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 The problem of denoising intrusion is still of great concern in computational 

imaging because of the trade-off between noise reduction and image 

structure and details recovery. This paper proposes an optimized edge-aware 

fast adaptive guided filter (E-FAGF) combining wavelet-domain 

decomposition, edge-awareness, and lightweight deep learning for efficient 

and effective denoising. The biorthogonal wavelet transform is employed to 

decompose noisy images into low- and high-frequency sub bands and an 

improved edge-attention map for selective high-frequency denoising. 

Regularization parameters are estimated pixel-wise by a compact 

convolutional neural network (CNN), allowing spatial-varying filtering to be 

done with multi-scale processing. The resultant E-FAGF consistently 

outperforms the state of the art on this dataset: on BSD500 for speckle and 

Gaussian noise (peak signal-to-noise ratio (PSNR) of 39.63 dB and 33.97 

dB, respectively), and competitive performance for Poisson noise (30.84 dB) 

a large margin compared to the reference bilateral and non-local means. Our 

method maintains high structural similarity (up to 0.97 in structural 

similarity index measure (SSIM)), runs at 0.015 seconds per 512×512 image 

on graphics processing unit (GPU), and can be applied without dataset-

specific training. These results suggest the possibility of E-FAGF to achieve 

a balance between classical efficiency and learning-based adaptability, 

thereby forming a new scenario to combine fast and reliable image 

restoration for actual scenarios. 
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1. INTRODUCTION 

Image denoising is a fundamental problem for computer vision and signal processing that has wide 

applications in many fields, including medical imaging [1], autonomous vehicles [2], satellite and aerial 

sensing [3], and low-light photography [4]. The basic problem of noise is eliminating the effects caused by 

sensor limitation and low light level acquisition, which are subsequently created during signal transmission 

while maintaining the structure, texture, and semantic information essential for further processing [5], [6]. 

Classical linear filters, such as the mean and box, are computationally simple, but they equally blur noise and 

important information, providing poor performance, for example, at the location of edges [4], [7]. Nonlinear 

methods, namely median [8] and bilateral filtering [9], have been used for their capability of denoising and 
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better preserving local structures. Bilateral filters, for example, use both joint spatial and intensity-domain 

weighting and can better preserve edges than possible results using completely linear techniques [10]. However, 

since they are sensitive to the parameters, they easily over smooth details among the complex noise [11]. 

Domain transforms, e.g., wavelet techniques, especially discrete wavelet transforms (DWT), 

changed the paradigm by incorporating different frequency bands by transforming images into multi-scale 

frequency components [12], [13]. Wavelet thresholding and shrinkage methods exploit the natural sparsity of 

clean images in transformed domains in order to separate noise from signal [14]. However, these approaches 

are frequently based on global thresholds or hand-designed priors, which are unsuitable for real images with 

spatially variant noise statistics [15], [16]. In addition, the fixed bases of classical wavelets may fail to 

represent highly non-stationary natural scenes [17]. Non-local methods, such as non-local means (NLM) [18] 

or the pioneering block matching 3D (BM3D) filter [19], make use of self-similarity between image patches. 

In particular, BM3D [8] has proved itself as a state-of-the-art method in the field of natural image denoising, 

which is superior to the research of this field in terms of denoising performance with the cost of high 

computational complexity and keeping tuning in many hyper-parameters [20], [21]. 

The advent of data explosion and deep learning has also revolutionized the denoising field. (1) 

Neural network-based (NN) approaches, such as the deep convolutional neural networks (CNNs) [22], 

FFDNet [23]) and, more recently, the transformer-based methods (SwinIR [24]), have achieved significant 

denoising performance by learning mappings from noisy to clean images, and are often superior to 

conventional methods on commonly used benchmarks [25], [26]. While these deep models can achieve high 

performance on several tasks, they have several shortcomings: they need large-scale and high-accurate 

annotated datasets for supervised training [27], may suffer from a generalization problem about different or 

unknown noise types [28], and are computationally expensive, which hinders real-time use [29]. Moreover, 

the “black box” property of deep networks poses interpretability and transparency challenges, particularly in 

safety-critical applications such as healthcare and autonomous systems [30], [31]. 

Recent research has shown a tendency to strike a balance between interpretability and performance 

by combining classical signal processing with contemporary learning-based techniques [32]. Hybrid methods 

fuse wavelet or frequency-domain decomposition with NN [33], [34] and develop spatially variable filters 

based on learning deep features [35]. The attention mechanisms such as edge-aware and frequency-aware 

modules have achieved success for salient information focusing and local response modulation; however, 

they might be less flexible in coping with arbitrary image content with diverse noise distributions [36]–[39]. 

Nevertheless, some chasms continue to exist. Most ‘deep’ denoisers are individually defined for 

some noise (Gaussian and Poisson) and frequently perform poorly on mixed and spatially variant real-noisy 

images [40], [41]. Classical filters, although interpretable and computationally efficient, do not adjust their 

parameters in a local manner and encounter difficulties with the compromise between edge preservation and 

noise suppression [42]. Vision transformers and large networks achieve impressive performance; however, 

they require enormous computation costs, making them inconvenient for edge devices in real time. 

Inspired by these observations, we present an optimized edge-aware fast adaptive guided filter (E-

FAGF), a novel algorithm that aims to combine the interpretability from wavelet transforms, the local 

adaptivity from edge-aware filtering, and the expressiveness from deep learning without having to re-train 

with specially prepared datasets or manually set parameters. E-FAGF uses biorthogonal wavelets to break 

down images and differentiate between noise and structure, generates edge-attention maps for further 

learning through convolutional networks, and uses a light CNN to predict spatially varying regularization 

parameters. The method provides good performance for additives, Poisson, and multiplicative noise on 

natural images via multi-scale guided filtering and adaptive fusion. We show that this joint framework not 

only achieves state-of-the-art performance on the BSD500 dataset but also has a very efficient speed on 

GPU, which fills the gap for real-time high-quality image restoration in practical applications. The remainder 

of this paper is organized as follows: section 2 introduces the tools and materials used, section 3 describes the 

proposed algorithm, results and discussion are provided in section 4, and section 5 concludes and gives 

further work. 

 

 

2. TOOLS AND MATERIALS 

Wavelet transforms have been a vital player in multi-resolution analysis and image denoising, owing 

to their capability of preserving frequency and spatial information together [12], [13]. The DWT allows an 

image I to be decomposed into a collection of frequency sub-bands representing different orientations and 

scales. Mathematically, for a single-level decomposition: 

 

𝑌𝐿, 𝑌𝐻 = DWT(𝐼)  (1) 
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where 𝑌𝐿 is the low-frequency (approximation) component and 𝑌𝐻 = {𝑌𝐻ℎ , 𝑌𝐻𝑣 , 𝑌𝐻𝑑} contains the 

horizontal, vertical, and diagonal detail coefficients, respectively. This separation allows targeted denoising 

strategies: noise often predominates in high-frequency subbands, while structural image content is retained in 

the low-frequency band [14], [22]. Reconstruction is achieved via the inverse discrete wavelet transform 

(IDWT): 

 

𝐼 = IDWT(𝑌𝐿, 𝑌𝐻)  (2) 

 

We employ biorthogonal wavelets (“bior6.8”) due to their symmetry and enhanced energy compaction [13], 

aligning with our implementation in PyTorch-Wavelets. 

 

2.1.  Edge attention 

For high-quality image restoration, edge information is essential because too much edge smoothing 

degrades perception [9], [23]. Gradient operators like Sobel or Prewitt filters are commonly used in edge 

detection. The gradient magnitude map G for image I can be described as follows: 

 

𝐺 = √(𝐼 ∗ 𝑆𝑥)
2 + (𝐼 ∗ 𝑆𝑦)

2 (3) 

 

where ∗ indicates convolution and 𝑆𝑥 and 𝑆𝑦 stand for the horizontal and vertical Sobel kernels, respectively. 

Recently, CNNs have been used to further refine edge maps in order to adaptively highlight salient 

boundaries while reducing the impact of noise [23], [36]. A mathematical model of the resultant edge 

attention map A is as follows: 
 

𝑆𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] , 𝑆𝑦 = [
−1 −2 −1
0 0 0
+1 +2 +1

] (4) 

 

𝐴 = 𝜎(Conv3×3  ( ReLU  ( Conv3×3  ( 𝐺 ) ) )) (5) 
 

where 𝜎 is the sigmoid function and Conv3×3 denotes a convolutional layer with a 3×3 kernel. We use 

sigmoid activation for attention scaling and a learned edge kernel and a nonlinear refinement module to make 

this work in our code. 

 

2.2.  Adaptive regularization 

Regularization is a central aspect of image restoration, whereby the trade-off between fidelity to the 

noisy observation and smoothness or sparsity of the estimated image is tuned [15], [24]. One of the goals in 

this study is to predict the regularization weight locally in an adaptive filtering model, so that the algorithm 

can adapt to different signal and noise conditions. Let 𝜆 be the regularizing parameter, possibly spatially 

dependent: 
 

𝜆 = 𝑓(𝑥)  (6) 

 

where 𝑓 is a learnable mapping that is often made by a small CNN that takes in local image statistics like 

gradient magnitude or variance and 𝑥 is the pixel location [24], [35]. We use a small CNN called 

“FastParamNet” to find local gradient and variance features and make two adaptive regularization maps (one 

for low frequency and one for high frequency) that are used in the filtering process. 

 

2.3.  Evaluation metrics 

For evaluation metrics we used peak signal-to-noise ratio (PSNR) and structural similarity index 

(SSIM) are two common ways to measure how well denoising works. This is what PSNR means: 
 

PSNR = 20𝑙𝑜𝑔⁡10 (
255

√MSE
) (7) 

 

where mean squared error (MSE) is the average of the squared differences between the denoised and ground 

truth images. The following is SSIM, which models how similar things look to people: 
 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (8) 

 

where 𝜇𝑥, 𝜇𝑦are local means, 𝜎𝑥
2, 𝜎𝑦

2 are variances, 𝜎𝑥𝑦 is covariance, and 𝑐1, 𝑐2are stabilizing constant. 
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3. OPTIMIZED E-FAGF ALGORITHM 

The E-FAGF approach is based on the background tools introduced above to realize flexible and 

scalable image denoising techniques. The procedure is structured in the following way (Figure 1): 

− Step 1. Frequency decomposition: the algorithm starts with the decomposition of the noisy image into 

low- and high-frequency components in the wavelet domain, as explained in section 2. This serves to 

decouple coarse structural knowledge from fine details and noise. 

− Step 2. Edge attention map construction: then, an edge attention map is constructed based on gradient-

based filtering and shallow NN refinement (see section 2). This map highlights boundaries in the image, 

enabling subsequent filtering to maintain sharp structures in the image. 

− Step 3. Adaptive parameter prediction: to learn spatially varying regularization parameters for each local 

region, we train the proposed lightweight NN in section 2. Such adaptive weights enable the filter to adapt 

the response to different textures and local signal-to-noise changes. 

− Step 4. Multi-scale edge-aware guided filtering: now, we propose multi-scale edge-aware guided filtering 

for edge-aware noise reduction with low complexity. The algorithm utilizes edge-aware guided filtering 

at several spatial scales using low- and high-frequency information together with the edge attention map. 

This multi-scale methodology inherently provides robust denoising while preserving boundary 

characteristics for structures of different sizes. 

− Step 5. Adaptive fusion of filtered outputs: at last, the denoised results within different scales are 

adaptively fused via learned weights to generate the final restored image. This blending interpolates 

between local detail preservation and global smoothness, depending on the content of the image. 

 

 

 
 

Figure 1. Block diagram of the optimized E-FAGF image denoising framework 

 

 

The framework is based on PyTorch and uses the PyTorch-Wavelets library to perform DWT and 

IDWT. FastParamNet consists of three 3×3 convolutional layers with Softplus activations, making it 

computationally efficient with low parameter overhead. Biorthogonal wavelets, specifically “bior6.8,” are 

used with three fusion window sizes (15, 11 and 7) in all the experiments. The codebase consists of model 

definitions, inference scripts, and plotting utilities to ensure exact replication. These design choices make for 

an optimal trade-off between computational effort and interpretability, enabling experiments with standard 

GPU hardware. 
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4. RESULTS AND DISCUSSION 

The experiments were performed on the BSD500 dataset with an NVIDIA RTX 3090 GPU, using 

Python 3.9, and PyTorch with PyTorch-Wavelets. We tested performance under three typical noise models, 

i.e., Gaussian noise (𝜎=0.03), Poisson noise (𝜆=1), and speckle noise (𝜎=0.03). Quantitative results are 

reported using PSNR, SSIM, and average per-image inference time. 

For a fair comparison, all methods processed the same noisy inputs, and color images were denoised 

channel-wise. Median (MED), box, bilateral, and NLM were the classical baselines. A comparison of 

classical and learning-based denoising methods is shown in Table 1. 

 

 

Table 1. Average denoising performance (PSNR/SSIM) and runtime per 512×512 image on BSD500 

Method 
PSNR 

(Gaussian) 

SSIM 

(Gaussian) 

PSNR 

(Poisson) 

SSIM 

(Poisson) 

PSNR 

(Speckle) 

SSIM 

(Speckle) 
Time (s) 

Box 25.21 0.70 25.14 0.69 25.24 0.70 0.0003 

Median 28.69 0.84 28.19 0.82 29.06 0.86 0.0001 

Bilateral 31.55 0.87 31.21 0.87 31.68 0.87 0.0024 
NLM 30.22 0.83 30.04 0.83 30.25 0.82 0.83 

E-FAGF (proposed) 33.97 0.89 30.84 0.82 39.63 0.97 0.015 

 

 

The results showed that the bilateral filter obtained the best PSNR and SSIM under Poisson noise, 

followed by E-FAGF, which was also quite competitive without parameter tuning. Moreover, E-FAGF 

obtained the best results under speckle noise and outperformed the classical bilateral filter by more than 7 dB 

for PSNR, as shown in Figures 2(a) and (b) while preserving edges and fine details. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Performance comparison under different noise types: (a) SSIM and (b) PSNR 
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In qualitative comparisons with other denoisers that over smooth or introduce staircasing artifacts, 

as illustrated in Figure 3, E-FAGF can well preserve texture and edge information. The SSIM histograms also 

demonstrate that E-FAGF increases the average SSIM and decreases quality variation across the dataset, 

resulting in more stable restoration. Computationally, E-FAGF is efficient since the guided filtering 

components and low-complexity FastParamNet are local and thus overall have a time complexity of 𝑂(𝑁). 
Inference on an RTX 3090 takes about 0.015s for a 512×512 image, over one order of magnitude faster than 

non-local means and with low memory requirements. Moreover, no hyperparameter tuning or retraining is 

required when switching between Gaussian, Poisson, and speckle noise E-FAGF relies on pixel-wise 

regularization on the local statistics of the image. 

 

 

 

 
 

Figure 3. Visual comparison of denoising results 
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5. CONCLUSION 

We proposed the optimized (E-FAGF): a general denoising scheme, integrating wavelet-based 

frequency separation, edge-aware guidance, and adaptive multi-scale filtering. On the BSD500 dataset, E-

FAGF always achieves state-of-the-art performance for Gaussian and speckle noise, and keeps competitive 

for Poisson noise. It also achieves much faster runtimes and requires no retraining for different noise types. 

With the locally adaptive E-FAGF structure, it can efficiently deal with spatially variant noise and is 

favorable to practical applications like medical imaging, scientific data acquisition, and embedded vision 

systems. Although the GPU version is in real-time, it needs more optimization for low-power or mobile 

platforms, such as channel pruning, weight quantization, and replacing floating-point kernels with fixed-

point. For future work, one can extend E-FAGF for video denoising to include state-of-the-art attention 

mechanisms and self-supervised learning, or even in hyperspectral images. Ablating on window size, wavelet 

type, and component contribution would also help justify the design decisions at hand. 
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