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 With the burgeoning internet of things (IoT), securing communication 

becomes paramount. Traditional cryptography does not meet computational 

needs and brute-force attacks. This review explores the state-of-the-art 

physical layer secret key generation (PLKG) that takes advantage of the 

inherent reciprocity and randomness of wireless channels. We investigate 

cutting-edge techniques such as feature extraction networks, domain-

adversarial training, and deep learning-based approaches, evaluating their 

effects on the security and efficiency of key generation. In addition to these 

methods, the review addresses real-world challenges such as multi-user 

scenarios, reconciliation overhead, and inconsistent channel measurement. 

We believe that improved key generation rates and security can be achieved 

through the use of millimeter wave technology and full-duplex 

communication. To strengthen the robustness of key generation, the paper 

concludes by suggesting future directions, such as incorporating more 

random sources, such as physiological signals and sensor data. This 

comprehensive overview offers deep insights into the state-of-the-art and 

paves the way for reliable communication in ever more complicated IoT 

settings. 
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1. INTRODUCTION 

The rapid expansion of the internet of things (IoT) is significantly changing the way we live, work, 

and interact with technology. By connecting everyday objects such as home appliances, medical devices, 

vehicles, and industrial machines to the internet, as shown in Figure 1, IoT is creating smarter and more 

responsive environments. These technologies are now playing a key role in areas such as smart homes, 

healthcare, transportation, agriculture, and smart cities. This fast growth is made possible by improvements in 

wireless communication, cloud and edge computing, artificial intelligence (AI), and low-power electronics. 

Recent studies predict that in 2025, there will be more than 30 billion connected IoT devices worldwide, with 

a potential economic impact of up to 12.6 trillion per year by 2030 [1]-[3]. However, despite its 

transformative potential, the IoT paradigm introduces a host of complex challenges that have placed it at the 

forefront of global research and development efforts. Among the most pressing concerns is the inherent 

vulnerability of the wireless communication medium. Due to the broadcast nature of the wireless channel, it 

introduces numerous threats such as eavesdropping, denial of service, jamming, and spoofing that require 
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secure communication methods [4]-[6]. Traditional public-key cryptography relies on complex mathematical 

algorithms to secure communication between devices, requiring significant computational power and 

memory for encryption and decryption processes. While highly effective in conventional computing 

environments, these techniques become impractical for resource-constrained devices, such as those 

commonly found in IoT networks, where power and memory are limited. This limitation highlights the need 

for alternative security approaches that can provide robust protection while being lightweight and efficient, 

motivating the exploration of new solutions beyond traditional cryptographic methods [7]-[9].  

 

 

 
 

Figure 1. The application of IoT 

 

 

Research developed a new lightweight technique in the 1990s called physical layer key generation 

(PLKG) [10], which leverages the inherent properties of wireless channels to establish secure keys between 

legitimate communicating parties called Alice and Bob [11]-[13]. In simple terms, PLKG uses the physical 

characteristics of wireless communication channels to generate a secret key between legitimate parties 

security. In PLKG it’s important to observe high reciprocal channel features between two communicating 

parties. O’Shea and Hoydis [14] learn the channel feature between two communication parties by using the 

autoencoder, which results greater in knowledge acquisition. Zhang et al. [15] designed key generation 

model to reduce the impact of noise effect in channel reciprocity. Similarly, He et al. [16] used autoencoder 

to reduce the noise from channel state information (CSI) data. Zhou and Zeng [17] used a hybrid deep 

learning model autoencoder and domain adversarial neural network to enhance the channel reciprocity and 

secure the key from Eva. Chen et al. [18] designed a new approach called bidirectional convergence feature 

learning (BCFL) to improve the key generation rate (KGR) and reduce noise impact.  

Despite the promising potential of physical layer key generation for secure wireless 

communications, several practical challenges continue to hinder its widespread adoption. CSI in the real 

world is often contaminated with substantial channel noise and weakly correlated, which existing methods 

struggle to eliminate effectively. Moreover, the current state of art technique [15]-[18] have difficulty 

adapting to intricate fluctuations in channel conditions, which can cause overfitting when the training and 

testing scenarios differ. These challenges are amplified in complex IoT environments, where conventional 

methods lack the flexibility to address data distribution shifts, causing models to become tailored to specific 

environments rather than being broadly generalizable. Moreover, conventional static quantization schemes 

struggle to adapt to rapidly changing wireless environments, which further degrades key generation 

performance and increasing bit disagreement rate (BDR). Given the rapid evolution of IoT applications and 

the increasing security threats they face, there is a pressing need for lightweight, scalable, generalized and 

secure PLKG frameworks tailored to real-world environments. 

The purpose of this systematic review is to discuss the problem in the current state of art technique 

and provide a solution to solve the problem in existing research. This work highlights innovative approaches 

such as deep learning, domain-adversarial learning, and hybrid techniques, emphasizing their implications for 

securing IoT networks and beyond. By synthesizing current research efforts, identifying existing gaps, and 

suggesting promising future directions, this review aims to deepen understanding of PLKG methodologies 
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and foster the development of practical, robust, and secure key generation schemes suitable for increasingly 

complex wireless ecosystems. The key contributions of this review are summarized as follows: 

− Reviews and synthesizes existing PLKG techniques, highlighting their strengths and limitations. 

− Analyzes lightweight designs and their suitability for resource-constrained IoT environments. 

− Compares quantization methods across studies in terms of KGR, BDR, and entropy performance. 

− Examines the role of deep learning integration in improving robustness and adaptability in PLKG. 

− Identifies open challenges, hybrid approaches, and future research directions, including cross-scenario 

generalization and lightweight solutions. 

This review is structured as follows: section 2 presents the fundamentals of PLKG. Section 3 

reviews the current state-of-the-art techniques, including deep learning approaches, hybrid deep learning 

models, and channel reciprocity-based methods. The section 4 provides a detailed discussion of results and 

analyses. Section 5 addresses open challenges and research gaps in the field. Finally, the paper concludes 

with a summary of key findings and outlines future research directions. 

 

 

2. FUNDATMENTALS OF PLKG 

Physical layer key generation is a new cryptographic method that utilizes randomness and 

reciprocity of wireless channels to derive secret keys between two legitimate communicating parties. 

Compared to conventional key exchange protocols depending on complex algorithms and computational 

hardness. PLKG draws common entropy from the physical wireless environment and therefore naturally 

aligns with the demands of lightweight and low-power applications such as the IoT. The security of PLKG 

arises from the inability of an adversary, located more than half a wavelength away, to observe the same 

channel characteristics due to the inherent spatial decorrelation of the wireless medium. 

There are usually four basic steps in the key generation process: channel probing, quantization, 

information reconciliation, and privacy amplification, as illustrated in Figure 2. Channel probing is the first 

step, where both communicating parties send their pilot signals to estimate their channel state. The 

quantization step converts the continuous-valued channel measurement into binary strings (initial keys). 

Information reconciliation is applied in order to cure any mismatching bits between the two strings with the 

assistance of error correction codes so that both parties have an equal key. Privacy amplification is then 

applied to compress the shared string, removing any potential leakage and enhancing secrecy.  

 

 

 
 

Figure 2. Four-stage physical layer key generation process, including channel probing, quantization, 

reconciliation, and privacy amplification 

 

 

PLKG relies on three physical-layer principles channel reciprocity, temporal variation, and spatial 

de-correlation, each playing a critical role in ensuring secure and reliable key generation. These principles are 

discussed below in detail. 
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2.1.  Reciprocity of wireless channels 

Channel reciprocity is the property that the wireless channel response from node A to node B is 

roughly equal to that from node B to node A when measured within the channel coherence time [13]. This 

allows both devices to independently see well-correlated CSI and derive symmetric keys without key 

exchange. Reciprocity holds in time division duplexing (TDD) systems under ideal conditions; however, 

practical impairments such as hardware mismatches, antenna calibration errors, and oscillator drift cause 

asymmetries that lead to greater BDR. Mathematically, channel reciprocity can be expressed as: 

 

𝐻𝐴𝐵(𝑡) ≈ 𝐻𝐵𝐴(𝑡)  (1) 

 

where, 𝐻𝐴𝐵(𝑡) and 𝐻𝐵𝐴(𝑡) represent the complex channel responses from Alice to Bob and from Bob to 

Alice at time 𝑡, respectively. 

 

2.2.  Temporal variation and entropy 

Temporal variation accounts for the time-varying nature of the wireless channel due to factors such 

as movement, multipath propagation, and changes in environmental conditions. The dynamics introduce 

randomness into the measurements of the channel, which is required for secure key generation. The use of 

rapid and random temporal changes guarantees high entropy and protection from predictability and replay 

attacks. However, in quasi-static or indoor environments where the channel is not highly fluctuating, the lack 

of randomness can limit key freshness and create security vulnerabilities. Mathematically, temporal variation 

can be expressed as: 

 

𝐸[𝐻(𝑡)𝐻∗(𝑡 + ∆𝑡)] → 0 𝑎𝑠 ∆𝑡 ≫ 𝑇𝑐  (2) 

 

This (2) expresses that the autocorrelation between the current and future channel responses diminishes as the 

time delay ∆𝑡 exceeds the coherence time 𝑇𝑐, promoting temporal randomness. 

 

2.3.  Spatial decorrelation for eavesdropper resistance 

Spatial decorrelation ensures that wireless channel characteristics experienced by an adversary at a 

different physical location are uncorrelated with those observed by legitimate users. This spatial uniqueness 

is fabricated through multipath scattering and is very likely to take place when the distance from the 

legitimate devices to the eavesdropper is greater than half a wavelength. Therefore, even adjacent passive 

attackers cannot get the same key, which provides a physical-layer security against eavesdropping. This is a 

fundamental characteristic of the confidentiality properties of PLKG in wireless networks. Mathematically, 

spatial decorrelation can be expressed as: 

 

𝐸[𝐻(𝑥)𝐻∗(𝑥 + ∆𝑥)] → 0 𝑎𝑠 ∆𝑥 > λ/2  (3) 

 

where, 𝐻(𝑥) denotes the channel at position 𝑥, and 𝜆 is the signal wavelength. The expectation tends to zero 

when the spatial separation ∆𝑥 exceeds 𝜆/2, indicating statistical independence. 

 

 

3. PHYSICAL LAYER KEY GENERATION TECHNIQUES 

The following section provides a systematic overview of the most significant key generation 

techniques in wireless communication, categorized into traditional signal processing techniques, deep 

learning-based techniques, and domain adaptation techniques. Each set of techniques is criticized based on 

their approach, applicability, and limitations in real-world applications. 

 

3.1.  Traditional signal processing-based techniques 

Traditional PLKG techniques rely on handcrafted signal features such as received signal strength 

(RSS) and CSI. These approaches typically involve signal quantization, randomness extraction, and key 

reconciliation to produce symmetric secret keys between communicating parties. 

Jana et al. [19] reported one of the initial empirical studies on RSS-based PLKG, citing the fallibility 

of signal reciprocity in real-world environments. They observed temporal noise, hardware fluctuations, and 

interference significantly affecting the dependability of key generation, making it in most instances, with 

high bit mismatch rates. To solve these disadvantages, Zhao et al. [20] proposed secret key extraction from 

channel estimates (SKECE), a CSI-based approach that takes advantage of subcarrier-level channel estimates 

and adaptive stream alignment to provide higher key generation throughput and resilience. This approach 

circumvents costly reconciliation but depends on the availability of fine-grained CSI, which is not available 
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and may not be provided in commercial off-the-shelf equipment. It is also established on this foundation that 

Lin et al. [21] presented an RSS-based scheme with wavelet shrinkage denoising and adaptive guard-band 

quantization. Their scheme improves the BDR and KGR while maintaining the design light and hardware 

friendly. However, the reliance on RSS also limits its entropy and robustness in static or low-variation 

environments. Overall, while traditional signal processing methods offer low complexity and intuitive design, 

they often underperform in highly dynamic or noisy conditions due to their reliance on manually engineered 

features and their sensitivity to environmental variability [22]. 

 

3.2.  Deep learning-based methods 

Temporal deep learning has recently gained much attention in physical layer key generation due to 

its superior feature extraction ability and robustness to noise, non-reciprocity, and environmental uncertainty 

[10], [16], [23], [24]. Deep learning methods are different from traditional ones that rely heavily on hand-

engineered signal processing chains in that they learn optimal representations from raw CSI directly and 

hence manual feature engineering is avoided [25]. 

One of the foundational contributions to the application of deep learning in wireless 

communications was made by O’Shea and Hoydis [14], who proposed modeling the entire communication 

system as an autoencoder. This groundbreaking study presented the concept of end-to-end neural network-

based cooperative learning of modulation, channel effects, and decoding. Their method showed that it is 

possible to use data-driven models to capture complicated channel characteristics, even if it was not primarily 

focused on key generation. This laid the conceptual foundation for the application of deep learning in PLKG. 

Building on this foundation, Zhang et al. [15] proposed KGNet, one of the earliest deep learning 

models explicitly designed for PLKG. Aimed at frequency division duplexing (FDD) systems where 

conventional channel reciprocity does not naturally exist, KGNet learns a deterministic mapping between 

uplink and downlink CSI using a lightweight feedforward neural network. The approach maintains 

computational efficiency appropriate for IoT contexts while striking a positive trade-off between KGR and 

BDR. 

To address adversarial threats in spatially correlated scenarios, Zhou and Zeng [17] introduced the 

domain-adversarial autoencoder (DAAE), which combines an encoder-decoder structure with adversarial 

learning. By extracting domain-invariant reciprocal features, DAAE seeks to improve secrecy performance 

even in the presence of nearby eavesdroppers. Although the model appears promising, it can only be 

evaluated in a single spatial configuration, and its BDR is higher than some of the current methods, 

suggesting that it needs to be more widely generalized. 

Recognizing the limitations of handcrafted preprocessing under real-world channel impairments,  

He et al. [16] developed CRLNet, a multibranch autoencoder architecture equipped with a non-reciprocity 

learning module and a hybrid loss function. CRLNet, which was created for TDD-orthogonal frequency 

division multiplexing (OFDM) systems, efficiently reduces asymmetries in channel estimations caused by 

noise and hardware. It has proven to perform better in a variety of settings, surpassing traditional models in 

terms of robustness under different signal-to-noise ratios (SNRs), key error rate (KER), and KGR. 

More recently, Chen et al. [18] introduced the BCFL framework, which applies convolutional neural 

networks (CNNs) to enhance feature convergence and noise suppression. By using a unique multiple 

quantization approach, BCFL greatly increases key generation randomness and throughput without adding to 

the computing burden. IoT applications that are resource-constrained and latency-sensitive find it especially 

appealing due to its effective execution. 

Despite their advances, deep learning–based PLKG schemes face several practical challenges. These 

include the need for large volumes of synchronized training data, the risk of overfitting in diverse 

deployment scenarios, and the difficulty of ensuring model generalizability. Addressing these challenges will 

require continued exploration into self-supervised learning, cross-domain adaptation, lightweight network 

architectures, and adversarial robustness to ensure scalable and secure key generation across heterogeneous 

wireless systems. 

 

3.3.  Domain adaptation and cross-scenario learning 

Current developments in physical layer key generation emphasize how important domain adaptation 

is to guaranteeing model durability in a variety of wireless environments. Models that have been pre-trained 

in one environment can be refined with little additional data in new domains thanks to the successful 

application of transfer learning techniques to solve domain shifts. For instance, Li et al. [26] proposed a 

cross-domain PLKG framework tailored for IoT devices, where transfer learning is leveraged to adapt key 

generation models efficiently under varying environmental and device conditions. This method is useful in 

situations where resources are limited since it significantly reduces the burden of data collecting while 

preserving high key agreement rates. 
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In addition to transfer learning, formal domain adaptation frameworks are starting to appear that 

seek invariant feature representations for PLKG across various networks. Several recent studies have 

developed adversarial and discrepancy minimization-based models, which mathematically formalize domain 

shifts and demonstrate improved generalization in real-world heterogeneous wireless networks. These 

domain adaptation methods, by aligning feature distributions between source and target domains, show 

promise in overcoming the challenges posed by environmental dynamics and hardware heterogeneity, thus 

paving the way for scalable and robust PLKG systems in practical deployments. 

 

 

4. RESULTS AND DISCUSSION  

In This section consolidates comparative results from the literature on physical-layer key generation, 

comparing KGR, BDR, model generalization, and computational complexity. We discuss signal-processing 

and deep learning–based techniques, including domain-adversarial learning, and interpret their implications 

for IoT security and scalability. 

The trajectory of PLKG has seen substantial progress, yet persistent challenges remain. RSS-based 

approaches such as adaptive quantization with cascade and privacy amplification achieved high KGR in 

dynamic environments but consistently underperformed in static ones, suffering from elevated BDR [19]. 

Subsequent refinements, including wavelet preprocessing with modified guard-band quantization [21] and 

Fourier/smoothing-based curve fitting [27], improved stability and randomness quality, thereby reducing 

mismatch errors. However, these gains were accompanied by significant preprocessing costs and scalability 

issues, raising concerns for low-power IoT devices where computational budgets are minimal. Even with 

careful preprocessing, the reliance on environment dynamics remains a bottleneck, making these methods ill-

suited for heterogeneous deployment scenarios where both high KGR and low BDR are simultaneously 

required. This highlights a fundamental limitation of RSS-based designs: their lack of robustness across 

different environmental conditions. 

CSI-driven and deep learning–based schemes have emerged to mitigate these shortcomings. CSI-

based techniques, notably SKECE, demonstrated markedly higher key rates and lower communication 

overhead compared to RSS approaches, achieving consistent randomness validation even in static settings 

[20]. Deep learning approaches, such as autoencoder-based models for physical-layer representation learning 

[14], reciprocity-mapping networks like KGNet [15] and CRLNet [16], as well as bidirectional CNN 

convergence models [18], have expanded the design space by capturing non-linear channel correlations. 

These methods reported improved KGR and reduced KER, but they face prohibitive computational 

complexity and training overhead. Furthermore, their generalization ability across diverse environments 

remains largely unverified, with most evaluations constrained to specific datasets or controlled scenarios. 

Although DAAE introduced explicit cross-domain adaptation [17], it still reported high BDR under practical 

conditions, underlining the difficulty of ensuring stable performance across deployment contexts. 

Collectively, while CSI and deep learning methods mark clear improvements, none provide a universally 

reliable solution balancing low BDR, high KGR, and cross-domain generalization. 

Table 1 summarizes and compares representative PLKG techniques reported in the literature in 

terms of KGR, BDR/KER, model generalization, and computational complexity. This comparison highlights 

the trade-offs between performance, robustness, and computational cost across traditional signal-processing 

and deep learning–based approaches. As shown in Table 1, RSS-based schemes generally offer low 

computational complexity but suffer from higher BDR in static environments, while deep learning–based 

approaches achieve improved KGR at the expense of increased model complexity and limited generalization. 

Recent advances have also explored application-driven and calibration-oriented solutions. Hardware 

calibration schemes [28] reduced systematic impairments and achieved lower BDR, while automatic 

identification system (AIS)-focused PLKG [29] optimized KGR in maritime unicast environments with 

lightweight complexity. These works show promising application-specific adaptability but highlight another 

gap: lack of universality. Their effectiveness is tightly bound to constrained domains (hardware-specific 

settings or maritime networks), leaving unresolved the broader challenge of building a generalizable model. 

Furthermore, CNN-based architectures used for convergence-driven PLKG [18] and calibration pipelines 

[28] impose heavy inference and resource demands, which contradict the scaling trends of IoT devices 

becoming increasingly resource-constrained. In summary, despite diverse methodological innovations, no 

existing approach has successfully unified environmental robustness, lightweight complexity, and strong 

randomness guarantees. This underscores a pressing need for models that can achieve cross-environment 

stability with both low BDR and high KGR while remaining computationally viable for next-generation IoT 

deployments. 
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Table 1. Comparative summary of PLKG techniques in terms of KGR, BDR/KER, model generalization, and 

computational complexity 

 

 

5. OPEN CHALLENGES AND RESEARCH GAPS 

Even with significant advancements in PLKG, several issues still exist, especially with the rapid 

evolution of wireless standards and increasingly dynamic communication environments. One prominent gap 

lies in multi-user key generation within 5G, millimeter-wave (mmWave), and multiple input multiple output 

(MIMO) systems. Most existing PLKG schemes predominantly focus on point-to-point communication 

scenarios. However, real-world implementations frequently entail intricate multi-user and multi-antenna 

setups, where secure key extraction is hampered by elements like interference, intricate beamforming, and 

channel asymmetries. The applicability of current frameworks in sophisticated wireless networks is limited 

since they have not yet adequately addressed these issues. 

Static or high-mobility situations, like interior fixed settings or vehicle networks with fast Doppler 

changes, present another significant issue for FDD systems. Even though newer techniques like deep 

reciprocity learning and KGNet try to address problems caused by non-reciprocal channels in FDD, key 

consistency is still challenging. This is especially true in scenarios where channel reciprocity is inherently 

weak or severely distorted, undermining the generation of robust shared keys. 

Since the majority of models are designed for small-scale fading and find it difficult to adjust to the 

unpredictability produced by obstacles, movement, and urban settings in the real world, the effects of large-

scale fading such as shadowing and path loss—are still underexplored. Furthermore, current PLKG research 

frequently lacks rigorous security validation; formal information-theoretic proofs and adversarial robustness 

evaluations, particularly against active or learning-based attacks, are rarely addressed, despite the frequent 

reporting of performance metrics like KDR and KGR. Moreover, PLKG actual implementation in end-to-end 

Study Technique KGR (as reported) BDR/KER Model generalization Computational 
complexity 

[19] RSS-based adaptive 

quantization with Cascade 

and privacy amplification 

High KGR High errors in static Limited generalization Low 

[20] CSI-based SKECE Much higher key rate 

than RSS in both static 

and mobile 

Generally low 

mismatch 

Testing in different 

environments 

Medium 

[14] Deep learning PLKG N/R Not discussed in 

terms of BDR/KER 

Instead explores 

robustness, convergence 

Limited 

[21] RSS with wavelet 

preprocessing multi-

channel quantization 
scheme for key generation 

(MCQSG) 

Much higher KGR 

than prior RSS 

schemes 

Lower BDR Limited discussion on 

model generalization 

High pre-

processing 

needed 

[27] RSS with curve fitting 
(Fourier/simple moving 

average (SMA)) 

Efficient with multi-bit 
quantization 

BDR markedly 
reduced via 

preprocessing; 

National Institute of 
Standards and 

Technology (NIST) 

tests passed 

Limited discussion on 
model generalization 

Large amount 
of 

preprocessing 

cost 

[15] KGNet (deep learning 

mapping for FDD 

reciprocity) 

Medium Lower KER across 

SNRs 

Limited discussion on 

model generalization 

High 

complexity 

[16] Deep learning based 

channel reciprocity 

learning (CRLNet) 

Improved KGR Lower KER Limited discussion on 

model generalization 

Medium 

[17] DAAE N/R Weaker eve 

correlation shown 

High BDR and explicit 

cross-domain 

generalization in spatially 
correlated channels 

High 

complexity 

[18] Bidirectional convergence 

CNN for PLKG 

Higher KGR High KER Limited discussion on 

model generalization 

Require 

substantial 
training data 

[28] Deep learning–based 

hardware calibration 

N/R Low BDR Limited discussion on 

model generalization 

High 

computation 
cost 

[29] PLKG for AIS unicast Reported good KGR Reported low BDR 

for the testing data 

Limited to ships, not 

generalized across different 
domains 

Low complexity 
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secure systems is limited by a continuing gap between the wireless and cryptographic communities that 

makes it difficult to integrate with accepted security protocols. 

 

 

6. FUTURE RESEARCH DIRECTIONS 

To advance PLKG toward practical deployment, future research should prioritize scalable and 

interdisciplinary solutions. Expanding PLKG to support multi-user, MIMO, and cooperative systems is 

essential, particularly by leveraging spatial diversity and beamforming in 5G/6G networks to enhance 

entropy extraction. Robust learning methods, such as meta-learning and self-supervised techniques, should be 

developed to handle non-reciprocal and static channels, especially in FDD or low-mobility scenarios. 

Incorporating environmental awareness through context data or multimodal sensing can improve stability 

under large-scale fading. Lightweight, on-device models using pruning, quantization, or knowledge 

distillation are critical for resource-constrained IoT and edge devices. Federated and collaborative learning 

can further reduce centralization risks while enhancing model generalization. Crucially, PLKG must be 

integrated into complete security frameworks, including authentication, reconciliation, and post-quantum 

encryption. Finally, extensive real-world testing in dynamic environments, supported by industry-academia 

collaboration, is vital for validating robustness and driving standardization. 

 

 

7. CONCLUSION 

This review has explored the progression of physical-layer key generation PLKG techniques, 

highlighting the transition from traditional RSS and CSI-based signal processing approaches to advanced 

deep learning and domain adaptation frameworks. While classical methods offer simplicity and low 

complexity, they often struggle in dynamic or heterogeneous environments. In contrast, deep learning models 

such as autoencoders, reciprocity learning networks, and domain-adversarial architectures have demonstrated 

strong potential in improving key reliability and robustness by learning from raw, non-reciprocal channel 

features. 

Despite these advancements, several open challenges remain. Existing models lack scalability in 

complex scenarios such as multi-user MIMO, FDD, and large-scale fading environments. Furthermore, high 

training costs, limited real-world testing, and weak integration with cryptographic protocols hinder practical 

deployment. Future research should prioritize the development of lightweight, generalizable models, explore 

federated and on-device learning techniques, and bridge the gap between wireless signal processing and 

formal cryptographic systems. Addressing these gaps will be essential for building secure, scalable, and 

adaptive PLKG solutions for next-generation wireless networks. 
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