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1. INTRODUCTION

6G wireless networks are being driven by applications that require more reliable and powerful
connectivity. Non-line-of-sight (NLOS) signal degradation results in unstable connections and diminished
energy efficiency (EE) in urban settings where buildings and other obstacles impede direct line of sight
(LOS). The newly developed technology, known as intelligent reflecting surface (IRS), offers a viable
answer to this problem. Programmable meta-atom surfaces may boost signal transmission and expand
coverage by effectively and passively changing electromagnetic waves, eliminating the need for active
amplification [1]-[5].

Current empirical investigations demonstrate that intelligent reflecting surfaces (IRSs) have
achieved significant technological progress, but theoretical research implies that, under ideal circumstances,
IRSs might outperform classical relays [6]. Unmanned aerial vehicles (UAVS) with integrated sensing and
communication (ISAC) have recently been the subject of study for improving spectrum efficiency [7] and
IRS-assisted UAVs for providing dynamic coverage in highly populated regions [8]-[10]. The fact that many
current IRS designs need an excessive number of reflecting elements (N) is a big issue. The system becomes

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA


https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput EI Control a 23

more costly, less user-friendly, and power-hungry as a result of this. The primary advantage of passive IRS
technology is rendered useless by this approach. Having novel design solutions that provide superior EE with
the fewest hardware difficulties is crucial in densely populated urban areas where long-distance visibility is
limited, particularly in the presence of actual channel characteristics like as Rayleigh fading.

There are now many various methods to employ algorithms since they have become bigger. Deep
reinforcement learning (DRL) is a more sophisticated approach to educate robots. It has been used for
dynamic beamforming and resource allocation [7], [11]-[13]. It employs conventional optimization
techniques such as block coordinate descent (BCD) [8] and alternating optimization (AO) [10], [14]. Basic
performance analyses for complicated architectures, such as multi-antenna multi-IRS systems operating in
generalized fading channels, have been conducted to enhance these applied studies [15]. Recent studies have
also started to include non-ideal hardware features, like nonlinear energy harvesting circuits and workable
phase-shift models, in recognition of a route to real-world implementation [16].

Despite these significant developments, a significant and ongoing problem that has been identified
in numerous studies [8], [10], [11], [14], [16] is the frequent mishandling of the basic trade-off between EE
and the N. High EE is frequently attained at the expense of hardware complexity; many models rely on a lot
of elements [9], [17]-[19], or only work well in certain deployment scenarios [20], [21]. On the other hand,
other methods have low EE, frequently as a result of their optimization algorithms’ high computational
overhead [11], [14]. Most of these studies assume mixed NLOS and LOS propagation conditions, which is
perhaps the most important factor for urban 6G deployments. Pure Rayleigh fading, the predominant channel
model in crowded urban areas with rich scattering and no direct LOS path, is ignored by this assumption.
This oversight compromises the suitability of current solutions in the very settings where IRS technology is
most promising. As a result, there is a glaring need for a low-complexity optimization framework that, in
realistic Rayleigh fading conditions, maximizes EE with few reflective elements.

A dynamic-static particle swarm optimization (DS-PSO) framework for IRS-enabled 6G networks is
presented in this paper to close this gap. Phase shifts and user scheduling are dynamically modified by the
framework to optimize EE and minimize total N. We have three things to contribute: empirical validation
showing superior EE (366 Mbit/Joule) with a minimal N (7) compared to benchmarks; an artificial
intelligence (Al)-driven optimization algorithm DS-PSO, which decouples exploration and exploitation to
optimize IRS performance with low complexity; and a comprehensive system model under realistic Rayleigh
fading. This study provides an energy-efficient, scalable solution for urban communication infrastructure by
addressing these problems and extending the use of IRS technology in next-generation networks.

The rest of the outline for the paper is below. Section 2 provides a description of the proposed DS-
PSO algorithm, including its formulation, key characteristics, and computational complexity. The research
methodology is presented in section 3, which includes the simulation setup, the problem formulation for EE
optimization, and the system and channel model. A comparison with previous works, an ablation study on
algorithmic convergence, an analysis of energy efficiency, a discussion of practical limitations, and an
explanation of some significant issues for possible future research are all included in section 4, which is
devoted to the results and discussion. In section 5, we finally provide the findings of our investigation.

2. PROPOSED ALGORITHM

The Al-powered DS-PSO algorithm, which maximizes the use of IRS, is covered in this section. In
order to better balance exploration and exploitation in intricate, non-convex search spaces, DS-PSO improves
on the traditional PSO by utilizing a hybrid topological paradigm with dual static (S) and dynamic (D)
influence fields. Table 1 summarizes the main parameters controlling the algorithm’s operation.

Table 1. Basic parameters for running the Al-based DS-PSO algorithm

Parameter Value
Maximum Iteration (i) 1000
Particles (par) or (swarm size) 50
Probability of neighborhood restructuring periods 05
Coefficient of Intercept (spaced points of frequency) 1
The minimum values (V,,,;,) and maximum values (V;,,,) of the search space’s (1,70)

2.1. Algorithmic formulation
The DS-PSO algorithm, which is parameterized according to Table 1, functions in five main stages:
—  Phase 1: the initialization stage. PS = 50 is used to initialize a swarm of PS particles. Every particle i is
given a velocity V4. that is uniformly sampled from the range [Vinin, Vinaxl = [1,70] and a
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randomized position X, (within the search space). Each particle’s initial position X4, (; is used to
set its personal best (Posy,g,), dynamic best (Dpar pest), and static best (S,qr pest)-

—  Phase 2: dual-topology velocity modulation (velocity update). Particle velocities are updated each
iteration using a tripartite attraction model that incorporates guidance from the particle’s own memory
and its topological neighbourhoods:

Vpar @) =C [Vpar (i - 1) + CiRy (Pospar(i -1)- Xpar(i - 1)) + (3R, (Dparbest(i - 1) -
Xpar(i - 1)) + C3R3 (Sparbest(i - 1) - Xpar(i - 1)) ] (1)

where (C. = 0.7298) is the constriction coefficient preventing divergence, (C,,C,,C3; = 4.1/3 = 1.3667)
are acceleration coefficients, and R4, R,, Rz are random numbers uniformly distributed in [0, 1].
—  Phase 3: position update and fitness evaluation. Particles relocate based on their updated velocity:

Xpar(i) = Xpar(i -+ Vpar ) (2

An evaluation is conducted on the objective function f(X,4-). The individual best (Pos,q;),
updating in the event that a better solution is discovered. Also updated appropriately are the static best
Spar pest (Dest in the static neighborhood) and the dynamic best Dyq; pese (best in the dynamic
neighborhood).

—  Phase 4: restructuring the neighborhood dynamically. The dynamic neighbourhoods undergo stochastic
reconfiguration with probability probD = 0.5 (as specified in Table 1). This helps break free from local
optima by introducing exploratory noise.

—  Phase 5: finalization and output. The algorithm returns the optimal particle position X, and the
associated fitness value f(X,q-) When i,,,,, = 1000 iterations have been completed.

The pseudocode for the DS-PSO algorithm is available in [22] for a detailed description of the
algorithmic steps. Several recent optimization challenges, such as those mentioned in [23]-[25], have
demonstrated the algorithm’s resilience and effectiveness.

2.2. Key innovations

There are three main ways that DS-PSO is different from standard PSO: i) topological duality: by
separating exploration (led by Dy, 4, pes:) and exploitation (led by S, pese) into different influence fields, it
can use a well-rounded and successful search strategy; ii) stochastic reconfiguration: by using probabilistic
restructuring of dynamic neighborhoods, population-based optimizers can avoid the common mistake of
converging too quickly; and iii) triadic acceleration: the three-coefficient system (C4, C», C3) makes particle
guidance better than the usual social/cognitive binary model. This makes convergence properties more
reliable.

2.3. Complexity analysis

The difficulty of computing DS-PSO is one of the primary reasons it cannot be applied to real-time
systems. Each iteration’s complexity is O(P), where P is the number of particles (50, according to Table 1).
Since we need to adjust each particle’s position and speed as well as check the fitness function, this linear
scaling is required. While maintaining the O(P) complexity, DS-PSO only adds a constant number of
particles, but it takes more effort to remember the two best values for each particle (D, g, pest aNd Spar pest)-

Because of this, the optimization’s overall cost is O(IP), where I is the number of iterations (1000,
according to Table 1). The main benefit of DS-PSO is how quickly it converges. Compared to classical PSO,
DS-PSO usually yields a high-quality solution in a much smaller number of iterations (a smaller I) by
skillfully balancing exploration and exploitation. It is perfect for real-time IRS Optimization problems
because, in practice, this reduction in the number of iterations required can reduce the overall computational
cost to O (IP) while keeping the same performance threshold.

3. METHOD
This section describes the research methodology, which includes the formulation of the optimization
problem, the system and channel models, and the comprehensive simulation setup.
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3.1. System and channel model

The system model considers a source (S) communicating with a destination (D), aided by either a
standard or an optimized IRS. The overall transmission architecture is depicted in Figure 1. The
communication scenario illustrating the specific channel gains in both standard and optimized IRS-assisted
links is shown in Figure 2. The performance of both IRS models is evaluated and compared against a
baseline single-input single-output (SISO) system.

‘ Intelligent Reflecting Surfaces !

i (Standard or Enhanced Model) ‘

: : ? Source
Destination or User Block Building Base Stations (BS)

Figure 1. Data transmission supported by the (IRS standard/IRS enhanced) models

)

Figure 2. Destination variables for the communications system simulation setup with standard/enhanced IRS

For the baseline SISO channel, the received signal and its corresponding achievable rate are given by:
y = hsd\/gs +n 3)

hsa |?
Rgis0 = log, (1 + vlg_;zl) 4

where hg, is the channel coefficient, s represents the information signal of unit-power, p represents the
power of transmission, and n ~ Nc(0,0?2), represents the noise at the receiver (additive white Gaussian
noise (AWGN)).

The standard IRS model comprises (N) passive reflecting elements. hg, € C represents the source-
to-IRS channel, and h,; € CV represents the IRS-to-destination channel. The IRS reflection matrix is
0 = adiag. (e’%%, ...,e/%N), where « is the reflection coefficient and (6,,) are the phase shifts. The received
signal with IRS assistance is:

Yirs = (hsq + th@hrd)\/lTS +n )
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The optimal phase shifts that align the reflected signals coherently at the destination determine the
possible rate, which is given by (6).

N 2
RIRS(N) = 10g2 <1 + p(thdH—aZn:l Hhsr]n[hrd]nD ) (6)

0—2
The optimized IRS model (IRS?) proposed in this work enhances performance by reducing the total
N to N°, while improving phase-shift optimization. Its reflection matrix is ° = adiag(e’®%, ..., e/N*). The

received signal and achievable rate for this model are:

YIORS = (hsd + h;rreohrd) p°s°® + n’ (7)

(®)

o2

p°(|h5d|+a ZNg_l |[ hsrl 0 [hrd]n0|)2
Ripso(N°) =log, [ 1+ n=

where s° is the information signal of unit-power, (p°) is the power of transmission, and n° ~ Nc(0,02), is
the noise for the optimized system.

3.2. Optimization problem
The core objective is to optimize IRS-assisted communication with two key goals: maximizing EE
and minimizing the number of IRS elements. This is formalized as a multi-objective optimization problem:

ng}vn[—EE(e, N),N]” ©)]

Subject to: rate constraint: R(0, N) = R, Power constraint: || © I2< Ppq.; Element limit: N < Np,q..
In (10) can be used to determine EE by comparing the rate to the total energy consumption.

EE = R/Potar (10)

where the total power consumption (P;,;) includes: Transmit power p, static power consumption P; (source)
and P, (destination), IRS element power dissipation NP, Thus, the optimization problem becomes:

R(N,©) (11)
N,©0 Ptotai(N)

Subject to: minimum rate requirement: R(N, ©) = R,,;,; maximum IRS elements: N < Np,q,.

3.3. Simulation setup

The proposed model performance is evaluated through simulations using the 3rd generation
partnership project (3GPP) urban micro (UMi) channel model at a carrier frequency of 3 GHz, incorporating
both NLOS and LOS conditions for distances d = 10 m. The antenna gains for the transmitter (G.) and
receiver (G,) are set to 5 dBi, and the destination device uses an omnidirectional antenna (0 dBi). Shadow
fading is neglected.

The channel gain values for UMi-LOS and UMi-NLOS are computed using:

~37.5 - 22l0g;o (=) #LOS
B(d)[dB] = G, + G, + d (12)
—~35.1 - 36.710g;o (-=)  ifNLOS

Optimized UMi-LOS channel gain, resulting from the proposed algorithm application, is derived as:
B°(d)[dB] = Optimized [G; + G, + {—37.5 — 221log,,(d/1 m)}] if optimized LOS (13)
The simulation presupposes that the IRS and the source are 70 meters apart. There is a 10 m range

between the source and the destination/user. The total power consumption (Pytq;) is calculated for the
standard IRS model, the optimized IRS model, and the SISO case using (14)-(16), respectively.
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Plowl(N) = PIRi(N) +P. +P,+NP, (14
POTRes(N°) = ZE2C0 4 P4 P, + NP, (15)
pIoial = Ps:/so +P+P, (16)

The optimal number of elements for the standard and optimized IRS models is determined in (17),
(18), respectively.

/ Ra—1)g2 1 [
NOPLURS) — ° (2 _ 1 [Psa 17
a?BirsPe @~ BIrs an
3|(2Rd-1)02 1 [ BS
OOPtURS®) _ ( _1 | Bsa 18
a?BrpsoPe @ Blgso (18)

The basic parameters are: noise power spectral density of -174 dBm/Hz, noise power of -94 dBm, a
noise figure of 10 dB, a bandwidth of 10 MHz, a fixed source-destination distance of 10 m, and power
dissipation per IRS element. P, =5mW, source and destination hardware power consumption
P, = P; =100 mW a maximum data rate R; < 10 bit/s/Hz, reflection coefficient « = 1, and power
amplifier efficiency v = 0.5.

The EE for each case-SISO, standard IRS, and optimized IRS via (19)-(21), respectively is
evaluated as a function of N, with the SISO case (N = 0) serving as the baseline.

EEg50 = Rd/PsTI%ISI (19)
EEgs = Rd/Plgeosml (20)
EEIORSO = Rd/Pongéag (21)

4. RESULTS AND DISCUSSION

The simulation analysis and its results are described in this section. However, the proposed DS-PSO
was used to evaluate the improved IRS model by comparing it with previous studies and benchmark systems.
These results are interpreted, their importance is emphasized, and the study’s limitations are acknowledged in
the discussion.

4.1. Analysis of EE and reflective elements

The successful optimization of the crucial trade-off between EE and N is the main discovery of this
work. The suggested DS-PSO-optimized IRS model essentially separates hardware complexity from high
performance, as shown in Figure 3. We find that with just seven elements; this model maintains a consistent
peak EE of 366 Mbit/Joule. On the other hand, traditional models are still constrained by the inefficient
trade-off whereby EE decreases as N increases.

N
(=3
(=1

—SISO Case
---Standard IRS Model
300 Optimized IRS Model

o

(=

(=]
T

(=3
(=1

Energy Efficiency [Mbit/Joule]
(=]

(=]

10 20 30 40 50 60 70
Number of Reflecting Elements

Figure 3. EE compared to the number of reflecting elements
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In Figure 3, the SISO, standard IRS, and optimized IRS models’ EE is plotted against the number of
reflecting N. The graph clearly demonstrates a trade-off: for both the SISO and the conventional IRS
benchmarks, EE decreases as N increases. However, this tendency is at odds with the DS-PSO-optimized IRS
model, which relies on only seven pieces to maintain a peak EE of 366 Mbit/Joule. This illustrates the
algorithm’s capacity to differentiate between hardware complexity and high performance, which is an
important step for 6G networks in the long run.

The SISO and conventional IRS benchmark models, on the other hand, demonstrate a substantial
negative link between EE and N. When N grows from 7 to 66 in the SISO scenario, EE reduces a
significantly, from 122.4 Mbit/Joule to 18.81 Mbit/Joule. Over the same range, the standard IRS model also
gradually decreases from 140.2 Mbit/Joule to 99.19 Mbit/Joule. In order to effectively maximize resource
utilization, intelligent, Al-driven optimization, like DS-PSO, is required. This proves that EE cannot benefit
from merely increasing hardware complexity. The EE values that correlate to the trends in Figure 3 are
described in detail in Table 2 for an exact quantitative analysis.

Table 2 shows the highest EE that each model can reach and the number of reflective N needed to get
there. This shows the trade-off between performance and hardware complexity. The most important piece of
information is that the optimized IRS model has a constant, higher EE, which shows that it is the most efficient.

Table 2. Peak performance comparison of the SISO, standard IRS, and optimized IRS models

Model Optimal number of elements (N) Peak EE (Mbit/Joule)
SISO 0 (Baseline) 122.4
Standard IRS 7 140.2
Optimized IRS (DS-PSO) 7 366.0

4.2. Comparative analysis with prior works

To put this performance in context, a strict comparison with earlier IRS/reconfigurable intelligent
surface (RIS) studies (e.g., [6]-[11], [13], [14], [18]-[21], [26], [27]) was done. The results, which are shown
in Table 3, focus on EE (in Mbit/Joule), number of reflective N, and operational distance (in meters) range.
The results show a common trade-off in the literature: high EE is usually only possible in certain situations or
requires a significant N. With an EE of 366 Mbit/Joule and a low N=7 over a useful 70m range, the
suggested DS-PSO-optimized IRS (see Table 3, samples 20-22) stands out in this regard. This creates a new
standard for balancing performance and hardware complexity.

These results demonstrate that there are numerous strategic trade-offs in the literature. Scaling up is
challenging despite the high EE of some studies due to their high hardware usage. For example, although
using 300 to 1500 elements, the Laplace transform (LT)-based IRS model developed by Wang and Zhang
[11] only achieves a very low EE of 0.008 to 0.012 Mbit/Joule. This implies that the elements are used
inefficiently. The fundamental concepts of design have evolved, as evidenced by the IRS literature of today.
Purchasing high-end hardware is a popular strategy for increasing performance. One such is a hybrid RIS-UAV
model [9]. EE may be as low as 1 Mbit/Joule or as high as 155 Mbit/Joule, even with 2,350 pieces. As the
system becomes bigger, it becomes less dependable and helpful. Bjornson et al. [6] say that the basic idea can
get an EE of up to 146 Mbit/Joule, but it is neither practical or cost-effective since it has too many parts (76 to
164).

An interesting area of research is the application of algorithmic augmentation in highly constrained
contexts. Even though some solutions work well, they aren’t always appropriate. This is restricted to 5-30
components and a 2.2-meter range using the BCD method [8], which only yields 19-20 Mbit/Joule. Certain
algorithms, like channel knowledge map (CKM) [20] and AO [14], can achieve moderate EE by focusing
only on certain tasks. Effective UAV deployment [26] and user association algorithms [18] are examples of
localized optimization strategies that work well when there are few elements in a small area.

Research from 2024 and 2025 shows that the industry is still trying to find the right balance between
performance and complexity. Research such as Fotock et al. [27] global energy efficiency (GEE) algorithm
examine active and passive RIS, DRL [7], and meta-learning soft actor-critic (Meta-SAC) [13] to better
allocate resources in specific operational areas that are frequently constrained. All of these efforts ultimately
lead to the same conclusion: using hardware designs that aren’t very scalable in practice or that limit
operational range too much is usually what causes algorithms to be inefficient or use too much energy. This
continuing discussion demonstrates that a solution that optimizes efficiency while reducing hardware
requirements and maintaining a realistic deployment scope is still required. This case study shows how well
the suggested DS-PSO optimized IRS works. Our model shows that it is possible to avoid this common
trade-off by getting an EE of 366 Mbit/Joule with only seven parts over a useful 70-meter distance. It has the
best mix of complexity, efficiency, and operational range for use in crowded urban areas.
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Table 3. The comparison of the results of this study with the results of previous studies

Energy
anple Ref Ve Tpeeffieney D i Method proposed
1 [6] 2020 IRS [0, 146] [ 76, 164] 80m Standard IRS model
2 [8] 2022 IRS [19, 20] [5, 30] 22m The BCD based iterative algorithm
3 [11] 2022 IRS [0.01,0.013]  [50, 100] 700 m Derivative of LT
4 [11] 2022 IRS [0.008, [300, 700 m Derivative of LT
0.012] 1500]
5 [9] 2023 RIS 140 [1, 256] 65 m Active RIS-UAV
6 [9] 2023 RIS [1, 155] [1, 2350] 65m Hybrid RIS-UAV
7 [21] 2023 RIS 10 64 500 Km to Non-orthogonal multiple access (NOMA) low
2000 Km earth orbit (LEO) satellite communication
8 [20] 2023 RIS [0.01, 0.11] 10x10 50x50 m CKM approach
[0.01, 0.09] square area
[0.01, 0.07]
9 [14] 2023 IRS [8.35, 80 100x100 m  AO algorithm
13.15] square area
10 [14] 2023 IRS [8.35, 12.5] 50 100x100 m AO algorithm
square area
11 [18] 2023 IRS [0.66, 1.8] 25 100x100 m User association (UA), active beamforming, and
square area passive beamforming (PB) called (IUA/PB)
algorithm
12 [26] 2023 RIS [8.12, 12.7] 8 100 m Energy-efficient unmanned aerial vehicle
deployment (EEUD) algorithm
13 [27] 2024 Active RIS [1.6, 11] [4, 300] 100 m GEE algorithm
14 [27] 2024 Passive RIS [3.4,14.3] [2, 300] 100 m GEE algorithm
15 [19] 2024 IRS [115, 129] [10, 50] 200 m AO algorithm
16 [10] 2025 IRS [1.2, [60, 120] 350m AO
21x104]
17 [7] 2025 IRS [1,22] [4, 36] 2020 m Proximal policy optimization (PPO) algorithm
square area within DRL
18 [13] 2025 RIS [18, 25] [5, 35] 0.05m Meta-reinforcement learning (Meta-SAC
algorithm)
19 This 2025 IRS [99.19, [1, 66] 70m Standard IRS model
study 140.2]
20 This 2025 Optimized < 366 or 7 70m Proposed DS-PSO algorithm
study IRS 7.32
21 This 2025 Optimized 366 7 70m Proposed DS-PSO algorithm
study IRS
22 This 2025 Optimized > 366 7 70m Proposed DS-PSO algorithm
study IRS

The active RIS-UAV model [9] reaches 140 Mbit/Joule, and the AO-based IRS by Chen et al. [19]
achieves an impressive 115-129 Mbit/Joule with 10-50 elements over 200 m. Using 60-120 elements over a
350-meter range, Li et al. [10] provide an AO framework for IRS-UAV communications that shows a wide EE
range of 1.2-21x10* Mbit/Joule. On the other hand, models that concentrate on the extreme range, such as the
IRS satellite of NOMA-LEO satellite [21], obtain an EE of 10 Mbit/Joule with 64 elements over 500-2000 km.
This is a completely different trade-off, where efficiency is less significant than coverage.

With 1-66 elements, the standard IRS model from this study (see Table 3, sample 19) achieves an EE
of 99.19-140.2 Mbit/Joule, which is comparable to other high-performing works like [6], [19]. However, by
combining an unprecedented EE (366 Mbit/Joule) with minimal hardware (7 elements), the DS-PSO-optimized
IRS (see Table 3, samples 20-21) sets a new standard for terrestrial networks. Over a 70-meter range, this
performance level can be sustained. Although the models in [10] and [21] concentrate on specific domains
(long-range UAVs and satellites), our model better balances efficiency and complexity for internet of things
(10T) and dense urban applications where reducing hardware costs and power consumption is crucial.

4.3. Ablation study on algorithmic convergence

Table 4 demonstrates that an ablation study was conducted to test the strength and speed of
convergence of the DS-PSO algorithm by varying the maximum number of iterations (i) (250, 500, and 1000
iterations) while maintaining the same swarm size of p = 50 particles.

Table 4. Ablation study on DS-PSO convergence (EE vs. max iterations)

Maximum iterations (1) Achieved EE (Mbit/Joule) Notes
250 342 ~93.4% of peak performance
500 358 ~97.8% of peak performance
1000 (baseline) 366 Peak performance

Enhancing reflective elements of intelligent reflective surfaces in 6G ... (Jehan Kadhim Shareef Al-Safi)
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The results, which are compiled in Table 4, show that DS-PSO continues to perform admirably even
when its iteration budget is limited. The performance was great at 250 iterations, even better at 500 iterations,
and the best it had ever been at 1000 iterations. This model is still much better than the IRS standard model.
This shows that DS-PSO can find a solution that is almost perfect in a short amount of time. This is a key
feature for real-time apps that don’t have a lot of processing power. The algorithm can effectively balance
exploration and exploitation thanks to its dual-topology design, which facilitates rapid and stable
convergence.

4.4. Discussion

Disentangling hardware complexity from EE is the primary objective, as shown in section 4.1. The
number of components in conventional models decreases as their utility increases. However, the optimized
IRS is most effective when used with few components. For 6G networks to function well in the long run, Al-
driven optimization is crucial. Many feel this is not the proper way for the IRS to operate.

With this fresh perspective, it outshines even the most well-thought-out strategies. According to the
comparison in section 4.2, the majority of prior research has concentrated on either operational efficiency,
which often requires a large humber of components [13], [26], or increased EE, which typically requires a
smaller number of elements [6], [19]. Contrarily, our research demonstrates a more refined equilibrium. The
finest and most efficient IRS is the one that has been enhanced with DS-PSO. In highly crowded
metropolitan regions, this combination tackles scalability and cost head-on.

Section 4.3 proof of algorithmic robustness demonstrates the method’s generalizability. Thanks to
its fast and near-optimal solution finding capabilities, the DS-PSO method is fantastic. Applications that
operate in real-time and adapt to dynamic wireless settings rely on this. Also, it is a measure of performance.
In conclusion, this study illustrates that an advanced, low-complexity Al algorithm like DS-PSO is crucial to
surpass minor improvements and enable the development of a new class of high-efficiency, low-complexity
IRS implementations for future networks.

4.5. Practical limitations and future work

In this study, our results show significant superiority. This study must acknowledge its practical
limitations, though. Real-world dynamic wireless environments make it challenging to obtain the optimal
channel state information (CSI) that the proposed model assumes. The performance of the proposed
optimization algorithm is deteriorated by estimation errors, feedback delays, and out-of-date channel
information. The accuracy of the channel parameters hg, and hg, is the only factor that affects the
algorithm’s phase shift optimization.

Additionally, the best IRS devices are assumed to have lossless continuous phase shifters in the
proposed model. Nonlinearities in practice are caused by device defects such as amplitude changes, cross-
coupling between reflective elements, and quantized phase shifts. These have the potential to impact EE
gains in ways that signal coherence cannot.

It is essential for future work to deal with the CSI with limited accuracy. We plan to improve the
DS-PSO framework by adding effective optimization techniques that particularly address channel
uncertainty. To ensure that the optimized phase shifts continue to work even in the event of an imperfect
channel, the problem is set up using either statistical channel models or specific CSI errors. Adding more
realistic device models to the simulation setup is also crucial. The low-resolution phase shifters used in later
studies may enable IRS modeling. In order to provide a more accurate performance evaluation and
potentially bridge the gap between theoretical analysis and practical viability, specific insertion losses are
incorporated into real-world applications.

Determining the algorithm’s strength is an important research topic, making testing the algorithm in
dynamic propagation scenarios a significant challenge. A fixed urban cell with a range of about 70 meters
served as the basis for the study’s model. However, a larger simulation range can show the real-time
performance of the DS-PSO algorithm, including its speed of convergence and scalability. This range may
include highly mobile scenarios such as satellite communication, vehicle-to-vehicle communication, and
different types of terrain. To improve the algorithm’s scalability and generalization, it could be tested in non-
NLOS environments and with vanishing distributions other than the Rayleigh distribution. It may therefore
be better than the Rayleigh vanishing model.

Eventually, the study’s focus might go beyond point-to-point communications. A good next step is to
consider larger, more complex network architectures that make use of better IRSs. This could mean looking into
how better IRS affects MIMO systems to make them more diverse overall, or it could mean that the surface
could serve two purposes in ISAC frameworks. Looking into how the DS-PSO algorithm works with multiple
users will also test how well it can be used in dense urban networks. This will be a logical and valuable
advancement of this work, particularly in terms of interference management through intelligent beamforming.
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5. CONCLUSION

The critical, and potentially unfeasible, balance between EE and device complexity is the primary
challenge our study addresses, using IRSs for next-generation networks. We radically decoupled high
performance from the large number of reflective elements by introducing a DS-PSO algorithm. The
development of an optimized IRS model is our main achievement in this study. This model achieves an optimal
EE of 366 Mb/J, using a stable, efficient reflective element set of only 7, enabled by Al-driven smart phase-shift
optimization. Using a realistic Rayleigh vanishing channel model, the performance of our proposed model was
maintained. The model is widely used in dense urban areas due to the extreme utility of the IRS technique. The
results show a big difference in performance between the standard IRS model and the SISO baseline. As the
number of elements went up, the EE went down a lot. As the number of elements went from 7 to 66, EE
dropped sharply from 140.2 to 99.19 Mbit/J and from 122.4 to 18.81 Mbit/J, respectively. Advanced
optimization is necessary because making hardware more complicated is not a good way to go. A comparative
analysis with prior studies unequivocally illustrates the superiority of our methodology. However, some earlier
research on large-scale devices has produced high EE, like a model that needs a smart reflective surface with 76
to 164 elements and has an EE of 146 Mbit/J. Previous research on devices in highly restricted environments
has yielded only marginal efficiency. Our optimized IRS with DS-PSO, on the other hand, sets a new standard
by combining the least amount of hardware with the most EE. We made the DS-PSO algorithm even more
useful in real life by doing an ablation study on algorithmic convergence. It was verified that the proposed
algorithm can achieve 93.4% of its maximum performance with just 250 iterations. For real-time applications,
this is crucial. In the end, this study demonstrates that in order to surpass these minor enhancements and
discover a solution that is scalable, economical, and energy-efficient, a low-complexity smart algorithm such as
DS-PSO must be added. Sustainable development that prioritizes the infrastructure of next-generation urban
communications networks can directly benefit from this nearly ideal solution.
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