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With the burgeoning internet of things (IoT), securing communication
becomes paramount. Traditional cryptography does not meet computational
needs and brute-force attacks. This review explores the state-of-the-art
physical layer secret key generation (PLKG) that takes advantage of the
inherent reciprocity and randomness of wireless channels. We investigate
cutting-edge techniques such as feature extraction networks, domain-
adversarial training, and deep learning-based approaches, evaluating their
effects on the security and efficiency of key generation. In addition to these
methods, the review addresses real-world challenges such as multi-user
scenarios, reconciliation overhead, and inconsistent channel measurement.
We believe that improved key generation rates and security can be achieved
through the use of millimeter wave technology and full-duplex
communication. To strengthen the robustness of key generation, the paper
concludes by suggesting future directions, such as incorporating more
random sources, such as physiological signals and sensor data. This
comprehensive overview offers deep insights into the state-of-the-art and
paves the way for reliable communication in ever more complicated loT
settings.
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1. INTRODUCTION

The rapid expansion of the internet of things (l1oT) is significantly changing the way we live, work,
and interact with technology. By connecting everyday objects such as home appliances, medical devices,
vehicles, and industrial machines to the internet, as shown in Figure 1, loT is creating smarter and more
responsive environments. These technologies are now playing a key role in areas such as smart homes,
healthcare, transportation, agriculture, and smart cities. This fast growth is made possible by improvements in
wireless communication, cloud and edge computing, artificial intelligence (Al), and low-power electronics.
Recent studies predict that in 2025, there will be more than 30 billion connected IoT devices worldwide, with
a potential economic impact of up to 12.6 trillion per year by 2030 [1]-[3]. However, despite its
transformative potential, the 10T paradigm introduces a host of complex challenges that have placed it at the
forefront of global research and development efforts. Among the most pressing concerns is the inherent
vulnerability of the wireless communication medium. Due to the broadcast nature of the wireless channel, it
introduces numerous threats such as eavesdropping, denial of service, jamming, and spoofing that require
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secure communication methods [4]-[6]. Traditional public-key cryptography relies on complex mathematical
algorithms to secure communication between devices, requiring significant computational power and
memory for encryption and decryption processes. While highly effective in conventional computing
environments, these techniques become impractical for resource-constrained devices, such as those
commonly found in 10T networks, where power and memory are limited. This limitation highlights the need
for alternative security approaches that can provide robust protection while being lightweight and efficient,
motivating the exploration of new solutions beyond traditional cryptographic methods [7]-[9].
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Figure 1. The application of loT

Research developed a new lightweight technique in the 1990s called physical layer key generation
(PLKG) [10], which leverages the inherent properties of wireless channels to establish secure keys between
legitimate communicating parties called Alice and Bob [11]-[13]. In simple terms, PLKG uses the physical
characteristics of wireless communication channels to generate a secret key between legitimate parties
security. In PLKG it’s important to observe high reciprocal channel features between two communicating
parties. O’Shea and Hoydis [14] learn the channel feature between two communication parties by using the
autoencoder, which results greater in knowledge acquisition. Zhang et al. [15] designed key generation
model to reduce the impact of noise effect in channel reciprocity. Similarly, He et al. [16] used autoencoder
to reduce the noise from channel state information (CSI) data. Zhou and Zeng [17] used a hybrid deep
learning model autoencoder and domain adversarial neural network to enhance the channel reciprocity and
secure the key from Eva. Chen et al. [18] designed a new approach called bidirectional convergence feature
learning (BCFL) to improve the key generation rate (KGR) and reduce noise impact.

Despite the promising potential of physical layer key generation for secure wireless
communications, several practical challenges continue to hinder its widespread adoption. CSI in the real
world is often contaminated with substantial channel noise and weakly correlated, which existing methods
struggle to eliminate effectively. Moreover, the current state of art technique [15]-[18] have difficulty
adapting to intricate fluctuations in channel conditions, which can cause overfitting when the training and
testing scenarios differ. These challenges are amplified in complex 10T environments, where conventional
methods lack the flexibility to address data distribution shifts, causing models to become tailored to specific
environments rather than being broadly generalizable. Moreover, conventional static quantization schemes
struggle to adapt to rapidly changing wireless environments, which further degrades key generation
performance and increasing bit disagreement rate (BDR). Given the rapid evolution of 10T applications and
the increasing security threats they face, there is a pressing need for lightweight, scalable, generalized and
secure PLKG frameworks tailored to real-world environments.

The purpose of this systematic review is to discuss the problem in the current state of art technique
and provide a solution to solve the problem in existing research. This work highlights innovative approaches
such as deep learning, domain-adversarial learning, and hybrid techniques, emphasizing their implications for
securing 10T networks and beyond. By synthesizing current research efforts, identifying existing gaps, and
suggesting promising future directions, this review aims to deepen understanding of PLKG methodologies
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and foster the development of practical, robust, and secure key generation schemes suitable for increasingly

complex wireless ecosystems. The key contributions of this review are summarized as follows:

— Reviews and synthesizes existing PLKG techniques, highlighting their strengths and limitations.

—  Analyzes lightweight designs and their suitability for resource-constrained 10T environments.

—  Compares quantization methods across studies in terms of KGR, BDR, and entropy performance.

—  Examines the role of deep learning integration in improving robustness and adaptability in PLKG.

— ldentifies open challenges, hybrid approaches, and future research directions, including cross-scenario
generalization and lightweight solutions.

This review is structured as follows: section 2 presents the fundamentals of PLKG. Section 3
reviews the current state-of-the-art techniques, including deep learning approaches, hybrid deep learning
models, and channel reciprocity-based methods. The section 4 provides a detailed discussion of results and
analyses. Section 5 addresses open challenges and research gaps in the field. Finally, the paper concludes
with a summary of key findings and outlines future research directions.

2. FUNDATMENTALS OF PLKG

Physical layer key generation is a new cryptographic method that utilizes randomness and
reciprocity of wireless channels to derive secret keys between two legitimate communicating parties.
Compared to conventional key exchange protocols depending on complex algorithms and computational
hardness. PLKG draws common entropy from the physical wireless environment and therefore naturally
aligns with the demands of lightweight and low-power applications such as the 10T. The security of PLKG
arises from the inability of an adversary, located more than half a wavelength away, to observe the same
channel characteristics due to the inherent spatial decorrelation of the wireless medium.

There are usually four basic steps in the key generation process: channel probing, quantization,
information reconciliation, and privacy amplification, as illustrated in Figure 2. Channel probing is the first
step, where both communicating parties send their pilot signals to estimate their channel state. The
quantization step converts the continuous-valued channel measurement into binary strings (initial keys).
Information reconciliation is applied in order to cure any mismatching bits between the two strings with the
assistance of error correction codes so that both parties have an equal key. Privacy amplification is then
applied to compress the shared string, removing any potential leakage and enhancing secrecy.

Alice Bob
Pilot Signal
Channel Probing

Channel Probing

Pilct Signal
»

Quantization Quantization
Wireless

Channel

Public Informatian

Reconciliation Reconciliation

Privacy amplification Privacy amplification

Figure 2. Four-stage physical layer key generation process, including channel probing, quantization,
reconciliation, and privacy amplification

PLKG relies on three physical-layer principles channel reciprocity, temporal variation, and spatial
de-correlation, each playing a critical role in ensuring secure and reliable key generation. These principles are
discussed below in detail.
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2.1. Reciprocity of wireless channels

Channel reciprocity is the property that the wireless channel response from node A to node B is
roughly equal to that from node B to node A when measured within the channel coherence time [13]. This
allows both devices to independently see well-correlated CSI and derive symmetric keys without key
exchange. Reciprocity holds in time division duplexing (TDD) systems under ideal conditions; however,
practical impairments such as hardware mismatches, antenna calibration errors, and oscillator drift cause
asymmetries that lead to greater BDR. Mathematically, channel reciprocity can be expressed as:

Hyp(t) = Hpu(t) 1)

where, H,5(t) and Hy,(t) represent the complex channel responses from Alice to Bob and from Bob to
Alice at time ¢, respectively.

2.2. Temporal variation and entropy

Temporal variation accounts for the time-varying nature of the wireless channel due to factors such
as movement, multipath propagation, and changes in environmental conditions. The dynamics introduce
randomness into the measurements of the channel, which is required for secure key generation. The use of
rapid and random temporal changes guarantees high entropy and protection from predictability and replay
attacks. However, in quasi-static or indoor environments where the channel is not highly fluctuating, the lack
of randomness can limit key freshness and create security vulnerabilities. Mathematically, temporal variation
can be expressed as:

E[Ht)H* (t+At)] > 0as At > T, (2)

This (2) expresses that the autocorrelation between the current and future channel responses diminishes as the
time delay At exceeds the coherence time T, promoting temporal randomness.

2.3. Spatial decorrelation for eavesdropper resistance

Spatial decorrelation ensures that wireless channel characteristics experienced by an adversary at a
different physical location are uncorrelated with those observed by legitimate users. This spatial uniqueness
is fabricated through multipath scattering and is very likely to take place when the distance from the
legitimate devices to the eavesdropper is greater than half a wavelength. Therefore, even adjacent passive
attackers cannot get the same key, which provides a physical-layer security against eavesdropping. This is a
fundamental characteristic of the confidentiality properties of PLKG in wireless networks. Mathematically,
spatial decorrelation can be expressed as:

E[H(x)H*(x + Ax)] - 0as Ax > A/2 (3)

where, H(x) denotes the channel at position x, and 4 is the signal wavelength. The expectation tends to zero
when the spatial separation Ax exceeds 4/2, indicating statistical independence.

3. PHYSICAL LAYER KEY GENERATION TECHNIQUES

The following section provides a systematic overview of the most significant key generation
techniques in wireless communication, categorized into traditional signal processing techniques, deep
learning-based techniques, and domain adaptation techniques. Each set of techniques is criticized based on
their approach, applicability, and limitations in real-world applications.

3.1. Traditional signal processing-based techniques

Traditional PLKG techniques rely on handcrafted signal features such as received signal strength
(RSS) and CSI. These approaches typically involve signal quantization, randomness extraction, and key
reconciliation to produce symmetric secret keys between communicating parties.

Jana et al. [19] reported one of the initial empirical studies on RSS-based PLKG, citing the fallibility
of signal reciprocity in real-world environments. They observed temporal noise, hardware fluctuations, and
interference significantly affecting the dependability of key generation, making it in most instances, with
high bit mismatch rates. To solve these disadvantages, Zhao et al. [20] proposed secret key extraction from
channel estimates (SKECE), a CSl-based approach that takes advantage of subcarrier-level channel estimates
and adaptive stream alignment to provide higher key generation throughput and resilience. This approach
circumvents costly reconciliation but depends on the availability of fine-grained CSI, which is not available

Advancements in physicl layer key generation: a review on channel reciprocity ... (Syed Shafag Ali Shah)



200 a ISSN: 1693-6930

and may not be provided in commercial off-the-shelf equipment. It is also established on this foundation that
Lin et al. [21] presented an RSS-based scheme with wavelet shrinkage denoising and adaptive guard-band
quantization. Their scheme improves the BDR and KGR while maintaining the design light and hardware
friendly. However, the reliance on RSS also limits its entropy and robustness in static or low-variation
environments. Overall, while traditional signal processing methods offer low complexity and intuitive design,
they often underperform in highly dynamic or noisy conditions due to their reliance on manually engineered
features and their sensitivity to environmental variability [22].

3.2. Deep learning-based methods

Temporal deep learning has recently gained much attention in physical layer key generation due to
its superior feature extraction ability and robustness to noise, non-reciprocity, and environmental uncertainty
[10], [16], [23], [24]. Deep learning methods are different from traditional ones that rely heavily on hand-
engineered signal processing chains in that they learn optimal representations from raw CSI directly and
hence manual feature engineering is avoided [25].

One of the foundational contributions to the application of deep learning in wireless
communications was made by O’Shea and Hoydis [14], who proposed modeling the entire communication
system as an autoencoder. This groundbreaking study presented the concept of end-to-end neural network-
based cooperative learning of modulation, channel effects, and decoding. Their method showed that it is
possible to use data-driven models to capture complicated channel characteristics, even if it was not primarily
focused on key generation. This laid the conceptual foundation for the application of deep learning in PLKG.

Building on this foundation, Zhang et al. [15] proposed KGNet, one of the earliest deep learning
models explicitly designed for PLKG. Aimed at frequency division duplexing (FDD) systems where
conventional channel reciprocity does not naturally exist, KGNet learns a deterministic mapping between
uplink and downlink CSI using a lightweight feedforward neural network. The approach maintains
computational efficiency appropriate for 0T contexts while striking a positive trade-off between KGR and
BDR.

To address adversarial threats in spatially correlated scenarios, Zhou and Zeng [17] introduced the
domain-adversarial autoencoder (DAAE), which combines an encoder-decoder structure with adversarial
learning. By extracting domain-invariant reciprocal features, DAAE seeks to improve secrecy performance
even in the presence of nearby eavesdroppers. Although the model appears promising, it can only be
evaluated in a single spatial configuration, and its BDR is higher than some of the current methods,
suggesting that it needs to be more widely generalized.

Recognizing the limitations of handcrafted preprocessing under real-world channel impairments,
He et al. [16] developed CRLNet, a multibranch autoencoder architecture equipped with a non-reciprocity
learning module and a hybrid loss function. CRLNet, which was created for TDD-orthogonal frequency
division multiplexing (OFDM) systems, efficiently reduces asymmetries in channel estimations caused by
noise and hardware. It has proven to perform better in a variety of settings, surpassing traditional models in
terms of robustness under different signal-to-noise ratios (SNRs), key error rate (KER), and KGR.

More recently, Chen et al. [18] introduced the BCFL framework, which applies convolutional neural
networks (CNNSs) to enhance feature convergence and noise suppression. By using a unique multiple
quantization approach, BCFL greatly increases key generation randomness and throughput without adding to
the computing burden. 10T applications that are resource-constrained and latency-sensitive find it especially
appealing due to its effective execution.

Despite their advances, deep learning—based PLKG schemes face several practical challenges. These
include the need for large volumes of synchronized training data, the risk of overfitting in diverse
deployment scenarios, and the difficulty of ensuring model generalizability. Addressing these challenges will
require continued exploration into self-supervised learning, cross-domain adaptation, lightweight network
architectures, and adversarial robustness to ensure scalable and secure key generation across heterogeneous
wireless systems.

3.3. Domain adaptation and cross-scenario learning

Current developments in physical layer key generation emphasize how important domain adaptation
is to guaranteeing model durability in a variety of wireless environments. Models that have been pre-trained
in one environment can be refined with little additional data in new domains thanks to the successful
application of transfer learning techniques to solve domain shifts. For instance, Li et al. [26] proposed a
cross-domain PLKG framework tailored for 10T devices, where transfer learning is leveraged to adapt key
generation models efficiently under varying environmental and device conditions. This method is useful in
situations where resources are limited since it significantly reduces the burden of data collecting while
preserving high key agreement rates.
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In addition to transfer learning, formal domain adaptation frameworks are starting to appear that
seek invariant feature representations for PLKG across various networks. Several recent studies have
developed adversarial and discrepancy minimization-based models, which mathematically formalize domain
shifts and demonstrate improved generalization in real-world heterogeneous wireless networks. These
domain adaptation methods, by aligning feature distributions between source and target domains, show
promise in overcoming the challenges posed by environmental dynamics and hardware heterogeneity, thus
paving the way for scalable and robust PLKG systems in practical deployments.

4. RESULTS AND DISCUSSION

In This section consolidates comparative results from the literature on physical-layer key generation,
comparing KGR, BDR, model generalization, and computational complexity. We discuss signal-processing
and deep learning—based techniques, including domain-adversarial learning, and interpret their implications
for 10T security and scalability.

The trajectory of PLKG has seen substantial progress, yet persistent challenges remain. RSS-based
approaches such as adaptive quantization with cascade and privacy amplification achieved high KGR in
dynamic environments but consistently underperformed in static ones, suffering from elevated BDR [19].
Subsequent refinements, including wavelet preprocessing with modified guard-band quantization [21] and
Fourier/smoothing-based curve fitting [27], improved stability and randomness quality, thereby reducing
mismatch errors. However, these gains were accompanied by significant preprocessing costs and scalability
issues, raising concerns for low-power IoT devices where computational budgets are minimal. Even with
careful preprocessing, the reliance on environment dynamics remains a bottleneck, making these methods ill-
suited for heterogeneous deployment scenarios where both high KGR and low BDR are simultaneously
required. This highlights a fundamental limitation of RSS-based designs: their lack of robustness across
different environmental conditions.

CSl-driven and deep learning—based schemes have emerged to mitigate these shortcomings. CSI-
based techniques, notably SKECE, demonstrated markedly higher key rates and lower communication
overhead compared to RSS approaches, achieving consistent randomness validation even in static settings
[20]. Deep learning approaches, such as autoencoder-based models for physical-layer representation learning
[14], reciprocity-mapping networks like KGNet [15] and CRLNet [16], as well as bidirectional CNN
convergence models [18], have expanded the design space by capturing non-linear channel correlations.
These methods reported improved KGR and reduced KER, but they face prohibitive computational
complexity and training overhead. Furthermore, their generalization ability across diverse environments
remains largely unverified, with most evaluations constrained to specific datasets or controlled scenarios.
Although DAAE introduced explicit cross-domain adaptation [17], it still reported high BDR under practical
conditions, underlining the difficulty of ensuring stable performance across deployment contexts.
Collectively, while CSI and deep learning methods mark clear improvements, none provide a universally
reliable solution balancing low BDR, high KGR, and cross-domain generalization.

Table 1 summarizes and compares representative PLKG techniques reported in the literature in
terms of KGR, BDR/KER, model generalization, and computational complexity. This comparison highlights
the trade-offs between performance, robustness, and computational cost across traditional signal-processing
and deep learning—based approaches. As shown in Table 1, RSS-based schemes generally offer low
computational complexity but suffer from higher BDR in static environments, while deep learning—based
approaches achieve improved KGR at the expense of increased model complexity and limited generalization.

Recent advances have also explored application-driven and calibration-oriented solutions. Hardware
calibration schemes [28] reduced systematic impairments and achieved lower BDR, while automatic
identification system (AlS)-focused PLKG [29] optimized KGR in maritime unicast environments with
lightweight complexity. These works show promising application-specific adaptability but highlight another
gap: lack of universality. Their effectiveness is tightly bound to constrained domains (hardware-specific
settings or maritime networks), leaving unresolved the broader challenge of building a generalizable model.
Furthermore, CNN-based architectures used for convergence-driven PLKG [18] and calibration pipelines
[28] impose heavy inference and resource demands, which contradict the scaling trends of 10T devices
becoming increasingly resource-constrained. In summary, despite diverse methodological innovations, no
existing approach has successfully unified environmental robustness, lightweight complexity, and strong
randomness guarantees. This underscores a pressing need for models that can achieve cross-environment
stability with both low BDR and high KGR while remaining computationally viable for next-generation 10T
deployments.
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Table 1. Comparative summary of PLKG techniques in terms of KGR, BDR/KER, model generalization, and
computational complexity

Study Technique KGR (as reported) BDR/KER Model generalization Computational
complexity
[19] RSS-based adaptive High KGR High errors in static Limited generalization Low

quantization with Cascade
and privacy amplification

[20] CSl-based SKECE Much higher key rate Generally low Testing in different Medium
than RSS in both static mismatch environments
and mobile
[14] Deep learning PLKG N/R Not discussed in Instead explores Limited
terms of BDR/KER robustness, convergence
[21] RSS with wavelet Much higher KGR Lower BDR Limited discussion on High pre-
preprocessing multi- than prior RSS model generalization processing
channel quantization schemes needed
scheme for key generation
(MCQSG)
[27] RSS with curve fitting Efficient with multi-bit BDR markedly Limited discussion on Large amount
(Fourier/simple moving quantization reduced via model generalization of
average (SMA)) preprocessing; preprocessing
National Institute of cost
Standards and

Technology (NIST)
tests passed

[15] KGNet (deep learning Medium Lower KER across Limited discussion on High

mapping for FDD SNRs model generalization complexity
reciprocity)

[16] Deep learning based Improved KGR Lower KER Limited discussion on Medium
channel reciprocity model generalization
learning (CRLNet)

[17] DAAE N/R Weaker eve High BDR and explicit High

correlation shown cross-domain complexity

generalization in spatially
correlated channels

[18]  Bidirectional convergence Higher KGR High KER Limited discussion on Require
CNN for PLKG model generalization substantial
training data
[28] Deep learning—based N/R Low BDR Limited discussion on High
hardware calibration model generalization computation
cost
[29] PLKG for AIS unicast Reported good KGR Reported low BDR Limited to ships, not Low complexity
for the testing data ~ generalized across different
domains

5. OPEN CHALLENGES AND RESEARCH GAPS

Even with significant advancements in PLKG, several issues still exist, especially with the rapid
evolution of wireless standards and increasingly dynamic communication environments. One prominent gap
lies in multi-user key generation within 5G, millimeter-wave (mmWave), and multiple input multiple output
(MIMO) systems. Most existing PLKG schemes predominantly focus on point-to-point communication
scenarios. However, real-world implementations frequently entail intricate multi-user and multi-antenna
setups, where secure key extraction is hampered by elements like interference, intricate beamforming, and
channel asymmetries. The applicability of current frameworks in sophisticated wireless networks is limited
since they have not yet adequately addressed these issues.

Static or high-mobility situations, like interior fixed settings or vehicle networks with fast Doppler
changes, present another significant issue for FDD systems. Even though newer techniques like deep
reciprocity learning and KGNet try to address problems caused by non-reciprocal channels in FDD, key
consistency is still challenging. This is especially true in scenarios where channel reciprocity is inherently
weak or severely distorted, undermining the generation of robust shared keys.

Since the majority of models are designed for small-scale fading and find it difficult to adjust to the
unpredictability produced by obstacles, movement, and urban settings in the real world, the effects of large-
scale fading such as shadowing and path loss—are still underexplored. Furthermore, current PLKG research
frequently lacks rigorous security validation; formal information-theoretic proofs and adversarial robustness
evaluations, particularly against active or learning-based attacks, are rarely addressed, despite the frequent
reporting of performance metrics like KDR and KGR. Moreover, PLKG actual implementation in end-to-end
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secure systems is limited by a continuing gap between the wireless and cryptographic communities that
makes it difficult to integrate with accepted security protocols.

6. FUTURE RESEARCH DIRECTIONS

To advance PLKG toward practical deployment, future research should prioritize scalable and
interdisciplinary solutions. Expanding PLKG to support multi-user, MIMO, and cooperative systems is
essential, particularly by leveraging spatial diversity and beamforming in 5G/6G networks to enhance
entropy extraction. Robust learning methods, such as meta-learning and self-supervised techniques, should be
developed to handle non-reciprocal and static channels, especially in FDD or low-mobility scenarios.
Incorporating environmental awareness through context data or multimodal sensing can improve stability
under large-scale fading. Lightweight, on-device models using pruning, quantization, or knowledge
distillation are critical for resource-constrained 10T and edge devices. Federated and collaborative learning
can further reduce centralization risks while enhancing model generalization. Crucially, PLKG must be
integrated into complete security frameworks, including authentication, reconciliation, and post-quantum
encryption. Finally, extensive real-world testing in dynamic environments, supported by industry-academia
collaboration, is vital for validating robustness and driving standardization.

7. CONCLUSION

This review has explored the progression of physical-layer key generation PLKG techniques,
highlighting the transition from traditional RSS and CSl-based signal processing approaches to advanced
deep learning and domain adaptation frameworks. While classical methods offer simplicity and low
complexity, they often struggle in dynamic or heterogeneous environments. In contrast, deep learning models
such as autoencoders, reciprocity learning networks, and domain-adversarial architectures have demonstrated
strong potential in improving key reliability and robustness by learning from raw, non-reciprocal channel
features.

Despite these advancements, several open challenges remain. Existing models lack scalability in
complex scenarios such as multi-user MIMO, FDD, and large-scale fading environments. Furthermore, high
training costs, limited real-world testing, and weak integration with cryptographic protocols hinder practical
deployment. Future research should prioritize the development of lightweight, generalizable models, explore
federated and on-device learning techniques, and bridge the gap between wireless signal processing and
formal cryptographic systems. Addressing these gaps will be essential for building secure, scalable, and
adaptive PLKG solutions for next-generation wireless networks.
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