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 The dynamic landscape of 6G communication networks necessitates 

innovative strategies to address energy inefficiency and signal degradation in 

densely populated regions with limited line-of-sight (LOS) coverage. A 

novel technology known as an intelligent reflecting surface (IRS) has 

emerged; it can dynamically modify the characteristics of electromagnetic 

waves to enhance signal propagation. Unfortunately, current IRS models 

frequently neglect the balance between energy efficiency (EE) and the 

quantity of reflective elements (N) in Rayleigh fading scenarios. This study 

introduces an algorithm called dynamic-static particle swarm optimization 

(DS-PSO) aimed at improving EE and decreasing the quantity of reflective 

components in the performance optimization of IRS. The research assesses 

the proposed model in comparison to single-input single-output (SISO) 

systems, conventional IRS models, and IRS models from prior studies 

within a realistic urban framework. The optimized IRS, which only uses 

seven reflective elements, has a peak EE of 366 Mbit/Joule. This is a big 

improvement over IRS models from earlier research, as shown by the 

numbers. The findings indicate that artificial intelligence (AI)-driven 

optimization can enhance IRS technology for sustainable and efficient 6G 

networks. 
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1. INTRODUCTION 

6G wireless networks are being driven by applications that require more reliable and powerful 

connectivity. Non-line-of-sight (NLOS) signal degradation results in unstable connections and diminished 

energy efficiency (EE) in urban settings where buildings and other obstacles impede direct line of sight 

(LOS). The newly developed technology, known as intelligent reflecting surface (IRS), offers a viable 

answer to this problem. Programmable meta-atom surfaces may boost signal transmission and expand 

coverage by effectively and passively changing electromagnetic waves, eliminating the need for active 

amplification [1]–[5]. 

Current empirical investigations demonstrate that intelligent reflecting surfaces (IRSs) have 

achieved significant technological progress, but theoretical research implies that, under ideal circumstances, 

IRSs might outperform classical relays [6]. Unmanned aerial vehicles (UAVs) with integrated sensing and 

communication (ISAC) have recently been the subject of study for improving spectrum efficiency [7] and 

IRS-assisted UAVs for providing dynamic coverage in highly populated regions [8]–[10]. The fact that many 

current IRS designs need an excessive number of reflecting elements (N) is a big issue. The system becomes 

https://creativecommons.org/licenses/by-sa/4.0/
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more costly, less user-friendly, and power-hungry as a result of this. The primary advantage of passive IRS 

technology is rendered useless by this approach. Having novel design solutions that provide superior EE with 

the fewest hardware difficulties is crucial in densely populated urban areas where long-distance visibility is 

limited, particularly in the presence of actual channel characteristics like as Rayleigh fading. 

There are now many various methods to employ algorithms since they have become bigger. Deep 

reinforcement learning (DRL) is a more sophisticated approach to educate robots. It has been used for 

dynamic beamforming and resource allocation [7], [11]–[13]. It employs conventional optimization 

techniques such as block coordinate descent (BCD) [8] and alternating optimization (AO) [10], [14]. Basic 

performance analyses for complicated architectures, such as multi-antenna multi-IRS systems operating in 

generalized fading channels, have been conducted to enhance these applied studies [15]. Recent studies have 

also started to include non-ideal hardware features, like nonlinear energy harvesting circuits and workable 

phase-shift models, in recognition of a route to real-world implementation [16]. 

Despite these significant developments, a significant and ongoing problem that has been identified 

in numerous studies [8], [10], [11], [14], [16] is the frequent mishandling of the basic trade-off between EE 

and the N. High EE is frequently attained at the expense of hardware complexity; many models rely on a lot 

of elements [9], [17]–[19], or only work well in certain deployment scenarios [20], [21]. On the other hand, 

other methods have low EE, frequently as a result of their optimization algorithms’ high computational 

overhead [11], [14]. Most of these studies assume mixed NLOS and LOS propagation conditions, which is 

perhaps the most important factor for urban 6G deployments. Pure Rayleigh fading, the predominant channel 

model in crowded urban areas with rich scattering and no direct LOS path, is ignored by this assumption. 

This oversight compromises the suitability of current solutions in the very settings where IRS technology is 

most promising. As a result, there is a glaring need for a low-complexity optimization framework that, in 

realistic Rayleigh fading conditions, maximizes EE with few reflective elements. 

A dynamic-static particle swarm optimization (DS-PSO) framework for IRS-enabled 6G networks is 

presented in this paper to close this gap. Phase shifts and user scheduling are dynamically modified by the 

framework to optimize EE and minimize total N. We have three things to contribute: empirical validation 

showing superior EE (366 Mbit/Joule) with a minimal N (7) compared to benchmarks; an artificial 

intelligence (AI)-driven optimization algorithm DS-PSO, which decouples exploration and exploitation to 

optimize IRS performance with low complexity; and a comprehensive system model under realistic Rayleigh 

fading. This study provides an energy-efficient, scalable solution for urban communication infrastructure by 

addressing these problems and extending the use of IRS technology in next-generation networks. 

The rest of the outline for the paper is below. Section 2 provides a description of the proposed DS-

PSO algorithm, including its formulation, key characteristics, and computational complexity. The research 

methodology is presented in section 3, which includes the simulation setup, the problem formulation for EE 

optimization, and the system and channel model. A comparison with previous works, an ablation study on 

algorithmic convergence, an analysis of energy efficiency, a discussion of practical limitations, and an 

explanation of some significant issues for possible future research are all included in section 4, which is 

devoted to the results and discussion. In section 5, we finally provide the findings of our investigation. 

 

 

2. PROPOSED ALGORITHM 

The AI-powered DS-PSO algorithm, which maximizes the use of IRS, is covered in this section. In 

order to better balance exploration and exploitation in intricate, non-convex search spaces, DS-PSO improves 

on the traditional PSO by utilizing a hybrid topological paradigm with dual static (S) and dynamic (D) 

influence fields. Table 1 summarizes the main parameters controlling the algorithm’s operation. 

 

 

Table 1. Basic parameters for running the AI-based DS-PSO algorithm 
Parameter Value 

Maximum Iteration (𝑖) 1000 

Particles (𝑝𝑎𝑟) or (swarm size) 50 

Probability of neighborhood restructuring periods 0.5 
Coefficient of Intercept (spaced points of frequency) 1 

The minimum values (𝑉𝑚𝑖𝑛) and maximum values (𝑉𝑚𝑎𝑥) of the search space’s (1, 70) 

 

 

2.1.  Algorithmic formulation 

The DS-PSO algorithm, which is parameterized according to Table 1, functions in five main stages: 

− Phase 1: the initialization stage. 𝑃𝑆 = 50 is used to initialize a swarm of 𝑃𝑆 particles. Every particle 𝑖 is 

given a velocity 𝑉𝑝𝑎𝑟(𝑖) that is uniformly sampled from the range [𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥] = [1, 70] and a 
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randomized position 𝑋𝑝𝑎𝑟(𝑖) (within the search space). Each particle’s initial position 𝑋𝑝𝑎𝑟(𝑖) is used to 

set its personal best (𝑃𝑜𝑠𝑝𝑎𝑟), dynamic best (𝐷par_best), and static best (𝑆𝑝𝑎𝑟_𝑏𝑒𝑠𝑡). 

− Phase 2: dual-topology velocity modulation (velocity update). Particle velocities are updated each 

iteration using a tripartite attraction model that incorporates guidance from the particle’s own memory 

and its topological neighbourhoods: 

 

𝑉𝑝𝑎𝑟(𝑖) = 𝐶𝑐[𝑉𝑝𝑎𝑟(𝑖 − 1) + 𝐶1𝑅1 (𝑃𝑜𝑠𝑝𝑎𝑟(𝑖 − 1) − 𝑋𝑝𝑎𝑟(𝑖 − 1)) +  𝐶2𝑅2 (𝐷𝑝𝑎𝑟𝑏𝑒𝑠𝑡(𝑖 − 1) −

𝑋𝑝𝑎𝑟(𝑖 − 1))  +  𝐶3𝑅3 (𝑆𝑝𝑎𝑟𝑏𝑒𝑠𝑡(𝑖 − 1)  − 𝑋𝑝𝑎𝑟(𝑖 − 1)) ] (1) 

 

where (𝐶𝑐  ≈  0.7298) is the constriction coefficient preventing divergence, (𝐶₁, 𝐶₂, 𝐶₃ =  4.1/3 ≈  1.3667) 

are acceleration coefficients, and 𝑅₁, 𝑅₂, 𝑅₃ are random numbers uniformly distributed in [0, 1]. 

− Phase 3: position update and fitness evaluation. Particles relocate based on their updated velocity: 

 

 𝑋𝑝𝑎𝑟(𝑖) = 𝑋𝑝𝑎𝑟(𝑖 − 1) + 𝑉𝑝𝑎𝑟(𝑖) (2) 

 

An evaluation is conducted on the objective function 𝑓(𝑋𝑝𝑎𝑟). The individual best (𝑃𝑜𝑠𝑝𝑎𝑟(, 

updating in the event that a better solution is discovered. Also updated appropriately are the static best 

𝑆𝑝𝑎𝑟_𝑏𝑒𝑠𝑡 (best in the static neighborhood) and the dynamic best 𝐷𝑝𝑎𝑟_𝑏𝑒𝑠𝑡 (best in the dynamic 

neighborhood). 

− Phase 4: restructuring the neighborhood dynamically. The dynamic neighbourhoods undergo stochastic 

reconfiguration with probability 𝑝𝑟𝑜𝑏𝐷 = 0.5 (as specified in Table 1). This helps break free from local 

optima by introducing exploratory noise. 
− Phase 5: finalization and output. The algorithm returns the optimal particle position 𝑋𝑝𝑎𝑟 and the 

associated fitness value 𝑓(𝑋𝑝𝑎𝑟) when 𝑖𝑚𝑎𝑥  = 1000 iterations have been completed. 

The pseudocode for the DS-PSO algorithm is available in [22] for a detailed description of the 

algorithmic steps. Several recent optimization challenges, such as those mentioned in [23]–[25], have 

demonstrated the algorithm’s resilience and effectiveness. 

 

2.2.  Key innovations 

There are three main ways that DS-PSO is different from standard PSO: i) topological duality: by 

separating exploration (led by 𝐷𝑝𝑎𝑟_𝑏𝑒𝑠𝑡) and exploitation (led by 𝑆𝑝𝑎𝑟_𝑏𝑒𝑠𝑡) into different influence fields, it 

can use a well-rounded and successful search strategy; ii) stochastic reconfiguration: by using probabilistic 

restructuring of dynamic neighborhoods, population-based optimizers can avoid the common mistake of 

converging too quickly; and iii) triadic acceleration: the three-coefficient system (𝐶₁, 𝐶₂, 𝐶₃) makes particle 

guidance better than the usual social/cognitive binary model. This makes convergence properties more 

reliable. 

 

2.3.  Complexity analysis 

The difficulty of computing DS-PSO is one of the primary reasons it cannot be applied to real-time 

systems. Each iteration’s complexity is 𝑂(𝑃), where 𝑃 is the number of particles (50, according to Table 1). 

Since we need to adjust each particle’s position and speed as well as check the fitness function, this linear 

scaling is required. While maintaining the 𝑂(𝑃) complexity, DS-PSO only adds a constant number of 

particles, but it takes more effort to remember the two best values for each particle (𝐷𝑝𝑎𝑟_𝑏𝑒𝑠𝑡  and 𝑆𝑝𝑎𝑟_𝑏𝑒𝑠𝑡). 

Because of this, the optimization’s overall cost is 𝑂(𝐼𝑃), where 𝐼 is the number of iterations (1000, 

according to Table 1). The main benefit of DS-PSO is how quickly it converges. Compared to classical PSO, 

DS-PSO usually yields a high-quality solution in a much smaller number of iterations (a smaller 𝐼) by 

skillfully balancing exploration and exploitation. It is perfect for real-time IRS Optimization problems 

because, in practice, this reduction in the number of iterations required can reduce the overall computational 

cost to 𝑂(𝐼𝑃) while keeping the same performance threshold. 

 

 

3. METHOD 

This section describes the research methodology, which includes the formulation of the optimization 

problem, the system and channel models, and the comprehensive simulation setup. 
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3.1.  System and channel model 

The system model considers a source (S) communicating with a destination (D), aided by either a 

standard or an optimized IRS. The overall transmission architecture is depicted in Figure 1. The 

communication scenario illustrating the specific channel gains in both standard and optimized IRS-assisted 

links is shown in Figure 2. The performance of both IRS models is evaluated and compared against a 

baseline single-input single-output (SISO) system. 

 

 

 
 

Figure 1. Data transmission supported by the (IRS standard/IRS enhanced) models 

 

 

 
 

Figure 2. Destination variables for the communications system simulation setup with standard/enhanced IRS 

 

 

For the baseline SISO channel, the received signal and its corresponding achievable rate are given by: 

 

𝑦 = ℎsd√𝑝𝑠 + 𝑛 (3) 

 

𝑅𝑆𝐼𝑆𝑂 = log2 (1 +
𝑝|ℎ𝑠𝑑 |2

𝜎2 ) (4) 

 

where ℎ𝑠𝑟  is the channel coefficient, 𝑠 represents the information signal of unit-power, 𝑝 represents the 

power of transmission, and 𝑛 ∼ 𝒩𝒸(0, 𝜎2), represents the noise at the receiver (additive white Gaussian 

noise (AWGN)). 

The standard IRS model comprises (𝑁) passive reflecting elements. ℎ𝑠𝑟 ∈ ℂ𝑁 represents the source-

to-IRS channel, and ℎ𝑟𝑑 ∈ ℂ𝑁 represents the IRS-to-destination channel. The IRS reflection matrix is  

𝛩 = 𝛼𝑑𝑖𝑎𝑔. (𝑒𝑗𝜃1, … , 𝑒𝑗𝜃𝑁), where 𝛼 is the reflection coefficient and (𝜃𝑛) are the phase shifts. The received 

signal with IRS assistance is: 

 

𝑦𝐼𝑅𝑆 = (ℎ𝑠𝑑 + ℎ𝑠𝑟
𝑇 𝛩ℎ𝑟𝑑)√𝑝𝑠 + 𝑛 (5) 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 22-33 

26 

The optimal phase shifts that align the reflected signals coherently at the destination determine the 

possible rate, which is given by (6). 

 

𝑅IRS(𝑁) = log2 (1 +
𝑝(|ℎ𝑠𝑑|+𝛼 ∑  𝑁

𝑛=1  |[ ℎ𝑠𝑟]𝑛[ℎ𝑟𝑑]𝑛|)
2

𝜎2 ) (6) 

 

The optimized IRS model (𝐼𝑅𝑆𝑜) proposed in this work enhances performance by reducing the total 

N to 𝑁𝑜, while improving phase-shift optimization. Its reflection matrix is 𝛩𝑜 = 𝛼𝑑𝑖𝑎𝑔 (𝑒𝑗𝜃1, … , 𝑒𝑗𝜃𝑁𝑜
). The 

received signal and achievable rate for this model are: 

 

𝑦𝐼𝑅𝑆
𝑜 = (ℎ𝑠𝑑 + ℎ𝑠𝑟

𝑇 Θ𝑜ℎ𝑟𝑑)√𝑝𝑜𝑠𝑜 + 𝑛𝑜 (7) 

 

𝑅𝐼𝑅𝑆𝑜
𝑜 (𝑁𝑜) = log2 (1 +

𝑝𝑜(|ℎ𝑠𝑑|+𝛼 ∑  𝑁𝑜

𝑛𝑜=1  |[ ℎ𝑠𝑟]𝑛𝑜[ℎ𝑟𝑑]𝑛𝑜|)
2

𝜎2 )  (8) 

 

where 𝑠𝑜 is the information signal of unit-power, (𝑝𝑜) is the power of transmission, and 𝑛𝑜 ∼ 𝒩𝒸(0, 𝜎2), is 

the noise for the optimized system. 

 

3.2.  Optimization problem 

The core objective is to optimize IRS-assisted communication with two key goals: maximizing EE 

and minimizing the number of IRS elements. This is formalized as a multi-objective optimization problem: 

 

𝑚𝑖𝑛
𝛩,𝑁

[−𝐸𝐸(𝛩, 𝑁), 𝑁]𝑇   (9) 

 

Subject to: rate constraint: 𝑅(𝛩, 𝑁) ≥ 𝑅𝑚𝑖𝑛; Power constraint: ∥ 𝛩 ∥𝐹
2 ≤ 𝑃𝑚𝑎𝑥; Element limit: 𝑁 ≤ 𝑁𝑚𝑎𝑥.  

In (10) can be used to determine EE by comparing the rate to the total energy consumption. 

 

𝐸𝐸 = 𝑅/𝑃𝑡𝑜𝑡𝑎𝑙  (10) 

 

where the total power consumption (𝑃𝑡𝑜𝑡𝑎𝑙) includes: Transmit power p, static power consumption 𝑃𝑠 (source) 

and 𝑃𝑑 (destination), IRS element power dissipation 𝑁𝑃𝑒 Thus, the optimization problem becomes: 

 

𝑚𝑎𝑥
𝑁,Θ

𝑅(𝑁,Θ)

𝑃𝑡𝑜𝑡𝑎𝑙(𝑁) 
  (11) 

 

Subject to: minimum rate requirement: 𝑅(𝑁, 𝛩) ≥ 𝑅𝑚𝑖𝑛; maximum IRS elements: 𝑁 ≤ 𝑁𝑚𝑎𝑥. 

 

3.3.  Simulation setup  

The proposed model performance is evaluated through simulations using the 3rd generation 

partnership project (3GPP) urban micro (UMi) channel model at a carrier frequency of 3 GHz, incorporating 

both NLOS and LOS conditions for distances 𝑑 ≥  10 m. The antenna gains for the transmitter (𝐺𝑡) and 

receiver (𝐺𝑟) are set to 5 dBi, and the destination device uses an omnidirectional antenna (0 dBi). Shadow 

fading is neglected. 

The channel gain values for UMi-LOS and UMi-NLOS are computed using: 

 

𝛽(𝑑)[𝑑𝐵] = 𝐺𝑡 + 𝐺𝑟 + {
−37.5 − 22 log10 (

𝑑

1 m
)  if LOS 

−35.1 − 36.7 log10 (
𝑑

1 m
)  if NLOS 

 (12) 

 

Optimized UMi-LOS channel gain, resulting from the proposed algorithm application, is derived as: 

 

𝛽𝑜(𝑑)[𝑑𝐵] =  Optimized [𝐺𝑡 + 𝐺𝑟 + {−37.5 − 22 log10(𝑑/1 m)}]  𝑖𝑓 optimized LOS  (13) 

 

The simulation presupposes that the IRS and the source are 70 meters apart. There is a 10 m range 

between the source and the destination/user. The total power consumption (𝑃𝑡𝑜𝑡𝑎𝑙) is calculated for the 

standard IRS model, the optimized IRS model, and the SISO case using (14)-(16), respectively. 
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𝑃𝐼𝑅𝑆
𝑇otal(𝑁) =

𝑝𝐼𝑅𝑆(𝑁)

𝜈
+ 𝑃𝑠 + 𝑃𝑑 + 𝑁𝑃𝑒 (14) 

 

𝑃𝑜
𝐼𝑅𝑆𝑜
𝑇otal(𝑁𝑜) =

𝑝𝑜
𝐼𝑅𝑆𝑜(𝑁𝑜)

𝜈
+ 𝑃𝑠 + 𝑃𝑑 + 𝑁𝑜𝑃𝑒 (15) 

 

𝑃𝑆𝐼𝑆𝑂
𝑇otal =

𝑝𝑆𝐼𝑆𝑂

𝜈
+ 𝑃𝑠 + 𝑃𝑑 (16) 

 

The optimal number of elements for the standard and optimized IRS models is determined in (17), 

(18), respectively. 

 

𝑁𝑜𝑝𝑡(𝐼𝑅𝑆) = √
(2𝑅𝑑−1)𝜎2

𝛼2𝛽𝐼𝑅𝑆𝑃𝑒

3
−

1

𝛼
√

𝛽𝑠𝑑

𝛽𝐼𝑅𝑆
  (17) 

 

𝑁𝑜𝑜𝑝𝑡(𝐼𝑅𝑆𝑜) = √
(2𝑅𝑑−1)𝜎2

𝛼2𝛽
𝐼𝑅𝑆𝑜
𝑜 𝑃𝑒

3

−
1

𝛼
√

𝛽𝑠𝑑
𝑜

𝛽
𝐼𝑅𝑆𝑜
𝑜   (18) 

 

The basic parameters are: noise power spectral density of -174 dBm/Hz, noise power of -94 dBm, a 

noise figure of 10 dB, a bandwidth of 10 MHz, a fixed source-destination distance of 10 m, and power 

dissipation per IRS element. 𝑃𝑒 = 5 𝑚𝑊, source and destination hardware power consumption 

𝑃𝑠 = 𝑃𝑑 = 100 𝑚𝑊 a maximum data rate 𝑅𝑑 ≤ 10 𝑏𝑖𝑡/𝑠/𝐻𝑧, reflection coefficient 𝛼 = 1, and power 

amplifier efficiency 𝑣 = 0.5. 

The EE for each case-SISO, standard IRS, and optimized IRS via (19)-(21), respectively is 

evaluated as a function of N, with the SISO case (𝑁 =  0) serving as the baseline. 

 

𝐸𝐸𝑆𝐼𝑆𝑂 = 𝑅𝑑/𝑃𝑆𝐼𝑆𝑂
𝑇otal  (19) 

 

𝐸𝐸𝐼𝑅𝑆  = 𝑅𝑑/𝑃𝐼𝑅𝑆
𝑇otal  (20) 

 

𝐸𝐸𝐼𝑅𝑆𝑜
𝑜 = 𝑅𝑑/𝑃𝑜

𝐼𝑅𝑆𝑜
𝑇otal

 (21) 

 

 

4. RESULTS AND DISCUSSION 

The simulation analysis and its results are described in this section. However, the proposed DS-PSO 

was used to evaluate the improved IRS model by comparing it with previous studies and benchmark systems. 

These results are interpreted, their importance is emphasized, and the study’s limitations are acknowledged in 

the discussion. 

 

4.1.  Analysis of EE and reflective elements 

The successful optimization of the crucial trade-off between EE and N is the main discovery of this 

work. The suggested DS-PSO-optimized IRS model essentially separates hardware complexity from high 

performance, as shown in Figure 3. We find that with just seven elements; this model maintains a consistent 

peak EE of 366 Mbit/Joule. On the other hand, traditional models are still constrained by the inefficient 

trade-off whereby EE decreases as N increases. 

 

 

 
 

Figure 3. EE compared to the number of reflecting elements 
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In Figure 3, the SISO, standard IRS, and optimized IRS models’ EE is plotted against the number of 

reflecting N. The graph clearly demonstrates a trade-off: for both the SISO and the conventional IRS 

benchmarks, EE decreases as N increases. However, this tendency is at odds with the DS-PSO-optimized IRS 

model, which relies on only seven pieces to maintain a peak EE of 366 Mbit/Joule. This illustrates the 

algorithm’s capacity to differentiate between hardware complexity and high performance, which is an 

important step for 6G networks in the long run. 

The SISO and conventional IRS benchmark models, on the other hand, demonstrate a substantial 

negative link between EE and N. When N grows from 7 to 66 in the SISO scenario, EE reduces a 

significantly, from 122.4 Mbit/Joule to 18.81 Mbit/Joule. Over the same range, the standard IRS model also 

gradually decreases from 140.2 Mbit/Joule to 99.19 Mbit/Joule. In order to effectively maximize resource 

utilization, intelligent, AI-driven optimization, like DS-PSO, is required. This proves that EE cannot benefit 

from merely increasing hardware complexity. The EE values that correlate to the trends in Figure 3 are 

described in detail in Table 2 for an exact quantitative analysis. 

Table 2 shows the highest EE that each model can reach and the number of reflective N needed to get 

there. This shows the trade-off between performance and hardware complexity. The most important piece of 

information is that the optimized IRS model has a constant, higher EE, which shows that it is the most efficient. 
 

 

Table 2. Peak performance comparison of the SISO, standard IRS, and optimized IRS models 
Model Optimal number of elements (N) Peak EE (Mbit/Joule) 

SISO 0 (Baseline) 122.4 

Standard IRS 7 140.2 

Optimized IRS (DS-PSO) 7 366.0 

 

 

4.2.  Comparative analysis with prior works 

To put this performance in context, a strict comparison with earlier IRS/reconfigurable intelligent 

surface (RIS) studies (e.g., [6]–[11], [13], [14], [18]–[21], [26], [27]) was done. The results, which are shown 

in Table 3, focus on EE (in Mbit/Joule), number of reflective N, and operational distance (in meters) range. 

The results show a common trade-off in the literature: high EE is usually only possible in certain situations or 

requires a significant N. With an EE of 366 Mbit/Joule and a low N=7 over a useful 70m range, the 

suggested DS-PSO-optimized IRS (see Table 3, samples 20–22) stands out in this regard. This creates a new 

standard for balancing performance and hardware complexity. 

These results demonstrate that there are numerous strategic trade-offs in the literature. Scaling up is 

challenging despite the high EE of some studies due to their high hardware usage. For example, although 

using 300 to 1500 elements, the Laplace transform (LT)-based IRS model developed by Wang and Zhang 

[11] only achieves a very low EE of 0.008 to 0.012 Mbit/Joule. This implies that the elements are used 

inefficiently. The fundamental concepts of design have evolved, as evidenced by the IRS literature of today. 

Purchasing high-end hardware is a popular strategy for increasing performance. One such is a hybrid RIS-UAV 

model [9]. EE may be as low as 1 Mbit/Joule or as high as 155 Mbit/Joule, even with 2,350 pieces. As the 

system becomes bigger, it becomes less dependable and helpful. Björnson et al. [6] say that the basic idea can 

get an EE of up to 146 Mbit/Joule, but it is neither practical or cost-effective since it has too many parts (76 to 

164). 

An interesting area of research is the application of algorithmic augmentation in highly constrained 

contexts. Even though some solutions work well, they aren’t always appropriate. This is restricted to 5–30 

components and a 2.2-meter range using the BCD method [8], which only yields 19–20 Mbit/Joule. Certain 

algorithms, like channel knowledge map (CKM) [20] and AO [14], can achieve moderate EE by focusing 

only on certain tasks. Effective UAV deployment [26] and user association algorithms [18] are examples of 

localized optimization strategies that work well when there are few elements in a small area. 

Research from 2024 and 2025 shows that the industry is still trying to find the right balance between 

performance and complexity. Research such as Fotock et al. [27] global energy efficiency (GEE) algorithm 

examine active and passive RIS, DRL [7], and meta-learning soft actor-critic (Meta-SAC) [13] to better 

allocate resources in specific operational areas that are frequently constrained. All of these efforts ultimately 

lead to the same conclusion: using hardware designs that aren’t very scalable in practice or that limit 

operational range too much is usually what causes algorithms to be inefficient or use too much energy. This 

continuing discussion demonstrates that a solution that optimizes efficiency while reducing hardware 

requirements and maintaining a realistic deployment scope is still required. This case study shows how well 

the suggested DS-PSO optimized IRS works. Our model shows that it is possible to avoid this common 

trade-off by getting an EE of 366 Mbit/Joule with only seven parts over a useful 70-meter distance. It has the 

best mix of complexity, efficiency, and operational range for use in crowded urban areas. 
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Table 3. The comparison of the results of this study with the results of previous studies 

No. 

sample 
Ref.  Year Type 

Energy 
efficiency 

(EE) 

Number of 

elements (N) 

Range of 

distance (d) 
Method proposed 

1 [6] 2020 IRS [0, 146] [ 76, 164] 80 m Standard IRS model 

2 [8] 2022 IRS [19, 20] [5, 30] 2.2 m The BCD based iterative algorithm 
3 [11] 2022 IRS [0.01, 0.013] [50, 100] 700 m Derivative of LT 

4 [11] 2022 IRS [0.008, 

0.012] 

[300, 

1500] 

700 m Derivative of LT 

5 [9] 2023 RIS 140 [1, 256] 65 m Active RIS-UAV 

6 [9] 2023 RIS [1, 155] [1, 2350] 65 m Hybrid RIS-UAV 

7 [21] 2023 RIS 10 64 500 Km to 
2000 Km 

Non-orthogonal multiple access (NOMA) low 
earth orbit (LEO) satellite communication 

8 [20] 2023 RIS [0.01, 0.11] 

[0.01, 0.09] 
[0.01, 0.07] 

10×10 50×50 m 

square area 

 CKM approach 

9 [14] 2023 IRS [8.35, 

13.15] 

80 100×100 m 

square area 

AO algorithm 

10 [14] 2023 IRS [8.35, 12.5] 50 100×100 m 

square area 

AO algorithm 

11 [18] 2023 IRS [0.66, 1.8] 25 100×100 m 
square area 

User association (UA), active beamforming, and 
passive beamforming (PB) called (IUA/PB) 

algorithm 
12 [26] 2023 RIS [8.12, 12.7] 8 100 m Energy-efficient unmanned aerial vehicle 

deployment (EEUD) algorithm 

13 [27] 2024 Active RIS [1.6, 11] [4, 300] 100 m GEE algorithm 
14 [27] 2024 Passive RIS [3.4, 14.3] [2, 300] 100 m GEE algorithm 

15 [19] 2024 IRS [115, 129] [10, 50] 200 m AO algorithm 

16 [10] 2025 IRS [1.2, 
21×10⁴] 

[60, 120] 350 m AO 

17 [7] 2025 IRS [1, 22] [4, 36] 20×20 m 

square area 

Proximal policy optimization (PPO) algorithm 

within DRL 
18 [13] 2025 RIS [18, 25] [5, 35] 0.05 m Meta-reinforcement learning (Meta-SAC 

algorithm) 

19 This 
study 

2025 IRS [99.19, 
140.2] 

[1, 66] 70 m Standard IRS model 

20 This 

study 

2025 Optimized 

IRS 

< 366 or 

7.32 

7 70 m Proposed DS-PSO algorithm 

21 This 

study 

2025 Optimized 

IRS 

366 7 70 m Proposed DS-PSO algorithm 

22 This 
study 

2025 Optimized 
IRS 

> 366 7 70 m Proposed DS-PSO algorithm 

 

 

The active RIS-UAV model [9] reaches 140 Mbit/Joule, and the AO-based IRS by Chen et al. [19] 

achieves an impressive 115-129 Mbit/Joule with 10-50 elements over 200 m. Using 60-120 elements over a 

350-meter range, Li et al. [10] provide an AO framework for IRS-UAV communications that shows a wide EE 

range of 1.2-21×104 Mbit/Joule. On the other hand, models that concentrate on the extreme range, such as the 

IRS satellite of NOMA-LEO satellite [21], obtain an EE of 10 Mbit/Joule with 64 elements over 500-2000 km. 

This is a completely different trade-off, where efficiency is less significant than coverage. 

With 1-66 elements, the standard IRS model from this study (see Table 3, sample 19) achieves an EE 

of 99.19-140.2 Mbit/Joule, which is comparable to other high-performing works like [6], [19]. However, by 

combining an unprecedented EE (366 Mbit/Joule) with minimal hardware (7 elements), the DS-PSO-optimized 

IRS (see Table 3, samples 20-21) sets a new standard for terrestrial networks. Over a 70-meter range, this 

performance level can be sustained. Although the models in [10] and [21] concentrate on specific domains 

(long-range UAVs and satellites), our model better balances efficiency and complexity for internet of things 

(IoT) and dense urban applications where reducing hardware costs and power consumption is crucial. 

 

4.3.  Ablation study on algorithmic convergence 

Table 4 demonstrates that an ablation study was conducted to test the strength and speed of 

convergence of the DS-PSO algorithm by varying the maximum number of iterations (𝑖) (250, 500, and 1000 

iterations) while maintaining the same swarm size of 𝑝 = 50 particles. 
 

 

Table 4. Ablation study on DS-PSO convergence (EE vs. max iterations) 
Maximum iterations (𝐼) Achieved EE (Mbit/Joule) Notes 

250 342 ~93.4% of peak performance 

500 358 ~97.8% of peak performance 

1000 (baseline) 366 Peak performance 
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The results, which are compiled in Table 4, show that DS-PSO continues to perform admirably even 

when its iteration budget is limited. The performance was great at 250 iterations, even better at 500 iterations, 

and the best it had ever been at 1000 iterations. This model is still much better than the IRS standard model. 

This shows that DS-PSO can find a solution that is almost perfect in a short amount of time. This is a key 

feature for real-time apps that don’t have a lot of processing power. The algorithm can effectively balance 

exploration and exploitation thanks to its dual-topology design, which facilitates rapid and stable 

convergence. 

 

4.4.  Discussion 

Disentangling hardware complexity from EE is the primary objective, as shown in section 4.1. The 

number of components in conventional models decreases as their utility increases. However, the optimized 

IRS is most effective when used with few components. For 6G networks to function well in the long run, AI-

driven optimization is crucial. Many feel this is not the proper way for the IRS to operate. 

With this fresh perspective, it outshines even the most well-thought-out strategies. According to the 

comparison in section 4.2, the majority of prior research has concentrated on either operational efficiency, 

which often requires a large number of components [13], [26], or increased EE, which typically requires a 

smaller number of elements [6], [19]. Contrarily, our research demonstrates a more refined equilibrium. The 

finest and most efficient IRS is the one that has been enhanced with DS-PSO. In highly crowded 

metropolitan regions, this combination tackles scalability and cost head-on. 

Section 4.3 proof of algorithmic robustness demonstrates the method’s generalizability. Thanks to 

its fast and near-optimal solution finding capabilities, the DS-PSO method is fantastic. Applications that 

operate in real-time and adapt to dynamic wireless settings rely on this. Also, it is a measure of performance. 

In conclusion, this study illustrates that an advanced, low-complexity AI algorithm like DS-PSO is crucial to 

surpass minor improvements and enable the development of a new class of high-efficiency, low-complexity 

IRS implementations for future networks. 

 

4.5.  Practical limitations and future work 

In this study, our results show significant superiority. This study must acknowledge its practical 

limitations, though. Real-world dynamic wireless environments make it challenging to obtain the optimal 

channel state information (CSI) that the proposed model assumes. The performance of the proposed 

optimization algorithm is deteriorated by estimation errors, feedback delays, and out-of-date channel 

information. The accuracy of the channel parameters ℎ𝑠𝑟  and ℎ𝑠𝑑 is the only factor that affects the 

algorithm’s phase shift optimization. 

 Additionally, the best IRS devices are assumed to have lossless continuous phase shifters in the 

proposed model. Nonlinearities in practice are caused by device defects such as amplitude changes, cross-

coupling between reflective elements, and quantized phase shifts. These have the potential to impact EE 

gains in ways that signal coherence cannot. 

 It is essential for future work to deal with the CSI with limited accuracy. We plan to improve the 

DS-PSO framework by adding effective optimization techniques that particularly address channel 

uncertainty. To ensure that the optimized phase shifts continue to work even in the event of an imperfect 

channel, the problem is set up using either statistical channel models or specific CSI errors. Adding more 

realistic device models to the simulation setup is also crucial. The low-resolution phase shifters used in later 

studies may enable IRS modeling. In order to provide a more accurate performance evaluation and 

potentially bridge the gap between theoretical analysis and practical viability, specific insertion losses are 

incorporated into real-world applications. 

Determining the algorithm’s strength is an important research topic, making testing the algorithm in 

dynamic propagation scenarios a significant challenge. A fixed urban cell with a range of about 70 meters 

served as the basis for the study’s model. However, a larger simulation range can show the real-time 

performance of the DS-PSO algorithm, including its speed of convergence and scalability. This range may 

include highly mobile scenarios such as satellite communication, vehicle-to-vehicle communication, and 

different types of terrain. To improve the algorithm’s scalability and generalization, it could be tested in non-

NLOS environments and with vanishing distributions other than the Rayleigh distribution. It may therefore 

be better than the Rayleigh vanishing model. 

Eventually, the study’s focus might go beyond point-to-point communications. A good next step is to 

consider larger, more complex network architectures that make use of better IRSs. This could mean looking into 

how better IRS affects MIMO systems to make them more diverse overall, or it could mean that the surface 

could serve two purposes in ISAC frameworks. Looking into how the DS-PSO algorithm works with multiple 

users will also test how well it can be used in dense urban networks. This will be a logical and valuable 

advancement of this work, particularly in terms of interference management through intelligent beamforming. 
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5. CONCLUSION 

The critical, and potentially unfeasible, balance between EE and device complexity is the primary 

challenge our study addresses, using IRSs for next-generation networks. We radically decoupled high 

performance from the large number of reflective elements by introducing a DS-PSO algorithm. The 

development of an optimized IRS model is our main achievement in this study. This model achieves an optimal 

EE of 366 Mb/J, using a stable, efficient reflective element set of only 7, enabled by AI-driven smart phase-shift 

optimization. Using a realistic Rayleigh vanishing channel model, the performance of our proposed model was 

maintained. The model is widely used in dense urban areas due to the extreme utility of the IRS technique. The 

results show a big difference in performance between the standard IRS model and the SISO baseline. As the 

number of elements went up, the EE went down a lot. As the number of elements went from 7 to 66, EE 

dropped sharply from 140.2 to 99.19 Mbit/J and from 122.4 to 18.81 Mbit/J, respectively. Advanced 

optimization is necessary because making hardware more complicated is not a good way to go. A comparative 

analysis with prior studies unequivocally illustrates the superiority of our methodology. However, some earlier 

research on large-scale devices has produced high EE, like a model that needs a smart reflective surface with 76 

to 164 elements and has an EE of 146 Mbit/J. Previous research on devices in highly restricted environments 

has yielded only marginal efficiency. Our optimized IRS with DS-PSO, on the other hand, sets a new standard 

by combining the least amount of hardware with the most EE. We made the DS-PSO algorithm even more 

useful in real life by doing an ablation study on algorithmic convergence. It was verified that the proposed 

algorithm can achieve 93.4% of its maximum performance with just 250 iterations. For real-time applications, 

this is crucial. In the end, this study demonstrates that in order to surpass these minor enhancements and 

discover a solution that is scalable, economical, and energy-efficient, a low-complexity smart algorithm such as 

DS-PSO must be added. Sustainable development that prioritizes the infrastructure of next-generation urban 

communications networks can directly benefit from this nearly ideal solution. 
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