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 This paper presents an end-to-end deep learning-based approach for 

orthogonal frequency-division multiplexing (OFDM) communication 

systems impaired by nonlinear power amplifiers (PAs) and channel fading. 

The PA nonlinearity is modeled using the modified Rapp model, and 

simulations are performed on a 64-subcarrier OFDM system with a cyclic 

prefix (CP) of 8 and 16-quadrature amplitude modulation (16-QAM). The 

proposed autoencoder-based OFDM–PA (AE-OFDM-PA) system jointly 

optimizes the transmitter and receiver through end-to-end learning, enabling 

simultaneous compensation of both PA nonlinearities and channel 

distortions without requiring explicit channel state information (CSI) 

estimation. Instead, the model leverages embedded pilot sequences to learn 

the implicit CSI representation directly from data, allowing the receiver to 

correct amplitude and phase distortions adaptively. Simulation results 

demonstrate that AE-OFDM-PA significantly outperforms conventional 

OFDM and OFDM-PA systems, achieving over 70× block error rate (BLER) 

improvement compared with the uncompensated OFDM-PA system at an 

input back-off (IBO) of 3 dB. Furthermore, the proposed method achieves 

approximately 11.5 dB adjacent channel leakage ratio (ACLR) improvement 

over the classical memory polynomial digital predistortion (DPD) technique, 

while slightly reducing the peak-to-average power ratio (PAPR). Overall, 

AE-OFDM-PA provides a robust, spectrally efficient, and low-complexity 

solution for nonlinear and fading environments with unknown or varying 

CSI. 
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1. INTRODUCTION 

The continuous evolution of wireless communication technologies has dramatically increased mobile 

connectivity and global data traffic. By 2023, the number of IP-connected devices exceeded three times the 

world’s population, with an average of 3.6 networked devices per person, up from 2.4 in 2018 [1]. This growth 

is expected to continue with the deployment of fifth-generation (5G) and emerging sixth-generation (6G) 

networks, which aim to deliver data rates up to 20 Gb/s and end-to-end latency below 10 ms [2]. 

These systems rely heavily on multicarrier modulation techniques such as orthogonal frequency-

division multiplexing (OFDM) [3], known for its robustness against multipath fading and inter-symbol 

interference (ISI) [4]. However, OFDM signals exhibit a high peak-to-average power ratio (PAPR), which 

leads to severe signal distortion when amplified by nonlinear power amplifiers (PAs) [5]. Operating PAs near 

https://creativecommons.org/licenses/by-sa/4.0/
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saturation improves power efficiency but causes in-band distortion and out-of-band spectral regrowth, 

resulting in bit error rate (BER) degradation and adjacent-channel interference. This trade-off between 

efficiency and linearity has been extensively studied in recent literature [6]. 

Various PAPR reduction techniques have been proposed, including clipping, selective mapping 

(SLM), partial transmit sequence (PTS), tone reservation (TR), tone injection (TI), and active constellation 

extension (ACE) [7]-[11]. Although these methods effectively reduce PAPR, they often increase system 

complexity or introduce additional distortion. Therefore, digital predistortion (DPD) remains one of the most 

practical and efficient approaches for PA linearization, as it compensates for nonlinearities by applying an 

inverse transfer function prior to amplification.  

Recently, deep learning-based models have demonstrated outstanding capabilities in modeling 

nonlinearities and compensating signal distortions thanks to their strong function approximation properties 

[12]. Architectures such as convolutional neural networks (CNNs), long short-term memory (LSTM) 

networks, generative adversarial networks (GANs), and autoencoders (AEs) [13]-[16] have been explored for 

transmitter optimization, PA linearization, and signal restoration. 

In this work, we propose an autoencoder-based OFDM-PA (AE-OFDM-PA) system that performs 

end-to-end learning to jointly linearize the nonlinear response of a modified Rapp-based PA and to 

compensate for Rayleigh fading. Unlike conventional DPD approaches, the proposed model learns the 

optimal mapping between transmitted and received signals directly through data-driven training, achieving 

both distortion mitigation and low computational complexity.  

The remainder of this paper is organized as follows. Section 2 presents the proposed methodology, 

including the system model and AE-based DPD framework. Section 3 discusses the simulation results and 

comparative analysis. Finally, section 4 concludes the paper and outlines possible directions for future work. 

 

 

2. METHODOLOGY 

2.1.  Overview of existing techniques 

DPD is widely adopted as an effective technique for power amplifier linearization. Conventional 

DPD schemes, such as look-up table (LUT), Volterra series, and memory polynomial models [17], [18], 

attempt to approximate the inverse behavior of the PA and apply it before amplification. However, their 

performance is limited by modeling accuracy, sensitivity to memory effects, and dependence on parameter 

tuning. Recent advances in deep learning have introduced data-driven approaches capable of directly learning 

complex nonlinear mappings from data [19]. Architectures such as CNNs, LSTMs, and autoencoders AEs 

have shown promising results for PA linearization and end-to-end transmitter optimization. The proposed 

AE-OFDM-PA model builds upon this paradigm by leveraging an AE-based framework to jointly mitigate 

PA nonlinearities and channel distortions while maintaining low computational complexity. 

 

2.2.  System model and classical digital predistortion 

2.2.1. OFDM signal model 

OFDM is a multicarrier modulation technique that enables high data rates and robustness against 

ISI. The baseband OFDM signal is generated using the inverse discrete Fourier transform (IDFT) [20], which 

maps frequency-domain modulation symbols to the time domain as: 

 

𝑥(𝑡) =
1

√𝑁
∑ 𝑋𝑘

𝑁−1
𝑘=0 𝑒𝑗2𝜋𝑓𝑘𝑡 , 0 ≤ 𝑡 ≤ 𝑁𝑇 (1) 

 

where 𝑁 denotes the number of subcarriers, 𝑋𝑘 is the transmitted symbol on the 𝑘-th subcarrier, 𝑓𝑘 is the 

frequency of the 𝑘-th subcarrier and 𝑇 is the OFDM symbol duration. 

A cyclic prefix (CP) is inserted by copying the end of each symbol to its beginning to maintain 

orthogonality in multipath channels. At the receiver, the CP is removed, and channel equalization enables the 

recovery of transmitted data symbols. A significant challenge in OFDM is the presence of a non-constant 

envelope, characterized by high power peaks compared to the average signal power. Specifically, as the 

number of subcarriers 𝑁 increases, the signal 𝑥(𝑡) follows a complex Gaussian process based on the central 

limit theorem (CLT) [21]. To measure, the amplitude fluctuations in the OFDM signal, the peak to average 

power ratio is commonly employed. The PAPR ratio is expressed as: 

 

𝑃𝐴𝑃𝑅 = 10 𝑙𝑜𝑔10 (
𝑚𝑎𝑥

0≤𝑛≤𝑁−1
|𝑥(𝑡)|2

𝔼[|𝑥(𝑡)|2]
) (2) 

 

where, 𝔼{. } is the statistical expectation operator, and 𝑥(𝑡) is the baseband OFDM signal in the time domain. 
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The probability that the PAPR exceeds a given threshold δ is characterized using the complementary 

cumulative distribution function (CCDF): 

 

𝐶𝐶𝐷𝐹[𝑃𝐴𝑃𝑅(𝑥(𝑡))] = 𝑝𝑟𝑜𝑏[𝑃𝐴𝑃𝑅(𝑥(𝑡)) > δ] (3) 

 

where 𝑝𝑟𝑜𝑏[. ] denotes the probability operator, and 𝛿 is the PAPR threshold. A large PAPR can drive 

nonlinear components such as power amplifiers into saturation, causing signal distortion and spectral 

regrowth. 

 

2.2.2. Power amplifier model (Rapp modified) 

The power amplifier is an essential component in the transmission chain as it is responsible for 

amplifying the signal. Its behavior is described by its transfer function, which defines the relationship 

between the input and output signals. The amplitude modulation to amplitude modulation (AM/AM) 

characteristic indicates how the amplitude of the output signal varies with respect to the input signal’s 

amplitude. On the other hand, AM/PM characteristic describes the phase shift between the input and output 

signals [22]. The amplified signal can be expressed as: 

 

𝑥𝑎𝑚𝑝(𝑡) = 𝐹(𝑥(𝑡)) = 𝐹𝐴(𝜌(𝑡))𝑒𝑗(𝜃(𝑡)+𝐹𝜃(𝜌(𝑡))) (4) 

 

where, 𝜌(𝑡) and 𝜃(𝑡) are respectively the modulus and the phase of the signal 𝑥(𝑡). 𝐹𝐴(. ) describes the 

AM/AM conversion and 𝐹𝜃(. ) describes AM/PM conversion of the amplifier. 

In this study, the Rapp modified model is employed to represent the static nonlinear behavior of the 

PA. It captures both AM/AM and AM/PM distortions as follows. Figure 1(a) illustrates the AM/AM 

characteristic of the Rapp modified model and Figure 1(b) shows AM/PM characteristics.  

 

𝐹(𝜌(𝑡)) =
𝐺𝑎𝜌(𝑡)

(1+(
𝐺𝑎𝜌(𝑡)

𝑉𝑠𝑎𝑡
)

2𝑝
)

1
2𝑝

 (5) 

 

𝐹(𝜌(𝑡))𝜃 =
𝐴(𝜌(𝑡))𝑞

1+(
𝜌(𝑡)

𝐴′ )
𝑞 (6) 

 

where, 𝜌(𝑡) is the modulus of the input OFDM signal, 𝐺𝑎 is the PA gain. The parameter 𝑝 adjusts the 

characteristic by controlling the transition between the linear area and the saturation area of the AM/AM 

characteristic. 𝑉𝑠𝑎𝑡 is the saturation voltage of the PA. The 𝐴 and 𝐴′ parameters control the level of phase 

distortion introduced by the PA. 
 

 

  
(a) (b) 

  

Figure 1. Characteristics of the modified Rapp model: (a) AM/AM conversion and (b) AM/PM conversion 

 

 

The input back-off (IBO) is an important parameter that defines the operating point of the amplifier 

relative to its saturation level. It is expressed as the ratio between the saturation power 𝑃𝑠𝑎𝑡  and the average 

input power. A higher IBO value indicates that the amplifier operates in a more linear region, ensuring lower 

distortion but reduced power efficiency, while a lower IBO value increases efficiency at the cost of stronger 

nonlinear effects. The IBO is mathematically defined as: 
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𝐼𝐵𝑂(𝑑𝐵) = 10 log10 (
𝑃𝑠𝑎𝑡

𝔼[|𝑥(𝑡)|2]
) (7) 

 

where, 𝑃𝑠𝑎𝑡 denotes the saturation power of the 𝑃𝐴, 𝔼[|𝑥(𝑡)|2] denotes the average input power. 

 

2.2.3. Classical memory polynomial DPD 

To compensate for PA nonlinearities, DPD techniques are applied before amplification. The 

principle is to introduce a nonlinear inverse function, denoted as 𝑃(. ), such that the cascade 𝑃(. )𝐹(. ) 

(predistorter followed by amplifier) behaves approximately linearly. The concept is depicted in Figure 2. 

 

 

 
 

Figure 2. Digital predistortion mechanism for power amplifier linearization 

 

 

In this work, the memory polynomial model is adopted as a classical benchmark for PA 

linearization. The predistorted signal 𝑥𝐷𝑃𝐷(𝑡) is expressed as: 

 

𝑥𝐷𝑃𝐷(𝑡) = ∑ ∑ 𝑎𝑙,𝑖𝑥(𝑡 − 𝑖)|𝑥(𝑡 − 𝑖)|𝑙−1𝐿
𝑙=1,3,5,..

𝐼−1
𝑖=0   (8) 

 

where, 𝐿 denotes the polynomial order, 𝐼 the memory depth, and 𝑎𝑙,𝑖 the complex coefficients obtained via 

least squares estimation.  

In the implemented algorithm, the basis functions are built from the PA output signal, and the 

coefficients are optimized to approximate the inverse of the amplifier’s nonlinear response. This approach, 

known as memory polynomial DPD, offers a good trade-off between performance and computational 

complexity, making it widely used in practical radio frequency (RF) systems [23]. However, its effectiveness 

decreases for highly nonlinear or memory-intensive PAs, motivating the use of deep learning–based DPD 

architectures explored in this paper. 

 

2.3.  End-to-end learning for communication systems 

Deep learning has emerged as a transformative tool in communication systems, offering the ability 

to model complex nonlinear relationships through data-driven learning. Rather than designing each block of 

the transmission chain separately, the end-to-end learning paradigm trains the entire system jointly, from the 

transmitter to the receiver, through differentiable models.  

The concept was first inspired by the structure of autoencoders AEs, where the encoder represents 

the transmitter, the channel acts as a stochastic layer introducing impairments, and the decoder represents the 

receiver. The network is trained to minimize the difference between the transmitted and recovered messages, 

thus automatically learning optimal signal representations for the given channel and hardware impairments. 

Recently, several neural DPD frameworks have been proposed, including CNN- and LSTM-based 

architectures as well as temporal convolutional networks (TCN)-DPD for modeling PA nonlinearities and 

memory effects [24], [25]. However, most of these approaches treat predistortion and equalization as separate 

tasks. In contrast, the proposed AE-OFDM-PA framework jointly performs PA linearization and channel 

compensation in an end-to-end learning process, providing enhanced robustness and adaptability without 

explicit CSI modeling. 

 

2.3.1. Autoencoder principle 

An autoencoder is a type of neural network designed for unsupervised end-to-end learning [26]. It 

learns to reconstruct its input 𝑠 at the output 𝑠̂ after passing through a bottleneck representation: 

 

𝑠̂ = σ(𝑊ℎ𝑠ℎ−1 + 𝑏ℎ) ;  ℎ = 1, … , 𝐻 (9) 

 

where, 𝑊ℎ and 𝑏ℎ denote the weight matrix and bias vector, 𝜎(. ) is the activation function and 𝐻 the number 

of hidden layers. 
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The encoder 𝑓(𝑠) maps the input data into a latent representation, while the decoder 𝑔(𝑠) 

reconstructs it as presented in Figure 3. Common activation functions include the ReLU, sigmoid, linear, and 

SoftMax functions. 

Training aims to minimize the categorical cross-entropy loss: 

 

ℒ(𝑠, 𝑠̂) = − ∑ 𝑠𝑗𝑗 log(𝑠̂𝑗) (10) 

 

where, 𝑠 and 𝑠̂ are the true and predicted one-hot encoded symbols, respectively, Network parameters 

𝜃(𝑊, 𝑏) are optimized using stochastic gradient descent (SGD) [27]: 

 

𝜃+ = 𝜃 − 𝜇𝛻𝜃  ℒ(𝑠, 𝑠̂) (11) 

 

The transmitter’s output is constrained to satisfy average power or amplitude limits, such 

as 𝔼[|𝑥(𝑡)|2] ≤ 1. As illustrated in Figure 4, this structure allows the autoencoder to act as a complete 

communication system, with the encoder functioning as the transmitter, and the decoder as the receiver. 

 

 

  
  

Figure 3. Architecture of an autoencoder for 

latent representation learning 

Figure 4. Autoencoder architecture for end-to-end 

communication system design 

 

 

2.4.  Proposed AE-OFDM-PA framework 

We propose an end-to-end autoencoder-based OFDM system (AE-OFDM-PA) that jointly mitigates 

nonlinear power amplifier distortions and Rayleigh channel effects. The model, shown in Figure 5, integrates 

an AE-TX (encoder) and an AE-RX (decoder) trained together through end-to-end learning. A modified 

Rapp model is used to emulate PA nonlinearity, while embedded pilot sequences allow the AE-RX to 

estimate the channel implicitly, eliminating the need for explicit CSI estimation. By learning from data, the 

AE-OFDM-PA system compensates both amplitude and phase distortions, achieving joint linearization and 

channel equalization. This data-driven approach enhances robustness and spectral efficiency compared with 

conventional DPD methods that rely on explicit PA or channel modeling. The AE-OFDM-PA model in 

Figure 5 includes: 

1. One AE-TX block per subcarrier: for 16-QAM modulation 

2. A real/complex conversion block: for converting modulated output into complex symbols 

3. A modulation block by inverse fast Fourier transform (IFFT): for symbol modulation 

4. A cyclic prefix addition block: for eliminating inter symbol interference caused by the multipath 

channel 

5. A power amplifier addition block 

6. A parallel/serial conversion block 

7. A complex/real conversion block 

8. A channel block: Rayleigh channel one-tap 

9. A real/complex conversion block 

10. A serial/parallel conversion block 

11. A cyclic prefix removal block 

12. A FFT demodulation block 
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13. An equalization block for each output of the previous block 

14. A complex/real conversion block 

15. An AE-RX block for each subcarrier: for symbol demodulation, this block has the same architecture as 

a single-carrier receiver 

16. A parallel/serial conversion block: to recover the sequence of binary words. 

 

 

 
 

Figure 5. Detailed structure of AE-OFDM-PA 

 

 

2.4.1. Channel equalization 

To enable channel estimation within the AE-RX, pilot sequences are inserted into the OFDM frame. 

These pilots are known to both transmitter and receiver, and are orthogonal to data symbols to prevent 

interference. The estimated channel 𝐸𝑠 is obtained as: 

 

𝐸𝑠 = 𝑃𝐼𝑟
𝑃𝐼𝑒

∗

|𝑃𝐼𝑒|2 (12) 

 

where, 𝐸𝑠  is the estimated channel, 𝑃𝐼𝑒  and 𝑃𝐼𝑟  represent the transmitted and received pilot symbols, 

respectively. 

The AE-RX receives four inputs, the real and imaginary parts of the received signal(𝑦𝑐𝑟
, 𝑦𝑐𝑖

), and 

the real and imaginary parts of the estimated channel (𝐸𝑠𝑟
, 𝐸𝑠𝑖

), as depicted in Figure 6. This configuration 

enables the AE-RX to jointly correct amplitude and phase distortions by learning to exploit the implicit CSI 

rather than relying on explicit analytical channel models. 

During training, the autoencoder is fed with batches of size 𝐵, each containing OFDM frames 

augmented with identical pilot sequences across all subcarriers. Gradients are computed for each batch to 

update the network parameters 𝜃(𝑊, 𝑏) via stochastic gradient descent, ensuring stable convergence and 

consistent channel compensation, as illustrated in Figure 7. Once trained, the AE-OFDM-PA system exhibits 

a linearized end-to-end transfer function that effectively compensates for both PA nonlinearity and channel 

distortions without explicit CSI modeling. This data-driven learning approach enhances robustness and 

adaptability compared to traditional DPD methods that depend on accurate analytical models or explicit 

channel information. 
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Figure 6. Principle of channel equalization Figure 7. Structure of the pilots in the batchsize 

 

 

3. RESULTS AND DISCUSSION  

The training dataset used in this study was entirely generated through numerical simulations in 

Python, using TensorFlow and Keras libraries. The simulated dataset is based on an OFDM system 

comprising 64 subcarriers and a CP length of 8, modulated with 16-QAM symbols. The signal passes through 

a one-tap Rayleigh fading channel and a nonlinear power amplifier PA modeled by the modified Rapp 

model. The amplifier parameters are: 𝐺𝑎=16, 𝑉𝑠𝑎𝑡=1.9, 𝑝=1.1, 𝑞=4, 𝐴=345, and 𝐴′=0.17. A total of 

1,024,000 OFDM symbols were generated for training, organized in batches of 8,000 samples each. The AE-

OFDM-PA network was trained over 500 epochs using the Adam optimizer. 

For generalization and testing, 5000 OFDM symbols were transmitted over 5,000 independent 

Rayleigh channel realizations, and all performance metrics are averaged across these realizations to ensure 

statistical reliability. In addition, the performance of the proposed AE-OFDM-PA system was compared with 

a conventional memory polynomial (MP) digital predistortion (OFDM-DPD) approach, configured with a 

polynomial order of 7 and a memory depth of 1. 

This synthetic dataset ensures full control over both channel and PA characteristics, guaranteeing 

reproducibility and enabling a fair comparison between the proposed deep learning–based predistortion 

scheme and the classical MP-DPD method.  

Table 1 presents the parameters of the AE-OFDM-PA layers and the corresponding training 

configuration. This synthetic dataset allows full control over both channel and PA characteristics, ensuring 

reproducibility and enabling performance assessment of the proposed AE-OFDM-PA model under various 

nonlinear and fading conditions.  

 

 

Table 1. Architecture of the proposed AE-OFDM-PA model 
Layer Number of neurons Layer type Activation function 

Input layer / Lambda / 

Hidden layers (2) 160 per layer Dense ReLU 
Normalization / Batch normalization Linear 

Conversion real/complex 2 per layer Dense / 

IFFT / Lambda / 
Add CP / Lambda / 

PA / Lambda / 
Rayleigh channel / Lambda / 

Supp CP / Lambda / 

FFT / Lambda / 
Hidden layers (2) 160 per layer Dense ReLU 

Output layer 16 per layer Dense Softmax 

 

 

3.1.  Constellation results 

The constellation analysis in Figure 8 compares the proposed AE-OFDM-PA system (Figure 8(a)) 

with the conventional OFDM-DPD scheme (Figure 8(b)) under a highly nonlinear condition, where the PA 

operates near saturation (IBO=3 dB). In the conventional OFDM-DPD system, the objective is to preserve 

the standard 16-QAM constellation at the PA input (blue points). The DPD block compensates for the 

nonlinear behavior of the amplifier, improving the received constellation (green) compared with the severely 

distorted output after the PA and channel (red). However, this approach depends on accurate PA modeling 

and acts as an external correction module. 
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In contrast, the AE-OFDM-PA framework employs an end-to-end learning strategy that jointly 

optimizes transmission and reception. The AE-TX learns a non-standard constellation at the transmitter 

(blue) that is inherently robust to nonlinearities, while the AE-RX reconstructs a clean 16-QAM-like 

constellation (green) at the receiver despite strong distortion (red). This behavior demonstrates that the AE-

OFDM-PA not only compensates for PA and channel impairments but also learns to adapt its modulation 

scheme to maximize robustness under harsh nonlinear conditions such as IBO=3 dB. These findings confirm 

the effectiveness of the joint AE-TX/AE-RX optimization in mitigating nonlinear distortions without 

requiring explicit PA modeling. 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. Constellation comparison of (a) AE-OFDM-PA and (b) OFDM-DPD 

 

 

3.2.  Block error rate (BLER) results 

A detailed comparison of the BLER performance was carried out among the proposed AE-OFDM-

PA system, the conventional OFDM and OFDM-PA schemes, and the reference OFDM-DPD approach. The 

results, presented in Figure 9, assess the robustness of these systems under severe nonlinear distortion 

conditions, with the PA operating at an IBO of 3 dB. To ensure high statistical accuracy, the simulation setup 

was refined to enable reliable BLER estimation down to 10⁻⁵. The OFDM-PA curve (red) shows a clear 

performance degradation due to the amplifier’s nonlinearity, reaching an error floor above 3×10⁻² at high 

Eb/N0 values. 

In contrast, the OFDM-DPD system (green) effectively compensates for these nonlinearities, 

achieving performance comparable to the ideal OFDM reference (magenta), which represents the upper 

bound for linearization. The proposed AE-OFDM-PA model (cyan) exhibits a strong ability to mitigate both 

nonlinear and channel-induced impairments. At 𝐸𝑏/𝑁0=20 dB, it achieves a BLER of approximately 5×10⁻⁴, 

corresponding to more than a 70-fold improvement over the uncompensated OFDM-PA. Although its 

performance does not exactly match that of the analytically modeled DPD, the AE-OFDM-PA remains 

highly competitive. At a target BLER of 10⁻³, it requires only about 2 dB higher Eb/N0 than the optimized 

OFDM-DPD reference. These findings validate the capability of the proposed end-to-end learning framework 

to preserve signal integrity and confirm that deep learning-based compensation can serve as a robust and 

model-free alternative to traditional DPD methods. 
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Figure 9. BLER performance for different OFDM-based systems 

 

 

3.3.  Analysis of power spectral density and adjacent channel leakage ratio  

The performance of the AE-OFDM-PA system was also evaluated in the frequency domain using 

two key spectral metrics: the power spectral density (PSD) and the adjacent channel leakage ratio (ACLR). 

As shown in Figure 10, the PSD reveals the impact of the PA nonlinearity on spectral spreading under the 

challenging IBO = 3 dB condition. In the conventional OFDM-PA system, strong nonlinearity causes 

significant spectral regrowth, raising the out-of-band noise floor to about −10.5 dB/Hz (at normalized 

frequency ±0.4). When a conventional DPD based on a memory polynomial model is applied, a slight 

reduction is observed, improving the out-of-band level to approximately −14 dB/Hz. However, this 

improvement remains limited, particularly for signals exhibiting memory effects. 

In contrast, the proposed AE-OFDM-PA system effectively suppresses spectral regrowth, 

maintaining the out-of-band level close to −20 dB/Hz, which is nearly identical to that of an ideal linear 

system. This represents an improvement of about 9.5 dB over the uncompensated OFDM-PA and nearly 6 dB 

over the conventional DPD. These results demonstrate that the autoencoder is capable of learning a signal 

representation that inherently minimizes spectral distortion despite hardware nonlinearities. 

The ACPR results, shown in Figure 11, further confirm these findings. The vertical axis represents 

the ACPR measured in dB at the PA output, while the horizontal axis corresponds to the different OFDM-

based transmission schemes. The uncompensated OFDM-PA system exhibits the strongest degradation 

(≈−12.5 dB), while the conventional DPD achieves only moderate improvement (≈−7.0 dB). By comparison, 

the AE-OFDM-PA system achieves an ACLR of approximately −18.5 dB, corresponding to gains of about 6 

dB and 11.5 dB over the OFDM-PA and DPD systems, respectively. 
 

 

  
  

Figure 10. PSD performance for different OFDM-based 

systems 

Figure 11. Comparison of ACPR performance 

highlighting AE-OFDM-PA and OFDM-DPD 

schemes 
 

 

Overall, these spectral results confirm that the AE-OFDM-PA approach not only reduces spectral 

regrowth to near-ideal levels but also provides the highest measurable gain in ACLR. This makes it a more 

robust and spectrally efficient alternative to conventional linearization techniques. It should be noted that all 

results were obtained from simulations without hardware-in-the-loop or real PA measurements. Future work 

will focus on experimental validation using RF hardware and extensions to more complex scenarios, 

including amplifiers with memory effects, multiple-input multiple-output (MIMO) configurations, and 

wideband fading channels. 
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3.4.  Analysis of the CCDF and PAPR  

Figure 12 presents the CCDF, a key metric used to assess the system’s PAPR and its resilience to 

power compression. The results show that introducing an end-to-end learning approach with autoencoder 

networks does not adversely affect the PAPR performance. The AE-OFDM (blue) and conventional OFDM 

(magenta) curves are nearly identical, both exhibiting a PAPR of approximately 10.2 dB at a probability of 

10⁻³. This observation confirms that the AE-OFDM-PA design preserves the intrinsic power characteristics 

of the transmitted signal. 

 

 

 
 

Figure 12. CCDF of PAPR for different OFDM-based systems 

 

 

3.5. Computational complexity analysis 

Table 2 presents the complexity analysis of the AE-OFDM-PA system. The evaluation considers the 

number of trainable parameters (memory cost) and the floating-point operations (FLOPs, representing 

execution cost) associated with the neural network layers, which define the model’s main computational load. 

The total complexity of the AE is obtained by summing its encoder and decoder components, resulting in 

approximately 66.88 thousand FLOPs per OFDM symbol during inference and 57,938 trainable parameters. 

 

 

Table 2 Computational complexity of the proposed AE-OFDM-PA network 
Layer Input size 𝑁𝑖𝑛 Output size 𝑁𝑜𝑢𝑡 Multiplications (flops) Trainable parameters 

AE-Tx 

Dense 1 16 160 2560 2720 

Dense 2 160 160 25600 25760 

Dense 3 160 2 320 322 
AE-Rx 

Dense 4 64 160 10240 800 

Dense 5 160 160 25600 25760 
Dense 6 160 16 2560 2576 

Total per OFDM symbol 66.88 K flops 57938 

 

 

Non-neural operations, such as the IFFT, PA, and FFT, are excluded from this analysis since they 

contain no trainable parameters and are common to all OFDM-based systems. Compared with the 

conventional DPD approach, the AE-OFDM-PA exhibits a higher computational cost but achieves 

significantly improved performance across all key metrics, including BLER, ACLR, and PAPR. 

Although the DPD is computationally lightweight, relying on only a few polynomial coefficients, 

the AE uses its additional complexity strategically to perform end-to-end joint optimization. This allows it to 

handle both modulation design and PA linearization simultaneously. Despite being built with a modest 

architecture based on dense layers, the proposed model remains among the least complex deep learning 

solutions at the physical layer, avoiding the heavy computational load typically associated with recurrent 

neural network (RNN) or transformer-based designs [28]. This balanced trade-off between complexity and 

performance justifies the AE’s adoption, offering superior spectral efficiency, robustness, and nonlinearity 

mitigation while maintaining practical computational feasibility. 
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4. CONCLUSION  

This work introduces a novel end-to-end autoencoder framework for linearizing power amplifiers in 

OFDM systems, jointly addressing PA nonlinearity and channel impairments under unknown CSI conditions. 

Unlike conventional DPD schemes, the proposed AE-OFDM-PA learns to linearize the PA response directly 

from data without relying on prior modeling assumptions, making it inherently robust to both PA 

nonlinearities and channel distortions. 

Our AE-OFDM-PA system demonstrates a significant performance improvement over conventional 

approaches, achieving a BLER improvement of over 70× compared to the uncompensated OFDM-PA system 

at an IBO of 3 dB, an ACLR gain of approximately 11.5 dB over conventional memory polynomial DPD, and 

a moderate reduction of PAPR. These results underscore the autoencoder’s capability to automatically learn 

optimal symbol representations and compensate for complex distortions without relying on traditional model-

based predistortion techniques. 

While the study is based on synthetic data and a simplified single-path Rayleigh fading channel, the 

incorporation of channel impairments allows evaluation of PA predistortion under more realistic conditions. 

Future work may extend this framework to PAs with memory effects, MIMO systems, wideband fading 

channels, or hardware-in-the-loop implementations, further validating its applicability in practical 

deployments. Overall, this study demonstrates the strength, flexibility, and novelty of the proposed end-to-

end learning method, providing a compelling alternative to classical PA compensation strategies and paving 

the way for intelligent, data-driven communication system design under unknown CSI. 
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