TELKOMNIKA Telecommunication Computing Electronics and Control
Vol. 24, No. 1, February 2026, pp. 34~48
ISSN: 1693-6930, DOI: 10.12928/ TELKOMNIKA.v24i1.27261 a 34

Performance evaluation of serverless cloud-native API
deployment: a case study on a mobile health application

Maulana Bintang Irfansyah, Bilal Waheed, Idris Winarno, Akhmad Alimudin
Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia

Article Info

ABSTRACT

Article history:

Received Jun 5, 2025
Revised Oct 29, 2025
Accepted Dec 8, 2025

Keywords:

Application programming
interface

Cloud computing

Google Cloud platform
Mobile application
Platform as a service

As software applications become increasingly complex, there is a growing
need for scalable, flexible, and high-performance backend solutions. Cloud
computing-based application programming interfaces (APIs) address these
demands by enabling developers to offload resource-intensive tasks to the
cloud while eliminating the burden of infrastructure management. This study
presents a case study using Obesifix, a mobile health application for real-
time dietary monitoring and personalized nutrition recommendations. Two
deployment models were evaluated: a traditional server-based architecture
using Google Compute Engine (GCE) and a serverless approach using
Google Cloud Run (GCR). Performance testing was conducted with Apache
JMeter under simulated loads of 60, 120, and 180 users across four critical
API endpoints (register, login, recommendation, prediction). Results show
that GCR consistently achieved 20-30% lower response times and 15-20%
higher throughput compared to GCE, while maintaining 0% error rate, lower
memory consumption, and more balanced virtual central processing unit

(VCPU) utilization. Time to first byte (TTFB) remained below 800 ms across
all scenarios, confirming good server responsiveness. These findings
highlight the scalability and efficiency benefits of serverless architectures for
mobile health applications. Future research should explore asynchronous
programming paradigms, autoscaling thresholds, and cost-performance
trade-offs, as well as multi-cloud deployments to enhance system resilience
and generalizability.

This is an open access article under the CC BY-SA license.

0

Corresponding Author:

Maulana Bintang Irfansyah

Department of Informatics and Computer Engineering
Politeknik Elektronika Negeri Surabaya

Surabaya, Indonesia

Email: maulanabin@pasca.student.pens.ac.id

1. INTRODUCTION

Mobile applications have become essential tools in today’s digital landscape, driving innovation and
enhancing daily life across various sectors, including communication, entertainment, healthcare, and
productivity [1]. A forecast by Statista, a leading provider of market and consumer data, estimates that the
number of global smartphone users will reach 6.93 billion approximately 85.74% of the world’s population
and is projected to exceed 7.7 billion by 2028 [2]. Smartphones account for approximately 90% of all mobile
devices and are used by 94.2% of internet users aged 16 and above [3]. The growth highlights the critical role
of mobile applications in supporting every day and essential tasks. As features such as artificial intelligence
(Al), augmented reality (AR), and real-time data processing become standard, applications demand
increasingly complex and computationally intensive backend infrastructures.

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput EI Control a 35

Although frontend development is often prioritized to ensure a smooth user experience, the overall
performance of mobile applications relies heavily on robust backend systems to maintain responsiveness,
reliability, and scalability [4]. Backend services must handle concurrent users, dynamic data, and real-time
communication [5]. However, many backend architectures still experience performance bottlenecks,
particularly delayed application programming interface (API) response times under high concurrency levels.
Such challenges underscore the need for optimized cloud-based solutions to reduce latency and improve data
processing efficiency [6]. Figure 1 illustrates the interaction between frontend applications, APIs, backend
services, and databases, showing how data flows across system components.

_— O
Services | —— [e)
_— O
APl D |
i
Databases, Wehsite_and_ Mobile
Applications
>
=] R
~ __—]
Backend Systems Frontend Systems

Figure 1. Communication flow between frontend and backend systems

Cloud computing has emerged as a foundational technology to address these challenges, generally
defined as the on-demand consumption of computing power, storage, and applications over the internet. The
model follows a pay-as-you-go pricing approach, with resources delivered through globally distributed cloud
service providers [7]. Cloud platforms enable rapid deployment, operational efficiency, scalability, and
global availability [8]. Such capabilities have encouraged many organizations to migrate traditional
information technology (IT) infrastructure to cloud-based systems, enabling services such as internet of
things (loT) solutions, web applications, and big data analytics [9]. The combination of lower operational
cost, flexible architecture, and simplified integration procedures has driven widespread adoption of cloud
computing across industries, aligning with Industry 4.0 digital transformation goals [10]. Offloading
resource-intensive operations to the cloud allows mobile systems to maintain high client-side performance
while ensuring backend scalability [11]. Cloud-based services including distributed storage, real-time
analytics, and managed databases enable mobile applications to scale efficiently without placing excessive
demand on device resources [12]. Cloud-based APIs serve as key connectors between applications and cloud
services, facilitating seamless integration and enhancing system performance.

Recent research has increasingly explored the integration of cloud computing into mobile
application development across a range of domains and architectures. Studies in domain-specific contexts
such as sign-language translation, image-based barter platforms, ecotourism services, and tourism education
commonly employ representational state transfer (REST) APIs on managed cloud platforms such as Google
Cloud to offload computation and streamline client-side interaction [13]-[16]. These studies confirm the
feasibility in production-like scenarios and provide insights into full-stack workflows; however, most remain
focused on functionality without quantitative evaluations of latency, time to first byte (TTFB), or API
modularity under dynamic traffic conditions. Beyond isolated implementations, architectural investigations
have proposed containerized microservices for release agility and serverless designs for elastic scaling in
commercial backends [17]-[19]. While orchestration strategies and deployment flexibility are emphasized,
comparative assessments across deployment models remain limited, particularly in evaluating API
responsiveness under concurrent access. Moreover, reusable design patterns at the endpoint level are often
described informally or qualitatively, lacking codification for replication. Cloud-based mobile systems
supporting education and mental health demonstrate development and operations (DevOps) pipelines, Al-
driven personalization, and multimodal interfaces such as natural language processing for emotional support
or interactive data visualization [20]-[22]. These implementations prioritize usability and user engagement;
however, performance under fluctuating network conditions or heavy concurrent usage remains understudied,
leaving essential questions around scalability, responsiveness, and maintainability unaddressed. Despite these
developments, few studies have offered an end-to-end evaluation of cloud-native API performance.

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

36 a ISSN: 1693-6930

As illustrated in Figure 2, cloud platforms offer three service models software as a service (SaaS),
platform as a service (PaaS), and infrastructure as a service (laaS) allowing developers to choose the
appropriate level of abstraction based on system requirements [14], [23].

Cloud Service Models

Package Software
OS & Application stack
Server Storage Network

OS & Application stack
Server Storage Network | PaaS

Server Storage Network laaS

Figure 2. Cloud computing service model [24]

Application
Developers

Infrastructure &
Network
Architects

The infrastructure for the developed application is built on Google Cloud platform (GCP), which
provides scalable services through a serverless architecture, enabling the application to automatically adjust
resources under dynamic workloads. The selection of GCP is supported by its recognition as a leader in
Gartner’s Magic Quadrant for Strategic Cloud Platform Services [25], with strengths in Al integration,
workload optimization, and reliability. Choosing GCP ensures that the experimental results are representative
of a production-ready, enterprise-grade environment, aligning to evaluate APl performance and scalability
under realistic deployment conditions.

Building on previous works, a prior study introduced a mobile health application, Obesifix, that
leverages cloud computing to support real-time dietary monitoring and personalized nutrition
recommendations. The application was designed to optimize resource usage in mobile environments by
distributing computational workloads to the cloud, enabling users to track nutritional intake and make
informed dietary decisions based on real-time data. The study demonstrated that leveraging flexible cloud
systems can improve mobile application performance under dynamic user demands [26]. The main
contributions of our study include a comprehensive evaluation of API design within cloud-native
frameworks, offering actionable insights for developers aiming to enhance efficiency and responsiveness in
mobile applications. A modular API architecture is proposed, leveraging serverless deployment using Google
Cloud Run and managed services such as Cloud structured query language (SQL) and Cloud Storage. System
performance was evaluated by simulating user traffic with Apache JMeter, focusing on key performance
indicators including average response time, minimum and maximum values, standard deviation, and
throughput. The findings provide valuable insights into optimizing cloud resource allocation and offer
practical guidelines for designing responsive, resource-efficient mobile applications.

The structure of this paper is as follows: section 2 outlines the methodology used for designing and
implementing the Obesifix application. Section 3 discusses the experimental results and provides a
comparative analysis. Finally, section 4 summarizes the main findings and highlights potential directions for
future work.

2. METHOD

The method section outlines the end-to-end development and deployment process, including
workflow design, authentication, and container-based deployment on Google Cloud, as well as API design
and integration; the objective is to enable reproducible evaluation of the proposed cloud-native applications.

2.1. System workflow diagram

Figure 3 illustrates the system workflow for cloud-based API integration within a full-stack mobile
application. The workflow is divided into three main segments: Part A (initial backend preparation), Part B
(core cloud integration), and Part C (final application delivery).

In Part A, development starts by building server-side logic, including third-party service integration
such as external APIs and authentication systems. Backend functionalities are encapsulated within an API-
based architecture that establishes the communication pathway between server components and client
interfaces. The resulting structure supports modular logic implementation, simplifying maintenance and

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 37

reuse. Part B, marked with a blue background, emphasizes the central implementation of the cloud
environment. The process begins with establishing database connectivity through Google Cloud SQL, which
manages data storage and retrieval using object-relational mapping (ORM) or SQL-based queries.
Subsequently, routing logic and middleware are configured using the Express.js framework to handle client
requests, authorization, and data validation. The configured backend is then deployed via Google Cloud Run,
a serverless platform that offers autoscaling and load balancing based on traffic intensity. The mobile
application, developed in Kotlin, communicates with the backend through securely exposed API endpoints,
enabling interactions for features such as login, registration, recommendation, and prediction. Part C
represents the final integration stage, where both frontend and backend components converge into a fully
operational mobile application. The resulting system can deliver real-time services efficiently, backed by a
scalable cloud-based architecture that maintains stable performance across varying user activity levels.

1 System Workflow for Cloud-Based API Integ| inaF Mobile Apr]
Server-side Logic Database Setup API Routing & Ci:’i“i’:;; Mobile App API Fully Functional
& Third-party H and ORM/SQL Middleware Aum?sca”n b Calls and Data ! App, Backend
Integrations E Queries Setup ot B'-Iancl-i;n.g Handling i arlmt anlgend

E 1 ntegration

l v

APl-Based Database Express.js API Deployment Frontend Mobile .

Backend Connectivity with Framework on Google Cloud App API - Fullstack Mobile
Cloud SQL Configuration Run Integration 1 App

Figure 3. System workflow diagram

To further elaborate on the workflow in Part B, Figure 4 illustrates the detailed authentication and
deployment process applied within the system. The client initiates a login request directed to the backend
API hosted on Google Cloud Run. Upon receiving the request, the API generates a JSON Web Token (JWT)
to perform authentication and proceeds to verify user credentials by querying Cloud SQL. A valid token
enables the client to access protected endpoints for continued interaction.

Regarding deployment, the backend and machine learning components are packaged into
containerized services and published through Docker images stored in the Google Cloud Artifact Registry.
Such a configuration supports automated scaling and uniform deployment across environments. The diagram
shows how client devices, authentication systems, databases, and deployment processes work together,
illustrating a setup that can manage multiple users simultaneously while keeping cloud operations secure and
organized.

al

y

Sending authentication

Cloud SQL request for token

Database User

Veritying token and
quarying Cloud SQL

Client

Sending request lo
the backend AP

Generating
\WT JWT taken for
authentication 1] 4
F——
JSON WEB TOKENS. Cloud Run Docker Image -
Leg in Authentication Backend API Artifact Registry
Repositories
Deploving conlainer
images
docker
Back-end
Imags

Cloud Run
Maching Learning Model

Figure 4. Deployment architecture on Google Cloud

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

38 a ISSN: 1693-6930

2.2. Cloud-based API design and integration

Cloud-based APIs are the foundational layer that facilitates seamless interaction between mobile
applications and cloud infrastructure, ensuring consistent and efficient data flow. Figure 5 illustrates the
backend API architecture developed using the Express.js framework. Express.js’s modular and lightweight
structure enables effective implementation of routing logic, middleware processing, and scalable service
delivery.

v [Private API > Learn
. ¢ et b
Docker Flask + Require API Key in Auth Header Recomendation Scikit Leam
Container Machine » Middleware Foods
- Learning Service ~
Obeswg:;f_cluud- ﬂ —» POST [frecomendation] request to retrieve faod R — b
g recommendations Predict Images
L
Docker —» POST [/prediction] request to predict food Tensorflow
Container
I'I\I,d@
Backend
Service
Public API
Bpress s ————————————————|, pOsT luser/legin] request for user login Get Database Data
Create API — POST [Juser/register] request to register a new user (Cloud SQL) Cloud SUL
Endpoint (MySaL)
[Private AP1
—>
+ Require JWT Token in Auth Header Get Image Assets %
Endpoint Clo

» Middleware
— GET [fuser/{userld)] request to retrieve specific foed
chosen by a user
— PUT [juser{userid}] request to update user
information

» POST [/prediction] request to predict food Cloud Run
—+ GET [frecomendation{userld)] request to retrieve food

ML Services

Figure 5. Cloud-based API design

APl deployment is done on Google Cloud Run, a managed serverless platform capable of
autoscaling based on incoming request volumes. Manual server provisioning becomes unnecessary, and
system responsiveness is preserved even under fluctuating user demand. Communication between the mobile
client and cloud services is established through securely defined endpoints. Cloud SQL (MySQL) manages
structured user data, supporting real-time access and updates. Cloud Storage hosts static assets, including
image resources used for data-driven features. Backend logic and machine learning modules are packaged
into Docker containers and managed via Google Cloud Artifact Registry to support consistent and portable
deployments. Authentication procedures rely on JWT, which restrict access to protected APl endpoints.
Public APIs handle user-facing processes such as login and account registration, while private APIs are
designated for personalized tasks, including food predictions and dietary recommendations. Machine learning
capabilities are embedded in Flask-based containers, utilizing models built with TensorFlow and Scikit-learn
to process analytical requests submitted by users.

The overall architecture enables a modular, scalable, and secure full-stack system. Developers are
positioned to focus on enhancing application features, while cloud-managed infrastructure ensures reliability,
load adaptability, and operational efficiency across environments. In addition to the API infrastructure, the
Obesifix application integrates machine learning components to support automated food classification and
personalized recommendations, as described in the following subsection.

2.3. Dataset and model deployment

A specially curated dataset, comprising proprietary food imagery and user preference data, was
employed in this study to support the development of the Obesifix application. The image dataset comprises
19 food categories (e.g., apple, banana, chicken curry, donuts, rice, spaghetti, and sushi), which are used for
automated food classification. Additionally, a user profile dataset was created, containing food preferences
(19 types) and health conditions (underweight, normal, overweight, and obese), enabling personalized dietary
recommendations.

Two machine learning models were developed for this study. The first is an image classification
model, built using transfer learning with InceptionVV3 in TensorFlow and Keras, and trained on the curated
food image dataset consisting of 19 categories. The second is a recommendation model, implemented using
the k-nearest neighbors (KNN) algorithm to generate personalized meal recommendations based on each
user’s recorded food preferences and health conditions. Together, these models enable the Obesifix
application to automatically classify food images and suggest meals aligned with users’ dietary needs.

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 39

The classification model obtained 96.40% training accuracy and 88.20% validation accuracy, with
training/validation loss curves indicating stable convergence and minimal overfitting. Figure 6 shows the
training and validation accuracy curves, demonstrating that the model achieves consistently high accuracy
across epochs. Figure 7 shows the training and validation loss curves, where the loss decreases steadily and
remains stable, confirming good generalization capability.

Training and Validation Accuracy . ssn Training and Validation Loss
095(— \ildeton ' et
301
0.80
sl 85.20% 25F
Zo80f 2.0
E 8
goisr ~1s
Q.70
1.0
0651 0.800
05
0.60 0.110
Q 2 4 [a8 10 1z 14 0ot Q 2 4 & 8 10 12 14
Epoch Epoch
Figure 6. Training and validation accuracy Figure 7. Training and validation loss

Both models were containerized and deployed as RESTful APIs using Google Cloud Run. This
serverless approach allows automatic scaling based on incoming request traffic, ensuring low-latency
predictions and cost efficiency. The classification API processes user-uploaded images and returns predicted
food labels, along with their nutritional composition, whereas the recommendation API filters suitable meal
options based on the user’s health profile and preferences. These containerized services were subsequently
incorporated into the performance testing and comparison experiments to evaluate their responsiveness under
server-based (Google Compute Engine (GCE)) and serverless (Google Cloud Run (GCR)) environments.

3. RESULTS AND DISCUSSION

The section reports the experimental setup and findings, outlining cloud services and configurations
for backend deployment, presenting endpoint-level performance under stepped loads, and then providing
TTFB analysis with a brief overview of user-interface considerations.

3.1. Google Cloud services overview

To support the deployment and operation of the Obesifix mobile application, a suite of Google
Cloud services was utilized to build a robust, scalable, and cloud-native backend infrastructure. The selected
services were specifically chosen to meet the demands of Obesifix, which requires dynamic scalability,
secure data handling, and fast response times to ensure a seamless user experience. Cloud Run was used for
backend API deployment due to its serverless model and autoscaling capability, which is crucial under
variable user traffic. Cloud SQL manages structured nutritional data and user records, while cloud storage
handles image assets for food recognition. Artifact registry stores and manages Docker container images for
both backend and machine learning services. Configuration details for each service instance are presented in
Table 1.

Table 1. Google Cloud platform services configuration

Services Resources Details
Cloud Run (serverless) Memory 8 GB
vCPU 4
Placement location Southeast-Asial — Jakarta
Cloud SQL vCPU 2
Memory 8 GB
Storage type HDD 10 GB
Location Southeast-Asial — Jakarta
Cloud storage Location Southeast-Asial — Jakarta
Storage class Standard
Avtifact registry Format Docker

Placement location Southeast-Asial — Jakarta

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

40 a ISSN: 1693-6930

3.2. Performance testing

Table 2 outlines the test scenario configuration used in the evaluation process. Each endpoint was
tested under three simulated traffic loads: 60, 120, and 180 virtual users. The chosen load levels represent
realistic usage patterns ranging from moderate to heavy traffic without exceeding system limitations.

In this performance evaluation, the Obesifix application was tested on two deployment models: a
server-based approach using GCE and a serverless approach using GCR. The comparison was carried out
across four critical API endpoints register, login, recommendation, and prediction under three different load
levels (60, 120, and 180 virtual users). The results for each endpoint are presented in Tables 3 through 10.

In this study, performance testing focused on four key APl endpoints: register, login,
recommendation, and prediction. The selected endpoints represent the most frequently accessed and
computation-intensive operations within the Obesifix application. Registration and login serve as essential
components for user authentication, while the recommendation and prediction endpoints are responsible for
delivering personalized dietary services powered by machine learning models. Evaluating the performance of
each targeted endpoint provides valuable insights into application behavior under high-concurrency
conditions, particularly for user management and personalized feature execution both crucial for ensuring
system responsiveness and user satisfaction.

Table 2. Test scenario for performance testing

No API Test scenario
' Parameter Endpoint Number of threads (users)

1 POST [register 60, 120, 180

2 POST /login 60, 120, 180

3 POST Iprediction 60, 120, 180

4 POST /recommendation 60, 120, 180

Table 3. Result for concurrent register — Compute Engine
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 720 640 890 55 0.00% 25
120 845 750 1040 70 0.00% 47
180 880 770 1100 80 0.00% 68

The performance testing of the Obesifix application was conducted using Apache JMeter to evaluate
its performance under varying traffic levels. Apache JMeter is a widely recognized performance testing tool
known for its capability to simulate different load conditions and measure response times. According to
research by [27], [28], Apache JMeter has proven effective for testing mobile applications under heavy
usage. The tool is particularly useful for assessing how applications perform under increased demand and
identifying potential bottlenecks in the system. These studies have validated the tool’s efficacy for
performance testing software applications in high-traffic scenarios, making it an ideal choice for evaluating
the Obesifix application.

The test scenarios included 60, 120, and 180 virtual users to simulate different usage intensities and
assess the system’s scalability and response time. These tests aimed to replicate real-world conditions and
observe how the application performs under varying load levels. The virtual users were configured to
simulate typical usage patterns, such as logging in, registering, and engaging with the app’s core features,
like receiving recommendations and predictions. Figure 8 visually represents how the tests were conducted
and how the system’s performance was measured.

Virtual User 1

o
e

Quality Assurance Obesifix Application Server
Virtual User 3

—_— Apache JMeter Virtual User 2 " Get Request HTTP

Figure 8. lllustration of performance testing

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 41

Throughput represents the total number of requests successfully processed by the system within a
specified observation window and serves as an indicator of the system’s processing capacity, as defined in
(1). A higher throughput value indicates the system’s ability to accommodate concurrent user requests
efficiently. Average response time refers to the mean latency experienced per request and reflects the
system’s responsiveness, as formulated in (2). A lower response time value indicates faster execution and
improved user experience [29]. Additionally, the success rate denotes the proportion of requests completed
without errors and serves as a key measure of the system’s reliability and stability under load.

__ TotalRequest
Throughput " TotalTime (1)
AngespTime — TotalTimexXxNumOfThread % 1000 (2)

TotalRequest

Table 3 presents the performance results for the registration endpoint running on Compute Engine.
The response time increases with user load, from 720 ms at 60 users to 880 ms at 180 users, showing the
effect of rising concurrency. Throughput also improves with higher load, starting at 25 rps and reaching
68 rps, indicating better resource utilization under stress. The error rate remains stable at 0%, demonstrating
that registration requests are processed reliably under different concurrency levels.

Table 4 reports the performance of the login endpoint on Compute Engine, where authentication is
processed for multiple users. The response time starts at 660 ms for 60 users and increases to 832 ms at 180
users, reflecting higher latency under load. Throughput improves consistently, from 27 rps to 71 rps,
indicating scalability in handling authentication traffic. The error rate consistently remains 0%, indicating
reliable performance during login operations.

Table 4. Result for concurrent login — Compute Engine
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 660 580 810 50 0.00% 27
120 810 700 980 65 0.00% 50
180 832 720 1020 70 0.00% 71

Table 5 summarizes the results for the recommendation endpoint on Compute Engine, which
requires generating personalized dietary suggestions. The response time grows from 449 ms at 60 users to
807 ms at 180 users, showing that recommendation tasks are more computationally demanding. Throughput
increases steadily from 26 rps to 69 rps, meaning that the system adapts to growing concurrency. The error
rate remains at 0%, confirming that Compute Engine processes all recommendation requests without failures.

Table 5. Result for concurrent recommendation — Compute Engine
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 449 390 560 35 0.00% 26
120 690 600 850 55 0.00% 48
180 807 700 980 60 0.00% 69

Table 6 provides the evaluation of the prediction endpoint on Compute Engine, which involves
executing machine learning inference. The response time is measured at 501 ms for 60 users and rises to 890
ms for 180 users, indicating a significant increase as concurrency scales. Throughput values also increase,
ranging from 28 rps at 60 users to 73 rps at 180 users, reflecting that the system scales effectively. The error
rate remains at 0%, showing that prediction tasks are executed correctly under all test scenarios.

Table 6. Result for concurrent prediction — Compute Engine
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 501 440 620 40 0.00% 28
120 731 640 910 60 0.00% 52
180 890 770 1090 75 0.00% 73

Table 7 presents the registration endpoint results using Cloud Run, with response times lower than
those recorded on Compute Engine. The response time ranges from 350 ms at 60 users to 495 ms at 180
users, highlighting faster processing under serverless scaling. Throughput improves significantly from 31 rps

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

42 a ISSN: 1693-6930

to 80 rps, which reflects the elasticity of Cloud Run in managing concurrent workloads. The error rate stays
at 0%, confirming the reliability of the serverless deployment for registration requests.

Table 7. Result for concurrent register — Cloud Run
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 350 310 420 28 0.00% 31
120 415 370 500 34 0.00% 57
180 495 440 580 40 0.00% 80

Table 8 shows the login endpoint performance under Cloud Run deployment. The response times
are 340 ms at 60 users and 431 ms at 180 users, which are lower than the response times reported for
Compute Engine. Throughput grows from 32 rps at 60 users to 82 rps at 180 users, indicating that Cloud Run
scales efficiently under load. The error rate consistently remains 0%, indicating that authentication requests
are handled successfully under all test conditions.

Table 8. Result for concurrent login — Cloud Run
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 340 300 400 26 0.00% 32
120 410 360 480 32 0.00% 59
180 431 380 510 36 0.00% 82

Table 9 summarizes the outcome for the recommendation endpoint deployed on Cloud Run, which
generates personalized dietary results. The response time starts at 315 ms for 60 users and increases
moderately to 490 ms for 180 users, remaining faster than Compute Engine. Throughput improves
considerably from 33 rps at 60 users to 83 rps at 180 users, showing strong scalability. The error rate remains
at 0%, confirming that Cloud Run reliably manages concurrent recommendation requests without failures.

Table 9. Result for concurrent recommendation — Cloud Run
Users Response time (ms) Min (ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 315 280 370 24 0.00% 33
120 370 330 440 28 0.00% 60
180 490 440 560 35 0.00% 83

Table 10 presents the performance results for the prediction endpoint running on Cloud Run. The
response time remains relatively low, starting at 382 ms for 60 users and gradually increasing to 500 ms at
180 users, which is still significantly faster than the Compute Engine counterpart. The throughput improves
consistently with load, from 33 rps at 60 users to 84 rps at 180 users, reflecting Cloud Run’s ability to scale
automatically with demand. The standard deviation values remain small, indicating stable performance across
requests, and the error rate remains at 0%, demonstrating that predictions are handled reliably without
failures at all concurrency levels.

Table 10. Result for concurrent prediction — Cloud Run
Users Response time (ms) Min(ms) Max (ms) Std. Dev. (ms) Error rate (%) Throughput (rps)

60 382 340 440 30 0.00% 33
120 402 360 470 33 0.00% 61
180 500 450 580 38 0.00% 84

3.3. Performance results and comparison

In this performance evaluation, the Obesifix application was deployed on two different back-end
architectures: a server-based deployment using GCE and a serverless deployment using GCR. The objective
was to compare the two approaches in terms of responsiveness, scalability, and resource efficiency under
three different load levels (60, 120, and 180 virtual users). Four critical APl endpoints register, login,

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 43

recommendation, and prediction were selected because they represent the most frequently accessed and
computation-intensive operations in the application.

The results reveal that Cloud Run consistently outperforms Compute Engine in most performance
metrics. Across all endpoints and load levels, GCR demonstrated lower average response time, higher
throughput, more stable resource utilization, and similar (zero) error rates. These findings indicate that the
serverless architecture provides better elasticity, making it more suitable for workloads with fluctuating
traffic, such as Obesifix.

Figure 9 compares the average response time for each endpoint under 60, 120, and 180 concurrent
users. The results show that GCR achieved 20-30% lower response times than GCE across all endpoints,
indicating faster request processing. The improvement was more noticeable under higher loads, where GCE
exhibited gradual latency growth, whereas GCR maintained more stable performance thanks to automatic
scaling.

Figure 10 presents the throughput (requests per second) achieved by both deployment models. Cloud
Run consistently delivered 15-20% higher throughput compared to Compute Engine, demonstrating its
ability to handle more requests in the same time frame. The performance gap widened at 180 users,
suggesting that GCR scales more efficiently under peak load. At 180 users, Cloud Run reduced average
response time by up to 30% and increased throughput by approximately 20% compared to Compute Engine,
demonstrating better scalability under peak load.

Figure 11 shows that both GCE and GCR maintained a 0% error rate under all test conditions. This
result confirms that both deployment approaches were able to handle concurrent traffic without failed
requests, which is critical for ensuring reliability in a production health application.

[

SN 0D
OOOO000000)
[olelelelslelelelslele)

Response Time (ms)

Register

Login
Recommendation Se—

Prediction

Register

Login

Recommendation

Prediction

Register

Login

Recommendation

Prediction

b0 users 120 users 180 users

API Endpoints and Concurrent User Load

B GCF (Compute Engine) GCR (Cloud Run)

Figure 9. Response time comparison between GCE and GCR

w80
270
— 60
5 50
= 40
20
s NNl
0
= ; c c o ; c o c B o c c
= ‘& 2 2 =) 2 2 & =) 2 2
—_— [=] -— - - o - - - [=] - -
b _ o 2) —_ o 9 T} — i} =
g T g8 2 3 ¢ T %
T 2 o 2 o =4
£ e £ e £ e
£ £ £
3 8 38
U 5] :1}
o o o
60 users 120 users 180 users

APl Endpoints and Concurrent User Load

m GCE (Compute Engine) GCR (Cloud Run)

Figure 10. Throughput comparison between GCE and GCR

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

44 a ISSN: 1693-6930

Figure 12 illustrates memory consumption across all endpoints and load levels. GCE consumed 10—
15% more memory than GCR on average, indicating less efficient resource usage in the server-based
deployment. In contrast, GCR utilized memory more dynamically, which is advantageous for cost
optimization and sustainable operations.

Figure 13 compares CPU utilization. GCE consistently reported higher CPU usage, especially at 120
and 180 users, which could lead to resource saturation. GCR maintained lower and more balanced CPU
utilization, confirming that its auto-scaling capability effectively distributes the workload and prevents CPU
bottlenecks.

£ 8000%
o 70.00%
= 60.00%
© 50.00%
< 40.00%
© 30.00%
= 20.00%
= 10.00%
0.00%
T § § 5§ & % § 5 & % &8 8
-1 = S B 2 =] w2 =]
@ b=} 5 @ = h=] o = T
= s g = s &= g £
£ o £ = £ o=
£ £ £
8 8 8
@G o @
e e -3
60users 120 users 180 users
API Endpoints and Concurrent User Load
B GCE (Compute Enging) GCR (Cloud Run)

Figure 11. Error rate comparison between GCE and GCR

8
m 7
Y6
=5
214
w3
83 I I
5 1
> 0
5 c c c = 5 c c 5 c c c
Q z) =] =} = @ =} =] z) =} =}
= = & = =] = g = = = & = =]
o =) —] = T —_ [} =) =) — o =
1] ° b= o = h=] [o b =1
= = g g2 = s & = g 2
£ = £ = £ =
£ £ £
8 8 8
@ @ @
= -4 o«
60 users 120 users 180 users

AP Endpoints and Concurrent User Load

B GCE (Compute Engine) GCR (Cloud Run)

Figure 12. Memory utilization comparison between GCE and GCR

Login M—
I
——

Login
Login

vCP
[
QQQ
KRR
Regi ster —_—

Recommendation
Prediction
Register
Recommendation
Prediction

Regi ster
Recommendation
Prediction

60users 120 users 180 users
API Endpoints and Concurrent User Load

m GCE (Compute Engine) GCR (Cloud Run)

Figure 13. vCPU Comparison between GCE and GCR

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 45

Overall, the comparison demonstrates that the serverless architecture (GCR) is better suited for the
Obesifix application, particularly under variable or high-load scenarios. Its lower latency, higher throughput,
and more efficient resource usage make it a cost-effective and scalable solution, ensuring a smoother user
experience and reduced operational overhead compared to a traditional server-based deployment. These
findings validate that a serverless architecture is a practical choice for mobile health applications requiring
real-time responsiveness and cost-effective scalability, providing a strong foundation for future iterations of
Obesifix.

3.4. Time to first byte

TTFB was evaluated as an indicator of server responsiveness, defined as the elapsed time between a
client’s request and the receipt of the first byte of the response. TTFB refers to the time it takes from the
moment a client sends a request to the server until the client receives the first byte of data. This metric is
crucial for understanding the server’s responsiveness, especially in dynamic applications like Obesifix, where
real-time data retrieval is essential.

According to Google PageSpeed Insights, a good TTFB score is typically below 800 ms, which
indicates that the server is responding quickly. Scores between 800 ms and 1800 ms need improvement,
while anything above 1800 ms is generally considered poor, potentially leading to slower user experiences.
TTFB was measured for all key endpoints register, login, recommendation, and prediction under the same
traffic levels used in previous tests (60, 120, and 180 virtual users). The results showed that the Obesifix
application maintains a good TTFB (< 800 ms) across all scenarios. Furthermore, the serverless deployment
(GCR) consistently achieved slightly lower TTFB values compared to the server-based deployment (GCE),
particularly under higher loads (120 and 180 users). This finding suggests that Cloud Run’s automatic scaling
helps maintain low initial latency even during peak traffic, which is critical for ensuring a smooth user
experience in mobile health applications. These TTFB results are consistent with the lower response times
observed in Figure 14, confirming that GCR consistently delivers faster initial server responses even as
traffic increases.

o Time to
First Byte
TTFB

- e

800 ms 1800 ms

Figure 14. TTFB [30]

3.5. User interface design of Obesifix app

The design of the Obesifix application interface was developed using custom resources, including
logos and user-friendly design elements. The design focuses on simplicity to improve accessibility and ease
of use for users. With a clean and intuitive layout, the app ensures that users can easily interact with its
features, such as personalized food recommendations and caloric tracking. The user-friendly design
minimizes complexity, making it easier for both new and experienced users to navigate the application.
Additionally, the interface is responsive and adaptable, providing smooth performance across various
devices. This approach ultimately enhances the user experience, making it easier for individuals to manage
their nutrition and maintain a healthy lifestyle, as shown in Figure 15.

ba

J J \ /

13}

Figure 15. User interface design of Obesifix

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

46 a ISSN: 1693-6930

4. CONCLUSION

Cloud computing-based APIs offer substantial advantages in designing and implementing modern
software applications. Integrating cloud services enables improved scalability, flexibility, and performance
while eliminating the complexities associated with traditional infrastructure management. The Obesifix
application, as described in this study, demonstrates how cloud-based solutions can enhance backend
operations and maintain seamless functionality across varying user loads.

Implementing PaaS tools such as Google Cloud Run allows applications to scale dynamically in
response to demand, ensuring high availability and minimizing operational overhead. Performance testing
results emphasize the importance of optimizing cloud resources for responsiveness and efficiency under
varying traffic intensities. Cloud-based APIs facilitate smoother integration with external systems, better
resource allocation, and faster development cycles. Building on these findings, future research should explore
the evaluation of asynchronous and synchronous programming paradigms within serverless environments to
improve request-handling mechanisms in mobile backend systems. Additional experiments should
investigate autoscaling thresholds, cold-start latency mitigation techniques, and cost-performance trade-offs
under real-world workloads. Furthermore, future studies may compare multi-cloud and hybrid-cloud
deployments to assess portability and fault tolerance, and extend this evaluation to other mobile health
applications beyond Obesifix to validate the generalizability of the proposed approach.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Politeknik Elektronika Negeri Surabaya (PENS) for the
supportive academic environment, laboratory facilities, and administrative assistance that enabled the
completion of this research. The authors also thank the faculty members and colleagues at PENS for their
guidance, technical discussions, and thoughtful suggestions that substantially improved the quality of this
work.

FUNDING INFORMATION
The Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Maulana Bintang v v v v v v v v v v v v
Irfansyah
Bilal Waheed v v v v v v
Idris Winarno v v v v v v v
Akhmad Alimudin v v v v v v v v v
C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
So : Software D : Data Curation P : Project administration
Va : Validation O : writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The publication of this paper is not associated with any potential conflicts of interest, as stated by
the authors. The manuscript did not contain any instances of plagiarism, as confirmed by the authors.

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study. All participants were
provided detailed information about the study’s purpose, procedures, and potential risks. Written consent was
obtained from each participant before their inclusion in the study, ensuring full compliance with ethical
standards and privacy protection.

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

TELKOMNIKA Telecommun Comput EI Control a 47

DATA AVAILABILITY

The datasets and model artifacts used in this study are proprietary and cannot be shared publicly due

to privacy restrictions. However, they can be made available upon reasonable request by contacting the
corresponding author. The source code used for the study is available upon request for privacy and
confidentiality reasons.

REFERENCES

[1]
[2]

[3]
[4]
[5]

(6]
[71

(8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

A. Bin Rashid and M. A. K. Kausik, “Al revolutionizing industries worldwide: a comprehensive overview of its diverse
applications,” Hybrid Advances, vol. 7, p. 100277, Dec. 2024, doi: 10.1016/j.hybadv.2024.100277.

T. Wang, A. Seiger, A. Markowetz, I. Andone, K. Blaszkiewicz, and T. Penzel, “Smartphone usage patterns and sleep behavior in
demographic groups: retrospective observational study,” Journal of Medical Internet Research, vol. 27, p. e60423, Jul. 2025, doi:
10.2196/60423.

J. Howarth, “How many people own smartphones? (2025-2029),” Exploding Topics. Accessed: May 20, 2025. [Online].
Auvailable: https//explodingtopics.com/blog/smartphone-stats

P. Ashokan and A. Golli, “Scalable backend solutions for real-time machine learning applications in web and mobile platforms,”
Sarcouncil Journal of Applied Sciences, vol. 4, no. 9, pp. 8-14, 2024.

R. Shah, S. Jagtap, and V. Jain, “Architecting analytics-driven mobile ecosystems: scalable backend frameworks for intelligent
data flow and real-time user insights,” International Journal of Artificial Intelligence, Data Science, and Machine Learning, vol.
6, no. 2, pp. 83-91, 2025, doi: 10.63282/3050-9262.1JAIDSML-V612P109.

P. Okanda, A. Chhatbar, and O. Njeru, “DbAPI: a backend-as-a-service platform for rapid deployment of cloud services,” in 2024
IST-Africa Conference (IST-Africa), IEEE, May 2024, pp. 1-12, doi: 10.23919/IST-Africa63983.2024.10569490.

A. P. Rajan, “A review on serverless architectures - function as a service (FaaS) in cloud computing,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 18, no. 1, pp. 530-537, Feb. 2020, doi:
10.12928/telkomnika.v18i1.12169.

E. Dritsas and M. Trigka, “A survey on the applications of cloud computing in the industrial internet of things,” Big Data and
Cognitive Computing, vol. 9, no. 2, p. 44, 2025, doi: 10.3390/bdcc9020044.

A. Alimudin and R. W. Sudibyo, “Rescheduling strategy for container orchestration system to improve application availability,”
Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 8, no. 2, pp. 137-146, Jun. 2023, doi:
10.25139/inform.v8i2.6220.

M. T. Amron, R. Ibrahim, and N. A. A. Bakar, “Cloud computing acceptance among public sector employees,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 19, no. 1, pp. 124-133, Feb. 2021, doi:
10.12928/telkomnika.v19i1.17883.

D. Darwish, Emerging trends in cloud computing analytics, scalability, and service models. in Advances in Computer and
Electrical Engineering. IGI Global, 2024, doi: 10.4018/979-8-3693-0900-1.

Janet Julia Ang’udi, “Security challenges in cloud computing: a comprehensive analysis,” World Journal of Advanced
Engineering Technology and Sciences, vol. 10, no. 2, pp. 155-181, Dec. 2023, doi: 10.30574/wjaets.2023.10.2.0304.

H. I. H. Tandri, H. H. Nuha, and R. G. Utomo, “Cloud computing-based API design and implementation for hening mobile
application,” in 2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), IEEE, Nov.
2023, pp. 341-346, doi: 10.1109/COMNETSAT59769.2023.10420654.

H. J. H. Sulistiyo, H. H. Nuha, and R. G. Utomo, “Design and implementation of cloud computing-based API for mobile
application Tookar,” in 2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA),
IEEE, Dec. 2023, pp. 490-495, doi: 10.1109/ICICyTA60173.2023.10428947.

M. Firdaus, N. Alamsyah, and A. H. Jatmika, “Development of a REST API for the Rinjani visitor application using extreme
programming,” in 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), IEEE, Jul. 2024, pp. 518—
523, doi: 10.1109/ISITIA63062.2024.10667823.

M. A. H. Akbar, D. Fahrizal, J. Kustija, and I. Surya, “Digital technology integration in TVET for tourism: a case study for an
Android-based application development and implementation,” in 2024 9th International STEM Education Conference (iSTEM-
Ed), IEEE, Jul. 2024, pp. 1-6, doi: 10.1109/iSTEM-Ed62750.2024.10663108.

S. Athreya, S. Kurian, A. Dange, and S. Bhatsangave, “Implementation of serverless e-commerce mobile application,” in 2022
2nd International Conference on Intelligent Technologies (CONIT), |IEEE, Jun. 2022, pp. 1-5 doi:
10.1109/CONIT55038.2022.9847829.

V. Moysiadis, K. Tsakos, P. Sarigiannidis, E. G. M. Petrakis, A. D. Boursianis, and S. K. Goudos, “A cloud computing web-based
application for smart farming based on microservices architecture,” in 2022 11th International Conference on Modern Circuits
and Systems Technologies (MOCAST), IEEE, Jun. 2022, pp. 1-5, doi: 10.1109/MOCAST54814.2022.9837727.

K. Azkiya, M. Irsan, and M. F. Fathoni, “Implementation of App Engine and Cloud Storage as REST API on smart farm
application,” Sinkron, vol. 8, no. 2, pp. 902-910, Mar. 2024, doi: 10.33395/sinkron.v8i2.13386.

J. Jordanov, D. Simeonidis, and P. Petrov, “Containerized microservices for mobile applications deployed on cloud systems,”
International Journal of Interactive Mobile Technologies (iJIM), vol. 18, no. 10, pp. 4858, May 2024, doi:
10.3991/ijim.v18i10.45929.

M. Luchkevych, V. Luchkevych, and I. Shakleina, “Mobile DevOps in education: practical training through application
development,” International Journal of Interactive Mobile Technologies (iJIM), vol. 19, no. 15, pp. 129-141, Aug. 2025, doi:
10.3991/ijim.v19i15.55531.

A. Wali, H. Almagrabi, S. El-Feky, and M. Jokhdar, “Dawwen: an Arabic mental health mobile app based on natural language
processing,” International Journal of Interactive Mobile Technologies (iJIM), vol. 19, no. 04, pp. 108-131, Feb. 2025, doi:
10.3991/ijim.v19i04.51999.

Y. Jo, Y. Jang, and J. Paik, “Design and implementation of a service platform that recommends the optimal shortest distance as a
patrol route,” Journal of Korean Society for Internet Information, vol. 23, no. 1, pp. 1-9, 2022.

J. Nupponen and D. Taibi, “Serverless: what it is, what to do and what not to do,” in 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C), IEEE, Mar. 2020, pp. 49-50, doi: 10.1109/ICSA-C50368.2020.00016.

B. B. Rodrigues, Google Cloud Digital Leader Certification Guide: A Comprehensive Study Guide to Google Cloud Concepts
and Technologies. Birmingham, UK: Packt Publishing, 2024.

M. B. Irfansyah, B. Waheed, I. Winarno, and A. Alimudin, “Implementation of Scrum framework in modern software

Performance evaluation of serverless cloud-native API deployment: ... (Maulana Bintang Irfansyah)

48

a ISSN: 1693-6930

[27]
[28]

[29]

[30]

development projects,” 2025 International Electronics Symposium, |ES 2025, pp. 875-880, 2025, doi:
10.1109/IES67184.2025.11161121.

C. S. Kondaveetil, H. Jodhavat, and V. Gogineni, “Developing scalable web applications with Java and J2EE in cloud
environments,” Sarcouncil Journal of Engineering and Computer Sciences, vol. 4, no. 1, pp. 1-8, 2025.

L. Indrianto, “Performance testing on web information system using Apache JMeter and BlazeMeter,” Jurnal Iimiah limu Terapan
Universitas Jambi, vol. 7, no. 2, pp. 138-149, Dec. 2023, doi: 10.22437/jiituj.v7i2.28440.

D. J. Arrizki, S. A. Kosim, and U. L. Yuhana, “A comparative performance analysis and cost efficiency between AWS and GCP
services in cloud-based software development,” in 2024 2nd International Conference on Software Engineering and Information
Technology (ICoSEIT), IEEE, Feb. 2024, pp. 149-154, doi: 10.1109/ICoSEIT60086.2024.10497497.

J. Wagner and B. Pollard, “Time to first byte (TTFB),” webdev. Accessed: May 27, 2025. [Online]. Available: https//web.
dev/articles/ttfb

BIOGRAPHIES OF AUTHORS

Maulana Bintang Irfansyah g 2 is a Master of Applied Computer student in
Informatics and Computer Engineering at Politeknik Elektronika Negeri Surabaya, Indonesia.
He completed his Bachelor of Applied Computer in Informatics Engineering from Politeknik
Negeri Malang in August 2024. His research interests focus on cloud computing, software
development, and quality assurance. He can be contacted at email:
maulana.bintang.irfansyah@gmail.com.

Bilal Waheed k4 2 is a Master of Applied Computer student in Informatics and
Computer Engineering at Politeknik Elektronika Negeri Surabaya, Indonesia. He completed
his Bachelor of Electrical Engineering (Electronics) from Federal Urdu University of Arts,
Sciences and Technology, Islamabad Pakistan. His research interests focus on network
security, internet of things, electronics, cloud computing, and machine learning. He can be
contacted at email: bilal677@pasca.student.pens.ac.id.

Idris Winarno B4 2 received the B.Eng. degree in Information Technology from
Politeknik Elektronika Negeri Surabaya (PENS), Indonesia, in 2005, the M.S. degree in
Computer Science from Sepuluh Nopember Institute of Technology, Indonesia, in 2008, and
the Dr.Eng. degree in Computer Science from Toyohashi University of Technology, Japan, in
2018. He joined the Department of Computer Science, PENS, as a Junior Lecturer, in 2008.
His research interests include computer networks, network security, and resilient computing.
He can be contacted at email: idris@pens.ac.id.

Akhmad Alimudin © B4 B3 © received the B.S. degree in computer science and the M.S.
degree from the Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, in 2010 and 2013,
respectively. He completed his Ph.D. in Computer Science at Toyohashi University of
Technology, Japan. He joined Politeknik Elektronika Negeri Surabaya (PENS) as Lecturer in
2014. His research interests include intelligent systems, machine learning, and computer
network applications. He can be contacted at email: alioke@pens.ac.id.

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 34-48

https://orcid.org/0009-0008-7017-4811
https://scholar.google.com/citations?user=XIEM-MsAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/NJT-3334-2025
https://orcid.org/0009-0002-0803-5067
https://scholar.google.com/citations?hl=en&user=nu6LpQQAAAAJ
https://www.webofscience.com/wos/author/record/NJT-3493-2025
https://orcid.org/0000-0001-9436-6836
https://scholar.google.com/citations?hl=id&user=kB50cf0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56826000300
https://www.webofscience.com/wos/author/record/48113965
https://orcid.org/0000-0002-1937-6628
https://scholar.google.com/citations?user=Nusv15MAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57207663029
https://www.webofscience.com/wos/author/record/AIF-0105-2022

