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 As software applications become increasingly complex, there is a growing 

need for scalable, flexible, and high-performance backend solutions. Cloud 

computing-based application programming interfaces (APIs) address these 

demands by enabling developers to offload resource-intensive tasks to the 

cloud while eliminating the burden of infrastructure management. This study 

presents a case study using Obesifix, a mobile health application for real-

time dietary monitoring and personalized nutrition recommendations. Two 

deployment models were evaluated: a traditional server-based architecture 

using Google Compute Engine (GCE) and a serverless approach using 

Google Cloud Run (GCR). Performance testing was conducted with Apache 

JMeter under simulated loads of 60, 120, and 180 users across four critical 

API endpoints (register, login, recommendation, prediction). Results show 

that GCR consistently achieved 20–30% lower response times and 15–20% 

higher throughput compared to GCE, while maintaining 0% error rate, lower 

memory consumption, and more balanced virtual central processing unit 

(vCPU) utilization. Time to first byte (TTFB) remained below 800 ms across 

all scenarios, confirming good server responsiveness. These findings 

highlight the scalability and efficiency benefits of serverless architectures for 

mobile health applications. Future research should explore asynchronous 

programming paradigms, autoscaling thresholds, and cost-performance 

trade-offs, as well as multi-cloud deployments to enhance system resilience 

and generalizability. 
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1. INTRODUCTION 

Mobile applications have become essential tools in today’s digital landscape, driving innovation and 

enhancing daily life across various sectors, including communication, entertainment, healthcare, and 

productivity [1]. A forecast by Statista, a leading provider of market and consumer data, estimates that the 

number of global smartphone users will reach 6.93 billion approximately 85.74% of the world’s population 

and is projected to exceed 7.7 billion by 2028 [2]. Smartphones account for approximately 90% of all mobile 

devices and are used by 94.2% of internet users aged 16 and above [3]. The growth highlights the critical role 

of mobile applications in supporting every day and essential tasks. As features such as artificial intelligence 

(AI), augmented reality (AR), and real-time data processing become standard, applications demand 

increasingly complex and computationally intensive backend infrastructures. 

https://creativecommons.org/licenses/by-sa/4.0/
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Although frontend development is often prioritized to ensure a smooth user experience, the overall 

performance of mobile applications relies heavily on robust backend systems to maintain responsiveness, 

reliability, and scalability [4]. Backend services must handle concurrent users, dynamic data, and real-time 

communication [5]. However, many backend architectures still experience performance bottlenecks, 

particularly delayed application programming interface (API) response times under high concurrency levels. 

Such challenges underscore the need for optimized cloud-based solutions to reduce latency and improve data 

processing efficiency [6]. Figure 1 illustrates the interaction between frontend applications, APIs, backend 

services, and databases, showing how data flows across system components. 

 

 

 
 

Figure 1. Communication flow between frontend and backend systems 

 

 

Cloud computing has emerged as a foundational technology to address these challenges, generally 

defined as the on-demand consumption of computing power, storage, and applications over the internet. The 

model follows a pay-as-you-go pricing approach, with resources delivered through globally distributed cloud 

service providers [7]. Cloud platforms enable rapid deployment, operational efficiency, scalability, and 

global availability [8]. Such capabilities have encouraged many organizations to migrate traditional 

information technology (IT) infrastructure to cloud-based systems, enabling services such as internet of 

things (IoT) solutions, web applications, and big data analytics [9]. The combination of lower operational 

cost, flexible architecture, and simplified integration procedures has driven widespread adoption of cloud 

computing across industries, aligning with Industry 4.0 digital transformation goals [10]. Offloading 

resource-intensive operations to the cloud allows mobile systems to maintain high client-side performance 

while ensuring backend scalability [11]. Cloud-based services including distributed storage, real-time 

analytics, and managed databases enable mobile applications to scale efficiently without placing excessive 

demand on device resources [12]. Cloud-based APIs serve as key connectors between applications and cloud 

services, facilitating seamless integration and enhancing system performance. 

Recent research has increasingly explored the integration of cloud computing into mobile 

application development across a range of domains and architectures. Studies in domain-specific contexts 

such as sign-language translation, image-based barter platforms, ecotourism services, and tourism education 

commonly employ representational state transfer (REST) APIs on managed cloud platforms such as Google 

Cloud to offload computation and streamline client-side interaction [13]–[16]. These studies confirm the 

feasibility in production-like scenarios and provide insights into full-stack workflows; however, most remain 

focused on functionality without quantitative evaluations of latency, time to first byte (TTFB), or API 

modularity under dynamic traffic conditions. Beyond isolated implementations, architectural investigations 

have proposed containerized microservices for release agility and serverless designs for elastic scaling in 

commercial backends [17]–[19]. While orchestration strategies and deployment flexibility are emphasized, 

comparative assessments across deployment models remain limited, particularly in evaluating API 

responsiveness under concurrent access. Moreover, reusable design patterns at the endpoint level are often 

described informally or qualitatively, lacking codification for replication. Cloud-based mobile systems 

supporting education and mental health demonstrate development and operations (DevOps) pipelines, AI-

driven personalization, and multimodal interfaces such as natural language processing for emotional support 

or interactive data visualization [20]–[22]. These implementations prioritize usability and user engagement; 

however, performance under fluctuating network conditions or heavy concurrent usage remains understudied, 

leaving essential questions around scalability, responsiveness, and maintainability unaddressed. Despite these 

developments, few studies have offered an end-to-end evaluation of cloud-native API performance. 
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As illustrated in Figure 2, cloud platforms offer three service models software as a service (SaaS), 

platform as a service (PaaS), and infrastructure as a service (IaaS) allowing developers to choose the 

appropriate level of abstraction based on system requirements [14], [23].  
 

 

 
 

Figure 2. Cloud computing service model [24] 
 

 

The infrastructure for the developed application is built on Google Cloud platform (GCP), which 

provides scalable services through a serverless architecture, enabling the application to automatically adjust 

resources under dynamic workloads. The selection of GCP is supported by its recognition as a leader in 

Gartner’s Magic Quadrant for Strategic Cloud Platform Services [25], with strengths in AI integration, 

workload optimization, and reliability. Choosing GCP ensures that the experimental results are representative 

of a production-ready, enterprise-grade environment, aligning to evaluate API performance and scalability 

under realistic deployment conditions.  

Building on previous works, a prior study introduced a mobile health application, Obesifix, that 

leverages cloud computing to support real-time dietary monitoring and personalized nutrition 

recommendations. The application was designed to optimize resource usage in mobile environments by 

distributing computational workloads to the cloud, enabling users to track nutritional intake and make 

informed dietary decisions based on real-time data. The study demonstrated that leveraging flexible cloud 

systems can improve mobile application performance under dynamic user demands [26]. The main 

contributions of our study include a comprehensive evaluation of API design within cloud-native 

frameworks, offering actionable insights for developers aiming to enhance efficiency and responsiveness in 

mobile applications. A modular API architecture is proposed, leveraging serverless deployment using Google 

Cloud Run and managed services such as Cloud structured query language (SQL) and Cloud Storage. System 

performance was evaluated by simulating user traffic with Apache JMeter, focusing on key performance 

indicators including average response time, minimum and maximum values, standard deviation, and 

throughput. The findings provide valuable insights into optimizing cloud resource allocation and offer 

practical guidelines for designing responsive, resource-efficient mobile applications. 

The structure of this paper is as follows: section 2 outlines the methodology used for designing and 

implementing the Obesifix application. Section 3 discusses the experimental results and provides a 

comparative analysis. Finally, section 4 summarizes the main findings and highlights potential directions for 

future work. 

 

 

2. METHOD 

The method section outlines the end-to-end development and deployment process, including 

workflow design, authentication, and container-based deployment on Google Cloud, as well as API design 

and integration; the objective is to enable reproducible evaluation of the proposed cloud-native applications. 

 

2.1.  System workflow diagram 

Figure 3 illustrates the system workflow for cloud-based API integration within a full-stack mobile 

application. The workflow is divided into three main segments: Part A (initial backend preparation), Part B 

(core cloud integration), and Part C (final application delivery). 

In Part A, development starts by building server-side logic, including third-party service integration 

such as external APIs and authentication systems. Backend functionalities are encapsulated within an API-

based architecture that establishes the communication pathway between server components and client 

interfaces. The resulting structure supports modular logic implementation, simplifying maintenance and 
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reuse. Part B, marked with a blue background, emphasizes the central implementation of the cloud 

environment. The process begins with establishing database connectivity through Google Cloud SQL, which 

manages data storage and retrieval using object-relational mapping (ORM) or SQL-based queries. 

Subsequently, routing logic and middleware are configured using the Express.js framework to handle client 

requests, authorization, and data validation. The configured backend is then deployed via Google Cloud Run, 

a serverless platform that offers autoscaling and load balancing based on traffic intensity. The mobile 

application, developed in Kotlin, communicates with the backend through securely exposed API endpoints, 

enabling interactions for features such as login, registration, recommendation, and prediction. Part C 

represents the final integration stage, where both frontend and backend components converge into a fully 

operational mobile application. The resulting system can deliver real-time services efficiently, backed by a 

scalable cloud-based architecture that maintains stable performance across varying user activity levels. 
 

 

 
 

Figure 3. System workflow diagram 
 

 

To further elaborate on the workflow in Part B, Figure 4 illustrates the detailed authentication and 

deployment process applied within the system. The client initiates a login request directed to the backend 

API hosted on Google Cloud Run. Upon receiving the request, the API generates a JSON Web Token (JWT) 

to perform authentication and proceeds to verify user credentials by querying Cloud SQL. A valid token 

enables the client to access protected endpoints for continued interaction. 

Regarding deployment, the backend and machine learning components are packaged into 

containerized services and published through Docker images stored in the Google Cloud Artifact Registry. 

Such a configuration supports automated scaling and uniform deployment across environments. The diagram 

shows how client devices, authentication systems, databases, and deployment processes work together, 

illustrating a setup that can manage multiple users simultaneously while keeping cloud operations secure and 

organized. 
 

 

 
 

Figure 4. Deployment architecture on Google Cloud 
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2.2.  Cloud-based API design and integration 

Cloud-based APIs are the foundational layer that facilitates seamless interaction between mobile 

applications and cloud infrastructure, ensuring consistent and efficient data flow. Figure 5 illustrates the 

backend API architecture developed using the Express.js framework. Express.js’s modular and lightweight 

structure enables effective implementation of routing logic, middleware processing, and scalable service 

delivery. 

 

 

 
 

Figure 5. Cloud-based API design  

 

 

API deployment is done on Google Cloud Run, a managed serverless platform capable of 

autoscaling based on incoming request volumes. Manual server provisioning becomes unnecessary, and 

system responsiveness is preserved even under fluctuating user demand. Communication between the mobile 

client and cloud services is established through securely defined endpoints. Cloud SQL (MySQL) manages 

structured user data, supporting real-time access and updates. Cloud Storage hosts static assets, including 

image resources used for data-driven features. Backend logic and machine learning modules are packaged 

into Docker containers and managed via Google Cloud Artifact Registry to support consistent and portable 

deployments. Authentication procedures rely on JWT, which restrict access to protected API endpoints. 

Public APIs handle user-facing processes such as login and account registration, while private APIs are 

designated for personalized tasks, including food predictions and dietary recommendations. Machine learning 

capabilities are embedded in Flask-based containers, utilizing models built with TensorFlow and Scikit-learn 

to process analytical requests submitted by users. 

The overall architecture enables a modular, scalable, and secure full-stack system. Developers are 

positioned to focus on enhancing application features, while cloud-managed infrastructure ensures reliability, 

load adaptability, and operational efficiency across environments. In addition to the API infrastructure, the 

Obesifix application integrates machine learning components to support automated food classification and 

personalized recommendations, as described in the following subsection. 

 

2.3.  Dataset and model deployment 

A specially curated dataset, comprising proprietary food imagery and user preference data, was 

employed in this study to support the development of the Obesifix application. The image dataset comprises 

19 food categories (e.g., apple, banana, chicken curry, donuts, rice, spaghetti, and sushi), which are used for 

automated food classification. Additionally, a user profile dataset was created, containing food preferences 

(19 types) and health conditions (underweight, normal, overweight, and obese), enabling personalized dietary 

recommendations. 

Two machine learning models were developed for this study. The first is an image classification 

model, built using transfer learning with InceptionV3 in TensorFlow and Keras, and trained on the curated 

food image dataset consisting of 19 categories. The second is a recommendation model, implemented using 

the k-nearest neighbors (KNN) algorithm to generate personalized meal recommendations based on each 

user’s recorded food preferences and health conditions. Together, these models enable the Obesifix 

application to automatically classify food images and suggest meals aligned with users’ dietary needs. 
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The classification model obtained 96.40% training accuracy and 88.20% validation accuracy, with 

training/validation loss curves indicating stable convergence and minimal overfitting. Figure 6 shows the 

training and validation accuracy curves, demonstrating that the model achieves consistently high accuracy 

across epochs. Figure 7 shows the training and validation loss curves, where the loss decreases steadily and 

remains stable, confirming good generalization capability. 
 

 

  
  

Figure 6. Training and validation accuracy Figure 7. Training and validation loss 
 
 

Both models were containerized and deployed as RESTful APIs using Google Cloud Run. This 

serverless approach allows automatic scaling based on incoming request traffic, ensuring low-latency 

predictions and cost efficiency. The classification API processes user-uploaded images and returns predicted 

food labels, along with their nutritional composition, whereas the recommendation API filters suitable meal 

options based on the user’s health profile and preferences. These containerized services were subsequently 

incorporated into the performance testing and comparison experiments to evaluate their responsiveness under 

server-based (Google Compute Engine (GCE)) and serverless (Google Cloud Run (GCR)) environments. 

 

 

3. RESULTS AND DISCUSSION 

The section reports the experimental setup and findings, outlining cloud services and configurations 

for backend deployment, presenting endpoint-level performance under stepped loads, and then providing 

TTFB analysis with a brief overview of user-interface considerations. 

 

3.1.  Google Cloud services overview 

To support the deployment and operation of the Obesifix mobile application, a suite of Google 

Cloud services was utilized to build a robust, scalable, and cloud-native backend infrastructure. The selected 

services were specifically chosen to meet the demands of Obesifix, which requires dynamic scalability, 

secure data handling, and fast response times to ensure a seamless user experience. Cloud Run was used for 

backend API deployment due to its serverless model and autoscaling capability, which is crucial under 

variable user traffic. Cloud SQL manages structured nutritional data and user records, while cloud storage 

handles image assets for food recognition. Artifact registry stores and manages Docker container images for 

both backend and machine learning services. Configuration details for each service instance are presented in 

Table 1.  
 

 

Table 1. Google Cloud platform services configuration 
Services Resources Details 

Cloud Run (serverless) Memory 8 GB 

vCPU 4 
Placement location Southeast-Asia1 – Jakarta 

Cloud SQL vCPU 2 

Memory 8 GB 
Storage type HDD 10 GB 

Location Southeast-Asia1 – Jakarta 

Cloud storage Location Southeast-Asia1 – Jakarta 
Storage class Standard 

Artifact registry Format Docker 

Placement location Southeast-Asia1 – Jakarta 
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3.2.  Performance testing  

Table 2 outlines the test scenario configuration used in the evaluation process. Each endpoint was 

tested under three simulated traffic loads: 60, 120, and 180 virtual users. The chosen load levels represent 

realistic usage patterns ranging from moderate to heavy traffic without exceeding system limitations. 

In this performance evaluation, the Obesifix application was tested on two deployment models: a 

server-based approach using GCE and a serverless approach using GCR. The comparison was carried out 

across four critical API endpoints register, login, recommendation, and prediction under three different load 

levels (60, 120, and 180 virtual users). The results for each endpoint are presented in Tables 3 through 10. 

In this study, performance testing focused on four key API endpoints: register, login, 

recommendation, and prediction. The selected endpoints represent the most frequently accessed and 

computation-intensive operations within the Obesifix application. Registration and login serve as essential 

components for user authentication, while the recommendation and prediction endpoints are responsible for 

delivering personalized dietary services powered by machine learning models. Evaluating the performance of 

each targeted endpoint provides valuable insights into application behavior under high-concurrency 

conditions, particularly for user management and personalized feature execution both crucial for ensuring 

system responsiveness and user satisfaction. 

 

 

Table 2. Test scenario for performance testing 

No. 
API Test scenario 

Parameter Endpoint Number of threads (users) 
1  POST  /register  60, 120, 180 
2  POST  /login  60, 120, 180 
3  POST  /prediction  60, 120, 180  
4  POST  /recommendation 60, 120, 180  

 

 

Table 3. Result for concurrent register – Compute Engine 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  720 640 890 55 0.00% 25 

120  845 750 1040 70 0.00% 47 

180 880 770 1100 80 0.00% 68 

 

 

The performance testing of the Obesifix application was conducted using Apache JMeter to evaluate 

its performance under varying traffic levels. Apache JMeter is a widely recognized performance testing tool 

known for its capability to simulate different load conditions and measure response times. According to 

research by [27], [28], Apache JMeter has proven effective for testing mobile applications under heavy 

usage. The tool is particularly useful for assessing how applications perform under increased demand and 

identifying potential bottlenecks in the system. These studies have validated the tool’s efficacy for 

performance testing software applications in high-traffic scenarios, making it an ideal choice for evaluating 

the Obesifix application.  

The test scenarios included 60, 120, and 180 virtual users to simulate different usage intensities and 

assess the system’s scalability and response time. These tests aimed to replicate real-world conditions and 

observe how the application performs under varying load levels. The virtual users were configured to 

simulate typical usage patterns, such as logging in, registering, and engaging with the app’s core features, 

like receiving recommendations and predictions. Figure 8 visually represents how the tests were conducted 

and how the system’s performance was measured. 

 

 

 
 

Figure 8. Illustration of performance testing 
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Throughput represents the total number of requests successfully processed by the system within a 

specified observation window and serves as an indicator of the system’s processing capacity, as defined in 

(1). A higher throughput value indicates the system’s ability to accommodate concurrent user requests 

efficiently. Average response time refers to the mean latency experienced per request and reflects the 

system’s responsiveness, as formulated in (2). A lower response time value indicates faster execution and 

improved user experience [29]. Additionally, the success rate denotes the proportion of requests completed 

without errors and serves as a key measure of the system’s reliability and stability under load. 
 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒
  (1) 

 

𝐴𝑣𝑔𝑅𝑒𝑠𝑝𝑇𝑖𝑚𝑒 =  
𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒×𝑁𝑢𝑚𝑂𝑓𝑇ℎ𝑟𝑒𝑎𝑑

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑢𝑒𝑠𝑡
 × 1000 (2) 

 

Table 3 presents the performance results for the registration endpoint running on Compute Engine. 

The response time increases with user load, from 720 ms at 60 users to 880 ms at 180 users, showing the 

effect of rising concurrency. Throughput also improves with higher load, starting at 25 rps and reaching  

68 rps, indicating better resource utilization under stress. The error rate remains stable at 0%, demonstrating 

that registration requests are processed reliably under different concurrency levels. 

Table 4 reports the performance of the login endpoint on Compute Engine, where authentication is 

processed for multiple users. The response time starts at 660 ms for 60 users and increases to 832 ms at 180 

users, reflecting higher latency under load. Throughput improves consistently, from 27 rps to 71 rps, 

indicating scalability in handling authentication traffic. The error rate consistently remains 0%, indicating 

reliable performance during login operations. 
 
 

Table 4. Result for concurrent login – Compute Engine 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  660 580 810 50 0.00% 27 

120  810 700 980 65 0.00% 50 

180 832 720 1020 70 0.00% 71 

 

 

Table 5 summarizes the results for the recommendation endpoint on Compute Engine, which 

requires generating personalized dietary suggestions. The response time grows from 449 ms at 60 users to 

807 ms at 180 users, showing that recommendation tasks are more computationally demanding. Throughput 

increases steadily from 26 rps to 69 rps, meaning that the system adapts to growing concurrency. The error 

rate remains at 0%, confirming that Compute Engine processes all recommendation requests without failures. 
 

 

Table 5. Result for concurrent recommendation – Compute Engine 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  449 390 560 35 0.00% 26 

120  690 600 850 55 0.00% 48 

180 807 700 980 60 0.00% 69 

 

 

Table 6 provides the evaluation of the prediction endpoint on Compute Engine, which involves 

executing machine learning inference. The response time is measured at 501 ms for 60 users and rises to 890 

ms for 180 users, indicating a significant increase as concurrency scales. Throughput values also increase, 

ranging from 28 rps at 60 users to 73 rps at 180 users, reflecting that the system scales effectively. The error 

rate remains at 0%, showing that prediction tasks are executed correctly under all test scenarios. 
 

 

Table 6. Result for concurrent prediction – Compute Engine 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  501 440 620 40 0.00% 28 

120  731 640 910 60 0.00% 52 

180 890 770 1090 75 0.00% 73 

 

 

Table 7 presents the registration endpoint results using Cloud Run, with response times lower than 

those recorded on Compute Engine. The response time ranges from 350 ms at 60 users to 495 ms at 180 

users, highlighting faster processing under serverless scaling. Throughput improves significantly from 31 rps 
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to 80 rps, which reflects the elasticity of Cloud Run in managing concurrent workloads. The error rate stays 

at 0%, confirming the reliability of the serverless deployment for registration requests. 

 

 

Table 7. Result for concurrent register – Cloud Run 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  350 310 420 28 0.00% 31 

120  415 370 500 34 0.00% 57 

180 495 440 580 40 0.00% 80 

 

 

Table 8 shows the login endpoint performance under Cloud Run deployment. The response times 

are 340 ms at 60 users and 431 ms at 180 users, which are lower than the response times reported for 

Compute Engine. Throughput grows from 32 rps at 60 users to 82 rps at 180 users, indicating that Cloud Run 

scales efficiently under load. The error rate consistently remains 0%, indicating that authentication requests 

are handled successfully under all test conditions. 

 

 

Table 8. Result for concurrent login – Cloud Run 
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  340 300 400 26 0.00% 32 

120  410 360 480 32 0.00% 59 

180 431 380 510 36 0.00% 82 

 

 

Table 9 summarizes the outcome for the recommendation endpoint deployed on Cloud Run, which 

generates personalized dietary results. The response time starts at 315 ms for 60 users and increases 

moderately to 490 ms for 180 users, remaining faster than Compute Engine. Throughput improves 

considerably from 33 rps at 60 users to 83 rps at 180 users, showing strong scalability. The error rate remains 

at 0%, confirming that Cloud Run reliably manages concurrent recommendation requests without failures. 

 

 

Table 9. Result for concurrent recommendation – Cloud Run  

 

 

 

 

 

 

Table 10 presents the performance results for the prediction endpoint running on Cloud Run. The 

response time remains relatively low, starting at 382 ms for 60 users and gradually increasing to 500 ms at 

180 users, which is still significantly faster than the Compute Engine counterpart. The throughput improves 

consistently with load, from 33 rps at 60 users to 84 rps at 180 users, reflecting Cloud Run’s ability to scale 

automatically with demand. The standard deviation values remain small, indicating stable performance across 

requests, and the error rate remains at 0%, demonstrating that predictions are handled reliably without 

failures at all concurrency levels. 

 

 

Table 10. Result for concurrent prediction – Cloud Run  
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  382 340 440 30 0.00% 33 

120  402 360 470 33 0.00% 61 

180 500 450 580 38 0.00% 84 

 

 

3.3.  Performance results and comparison 

In this performance evaluation, the Obesifix application was deployed on two different back-end 

architectures: a server-based deployment using GCE and a serverless deployment using GCR. The objective 

was to compare the two approaches in terms of responsiveness, scalability, and resource efficiency under 

three different load levels (60, 120, and 180 virtual users). Four critical API endpoints register, login, 

Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps) 

60  315 280 370 24 0.00% 33 

120  370 330 440 28 0.00% 60 

180 490 440 560 35 0.00% 83 
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recommendation, and prediction were selected because they represent the most frequently accessed and 

computation-intensive operations in the application. 

The results reveal that Cloud Run consistently outperforms Compute Engine in most performance 

metrics. Across all endpoints and load levels, GCR demonstrated lower average response time, higher 

throughput, more stable resource utilization, and similar (zero) error rates. These findings indicate that the 

serverless architecture provides better elasticity, making it more suitable for workloads with fluctuating 

traffic, such as Obesifix. 

Figure 9 compares the average response time for each endpoint under 60, 120, and 180 concurrent 

users. The results show that GCR achieved 20–30% lower response times than GCE across all endpoints, 

indicating faster request processing. The improvement was more noticeable under higher loads, where GCE 

exhibited gradual latency growth, whereas GCR maintained more stable performance thanks to automatic 

scaling. 

Figure 10 presents the throughput (requests per second) achieved by both deployment models. Cloud 

Run consistently delivered 15–20% higher throughput compared to Compute Engine, demonstrating its 

ability to handle more requests in the same time frame. The performance gap widened at 180 users, 

suggesting that GCR scales more efficiently under peak load. At 180 users, Cloud Run reduced average 

response time by up to 30% and increased throughput by approximately 20% compared to Compute Engine, 

demonstrating better scalability under peak load. 

Figure 11 shows that both GCE and GCR maintained a 0% error rate under all test conditions. This 

result confirms that both deployment approaches were able to handle concurrent traffic without failed 

requests, which is critical for ensuring reliability in a production health application. 

 

 

 

 

Figure 9. Response time comparison between GCE and GCR 

 

 

 
 

Figure 10. Throughput comparison between GCE and GCR 
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Figure 12 illustrates memory consumption across all endpoints and load levels. GCE consumed 10–

15% more memory than GCR on average, indicating less efficient resource usage in the server-based 

deployment. In contrast, GCR utilized memory more dynamically, which is advantageous for cost 

optimization and sustainable operations. 

Figure 13 compares CPU utilization. GCE consistently reported higher CPU usage, especially at 120 

and 180 users, which could lead to resource saturation. GCR maintained lower and more balanced CPU 

utilization, confirming that its auto-scaling capability effectively distributes the workload and prevents CPU 

bottlenecks. 

 

 

 
 

Figure 11. Error rate comparison between GCE and GCR 

 

 

 

 

Figure 12. Memory utilization comparison between GCE and GCR 

 

 

 

 

Figure 13. vCPU Comparison between GCE and GCR 
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Overall, the comparison demonstrates that the serverless architecture (GCR) is better suited for the 

Obesifix application, particularly under variable or high-load scenarios. Its lower latency, higher throughput, 

and more efficient resource usage make it a cost-effective and scalable solution, ensuring a smoother user 

experience and reduced operational overhead compared to a traditional server-based deployment. These 

findings validate that a serverless architecture is a practical choice for mobile health applications requiring 

real-time responsiveness and cost-effective scalability, providing a strong foundation for future iterations of 

Obesifix. 

 

3.4.  Time to first byte 

TTFB was evaluated as an indicator of server responsiveness, defined as the elapsed time between a 

client’s request and the receipt of the first byte of the response. TTFB refers to the time it takes from the 

moment a client sends a request to the server until the client receives the first byte of data. This metric is 

crucial for understanding the server’s responsiveness, especially in dynamic applications like Obesifix, where 

real-time data retrieval is essential. 

According to Google PageSpeed Insights, a good TTFB score is typically below 800 ms, which 

indicates that the server is responding quickly. Scores between 800 ms and 1800 ms need improvement, 

while anything above 1800 ms is generally considered poor, potentially leading to slower user experiences. 

TTFB was measured for all key endpoints register, login, recommendation, and prediction under the same 

traffic levels used in previous tests (60, 120, and 180 virtual users). The results showed that the Obesifix 

application maintains a good TTFB (< 800 ms) across all scenarios. Furthermore, the serverless deployment 

(GCR) consistently achieved slightly lower TTFB values compared to the server-based deployment (GCE), 

particularly under higher loads (120 and 180 users). This finding suggests that Cloud Run’s automatic scaling 

helps maintain low initial latency even during peak traffic, which is critical for ensuring a smooth user 

experience in mobile health applications. These TTFB results are consistent with the lower response times 

observed in Figure 14, confirming that GCR consistently delivers faster initial server responses even as 

traffic increases. 

 

 

 
 

Figure 14. TTFB [30] 

 

 

3.5.  User interface design of Obesifix app 

The design of the Obesifix application interface was developed using custom resources, including 

logos and user-friendly design elements. The design focuses on simplicity to improve accessibility and ease 

of use for users. With a clean and intuitive layout, the app ensures that users can easily interact with its 

features, such as personalized food recommendations and caloric tracking. The user-friendly design 

minimizes complexity, making it easier for both new and experienced users to navigate the application. 

Additionally, the interface is responsive and adaptable, providing smooth performance across various 

devices. This approach ultimately enhances the user experience, making it easier for individuals to manage 

their nutrition and maintain a healthy lifestyle, as shown in Figure 15. 
 

 

 
 

Figure 15. User interface design of Obesifix 
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4. CONCLUSION 

Cloud computing-based APIs offer substantial advantages in designing and implementing modern 

software applications. Integrating cloud services enables improved scalability, flexibility, and performance 

while eliminating the complexities associated with traditional infrastructure management. The Obesifix 

application, as described in this study, demonstrates how cloud-based solutions can enhance backend 

operations and maintain seamless functionality across varying user loads. 

Implementing PaaS tools such as Google Cloud Run allows applications to scale dynamically in 

response to demand, ensuring high availability and minimizing operational overhead. Performance testing 

results emphasize the importance of optimizing cloud resources for responsiveness and efficiency under 

varying traffic intensities. Cloud-based APIs facilitate smoother integration with external systems, better 

resource allocation, and faster development cycles. Building on these findings, future research should explore 

the evaluation of asynchronous and synchronous programming paradigms within serverless environments to 

improve request-handling mechanisms in mobile backend systems. Additional experiments should 

investigate autoscaling thresholds, cold-start latency mitigation techniques, and cost-performance trade-offs 

under real-world workloads. Furthermore, future studies may compare multi-cloud and hybrid-cloud 

deployments to assess portability and fault tolerance, and extend this evaluation to other mobile health 

applications beyond Obesifix to validate the generalizability of the proposed approach. 
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