and testing, 5000 OFDM symbols were transmitted over 5,000 independent
Rayleigh channel realizations, and all performance metrics are averaged across these realizations to ensure
statistical reliability. In addition, the performance of the proposed AE-OFDM-PA system was compared with
a conventional memory polynomial (MP) digital predistortion (OFDM-DPD) approach, configured with a
polynomial order of 7 and a memory depth of 1.

This synthetic dataset ensures full control over both channel and PA characteristics, guaranteeing
reproducibility and enabling a fair comparison between the proposed deep learning—based predistortion
scheme and the classical MP-DPD method.

Table 1 presents the parameters of the AE-OFDM-PA layers and the corresponding training
configuration. This synthetic dataset allows full control over both channel and PA characteristics, ensuring
reproducibility and enabling performance assessment of the proposed AE-OFDM-PA model under various
nonlinear and fading conditions.

Table 1. Architecture of the proposed AE-OFDM-PA model

Layer Number of neurons Layer type Activation function
Input layer / Lambda /
Hidden layers (2) 160 per layer Dense ReLU
Normalization / Batch normalization Linear
Conversion real/complex 2 per layer Dense /
IFFT / Lambda /
Add CP / Lambda /
PA / Lambda /
Rayleigh channel / Lambda /
Supp CP / Lambda /
FFT / Lambda /
Hidden layers (2) 160 per layer Dense RelLU
Output layer 16 per layer Dense Softmax

3.1. Constellation results

The constellation analysis in Figure 8 compares the proposed AE-OFDM-PA system (Figure 8(a))
with the conventional OFDM-DPD scheme (Figure 8(b)) under a highly nonlinear condition, where the PA
operates near saturation (IBO=3 dB). In the conventional OFDM-DPD system, the objective is to preserve
the standard 16-QAM constellation at the PA input (blue points). The DPD block compensates for the
nonlinear behavior of the amplifier, improving the received constellation (green) compared with the severely
distorted output after the PA and channel (red). However, this approach depends on accurate PA modeling
and acts as an external correction module.

Deep learning-based power amplifier linearization in OFDM systems ... (Meryem Mamia Benosman)
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In contrast, the AE-OFDM-PA framework employs an end-to-end learning strategy that jointly
optimizes transmission and reception. The AE-TX learns a non-standard constellation at the transmitter
(blue) that is inherently robust to nonlinearities, while the AE-RX reconstructs a clean 16-QAM-like
constellation (green) at the receiver despite strong distortion (red). This behavior demonstrates that the AE-
OFDM-PA not only compensates for PA and channel impairments but also learns to adapt its modulation
scheme to maximize robustness under harsh nonlinear conditions such as IBO=3 dB. These findings confirm
the effectiveness of the joint AE-TX/AE-RX optimization in mitigating nonlinear distortions without
requiring explicit PA modeling.
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Figure 8. Constellation comparison of (a) AE-OFDM-PA and (b) OFDM-DPD

3.2. Block error rate (BLER) results

A detailed comparison of the BLER performance was carried out among the proposed AE-OFDM-
PA system, the conventional OFDM and OFDM-PA schemes, and the reference OFDM-DPD approach. The
results, presented in Figure 9, assess the robustness of these systems under severe nonlinear distortion
conditions, with the PA operating at an IBO of 3 dB. To ensure high statistical accuracy, the simulation setup
was refined to enable reliable BLER estimation down to 107°. The OFDM-PA curve (red) shows a clear
performance degradation due to the amplifier’s nonlinearity, reaching an error floor above 3x1072 at high
Eb/NO values.

In contrast, the OFDM-DPD system (green) effectively compensates for these nonlinearities,
achieving performance comparable to the ideal OFDM reference (magenta), which represents the upper
bound for linearization. The proposed AE-OFDM-PA model (cyan) exhibits a strong ability to mitigate both
nonlinear and channel-induced impairments. At Eb/N0=20 dB, it achieves a BLER of approximately 5x1074,
corresponding to more than a 70-fold improvement over the uncompensated OFDM-PA. Although its
performance does not exactly match that of the analytically modeled DPD, the AE-OFDM-PA remains
highly competitive. At a target BLER of 1073, it requires only about 2 dB higher Eb/NO than the optimized
OFDM-DPD reference. These findings validate the capability of the proposed end-to-end learning framework
to preserve signal integrity and confirm that deep learning-based compensation can serve as a robust and
model-free alternative to traditional DPD methods.
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3.3. Analysis of power spectral density and adjacent channel leakage ratio

The performance of the AE-OFDM-PA system was also evaluated in the frequency domain using
two key spectral metrics: the power spectral density (PSD) and the adjacent channel leakage ratio (ACLR).
As shown in Figure 10, the PSD reveals the impact of the PA nonlinearity on spectral spreading under the
challenging IBO = 3 dB condition. In the conventional OFDM-PA system, strong nonlinearity causes
significant spectral regrowth, raising the out-of-band noise floor to about —10.5 dB/Hz (at normalized
frequency +0.4). When a conventional DPD based on a memory polynomial model is applied, a slight
reduction is observed, improving the out-of-band level to approximately —14 dB/Hz. However, this
improvement remains limited, particularly for signals exhibiting memory effects.

In contrast, the proposed AE-OFDM-PA system effectively suppresses spectral regrowth,
maintaining the out-of-band level close to —20 dB/Hz, which is nearly identical to that of an ideal linear
system. This represents an improvement of about 9.5 dB over the uncompensated OFDM-PA and nearly 6 dB
over the conventional DPD. These results demonstrate that the autoencoder is capable of learning a signal
representation that inherently minimizes spectral distortion despite hardware nonlinearities.

The ACPR results, shown in Figure 11, further confirm these findings. The vertical axis represents
the ACPR measured in dB at the PA output, while the horizontal axis corresponds to the different OFDM-
based transmission schemes. The uncompensated OFDM-PA system exhibits the strongest degradation
(=—12.5 dB), while the conventional DPD achieves only moderate improvement (=—7.0 dB). By comparison,
the AE-OFDM-PA system achieves an ACLR of approximately —18.5 dB, corresponding to gains of about 6
dB and 11.5 dB over the OFDM-PA and DPD systems, respectively.
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Overall, these spectral results confirm that the AE-OFDM-PA approach not only reduces spectral
regrowth to near-ideal levels but also provides the highest measurable gain in ACLR. This makes it a more
robust and spectrally efficient alternative to conventional linearization techniques. It should be noted that all
results were obtained from simulations without hardware-in-the-loop or real PA measurements. Future work
will focus on experimental validation using RF hardware and extensions to more complex scenarios,

including amplifiers with memory effects, multiple-input multiple-output (MIMO) configurations, and
wideband fading channels.
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3.4. Analysis of the CCDF and PAPR

Figure 12 presents the CCDF, a key metric used to assess the system’s PAPR and its resilience to
power compression. The results show that introducing an end-to-end learning approach with autoencoder
networks does not adversely affect the PAPR performance. The AE-OFDM (blue) and conventional OFDM
(magenta) curves are nearly identical, both exhibiting a PAPR of approximately 10.2 dB at a probability of
1073, This observation confirms that the AE-OFDM-PA design preserves the intrinsic power characteristics
of the transmitted signal.
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Figure 12. CCDF of PAPR for different OFDM-based systems

3.5. Computational complexity analysis

Table 2 presents the complexity analysis of the AE-OFDM-PA system. The evaluation considers the
number of trainable parameters (memory cost) and the floating-point operations (FLOPS, representing
execution cost) associated with the neural network layers, which define the model’s main computational load.
The total complexity of the AE is obtained by summing its encoder and decoder components, resulting in
approximately 66.88 thousand FLOPs per OFDM symbol during inference and 57,938 trainable parameters.

Table 2 Computational complexity of the proposed AE-OFDM-PA network

Layer Input size N;, Output size Ny, Multiplications (flops) Trainable parameters
AE-Tx
Dense 1 16 160 2560 2720
Dense 2 160 160 25600 25760
Dense 3 160 2 320 322
AE-Rx
Dense 4 64 160 10240 800
Dense 5 160 160 25600 25760
Dense 6 160 16 2560 2576
Total per OFDM symbol 66.88 K flops 57938

Non-neural operations, such as the IFFT, PA, and FFT, are excluded from this analysis since they
contain no trainable parameters and are common to all OFDM-based systems. Compared with the
conventional DPD approach, the AE-OFDM-PA exhibits a higher computational cost but achieves
significantly improved performance across all key metrics, including BLER, ACLR, and PAPR.

Although the DPD is computationally lightweight, relying on only a few polynomial coefficients,
the AE uses its additional complexity strategically to perform end-to-end joint optimization. This allows it to
handle both modulation design and PA linearization simultaneously. Despite being built with a modest
architecture based on dense layers, the proposed model remains among the least complex deep learning
solutions at the physical layer, avoiding the heavy computational load typically associated with recurrent
neural network (RNN) or transformer-based designs [28]. This balanced trade-off between complexity and
performance justifies the AE’s adoption, offering superior spectral efficiency, robustness, and nonlinearity
mitigation while maintaining practical computational feasibility.
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4. CONCLUSION

This work introduces a novel end-to-end autoencoder framework for linearizing power amplifiers in
OFDM systems, jointly addressing PA nonlinearity and channel impairments under unknown CSI conditions.
Unlike conventional DPD schemes, the proposed AE-OFDM-PA learns to linearize the PA response directly
from data without relying on prior modeling assumptions, making it inherently robust to both PA
nonlinearities and channel distortions.

Our AE-OFDM-PA system demonstrates a significant performance improvement over conventional
approaches, achieving a BLER improvement of over 70x compared to the uncompensated OFDM-PA system
at an IBO of 3 dB, an ACLR gain of approximately 11.5 dB over conventional memory polynomial DPD, and
a moderate reduction of PAPR. These results underscore the autoencoder’s capability to automatically learn
optimal symbol representations and compensate for complex distortions without relying on traditional model-
based predistortion techniques.

While the study is based on synthetic data and a simplified single-path Rayleigh fading channel, the
incorporation of channel impairments allows evaluation of PA predistortion under more realistic conditions.
Future work may extend this framework to PAs with memory effects, MIMO systems, wideband fading
channels, or hardware-in-the-loop implementations, further validating its applicability in practical
deployments. Overall, this study demonstrates the strength, flexibility, and novelty of the proposed end-to-
end learning method, providing a compelling alternative to classical PA compensation strategies and paving
the way for intelligent, data-driven communication system design under unknown CSI.
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