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 Ultrasound tomography reconstruction using the distorted born iterative 

method (DBIM) is sensitive to measurement noise, which degrades image 

fidelity and slows convergence. We propose integrating a k-nearest 

neighbors (KNN) denoising step within each DBIM iteration to suppress 

noise adaptively while preserving structural edges. Simulations with a 

circular cylindrical target and transmit/receive geometry (12×12) were 

conducted at signal-to-noise ratio (SNR) levels of 6 dB, 3 dB, and 1 dB. 

Compared with conventional DBIM employing Tikhonov regularization, the 

KNN-filtered DBIM reduces normalized reconstruction error by up to 57.2% 

at 1 dB and shows faster error decay over successive iterations. The method 

is training-free, computationally lightweight, and preserves fine structural 

details. These properties make KNN-filtered DBIM attractive for noisy or 

resource-constrained imaging environments. Future work will validate the 

approach on experimental data and explore adaptive K selection. 
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1. INTRODUCTION  

Ultrasound imaging and tomography are critical techniques in clinical diagnostics, providing non-

invasive and real-time visualization of internal tissues. Traditional ultrasound image acquisition primarily 

relies on the pulse-echo method, where reflected signals from tissue boundaries are used to reconstruct the 

underlying structure of the imaged object [1]. However, this approach has inherent limitations in resolution 

and contrast, particularly in highly scattering media. To address these challenges, inverse scattering 

techniques have been developed, allowing for more accurate image reconstruction by incorporating multiple 

viewing angles around the object [2]. These methods enable improved imaging quality, especially under 

strong scattering conditions, making them suitable for biomedical applications such as breast cancer detection 

and soft tissue characterization. In ultrasound tomography, two primary imaging modalities are commonly 

studied: attenuation imaging and sound-speed imaging [3]. While attenuation images provide valuable 

information about tissue properties, sound-speed imaging generally offers superior resolution and contrast, 

making it a preferred choice for high-fidelity tomographic reconstructions. Despite its potential, ultrasound 

tomography has not been widely commercialized due to the computational complexity and limited efficiency 

of state-of-the-art inverse scattering techniques. The born iterative method (BIM) and its advanced variant, 

the distorted born iterative method (DBIM), are among the most widely used reconstruction algorithms in 

diffraction tomography [4]-[6]. DBIM, in particular, is known for its faster convergence compared to BIM 

but suffers from higher sensitivity to noise due to the iterative nature of the forward and inverse solvers. 

Additionally, DBIM has been successfully applied in both 2D and 3D reconstructions, as well as in layered 
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media and lossy environments [7]-[9]. These studies demonstrate the flexibility of DBIM, though the 

computational burden remains a significant challenge, as each iteration requires solving large-scale matrix 

equations, making real-time implementation impractical for many clinical applications [10]. DBIM, in 

particular, is known for its faster convergence compared to BIM but suffers from higher sensitivity to noise 

due to the iterative nature of the forward and inverse solvers. Additionally, the computational burden of these 

methods remains a significant challenge, as each iteration requires solving large-scale matrix equations, 

making real-time implementation impractical for many clinical applications. 

Several studies have attempted to mitigate these computational and noise-related challenges. For 

instance, edge detection methods were incorporated into DBIM to enhance convergence speed and improve 

reconstruction quality [1]. However, this approach does not fully address the issue of noise sensitivity and 

may introduce artifacts in highly scattering environments. Another notable advancement is the use of the 

multi-level fast multi-pole algorithm (MLFMA) as a forward solver to accelerate the reconstruction process 

[11]. While MLFMA effectively reduces computation time, it incurs a high setup cost and demands extensive 

pre-processing, making practical implementation difficult. To stabilize DBIM in the presence of noise, 

Tikhonov regularization has traditionally been employed to solve the inverse problem by incorporating linear 

measurements of pressure signals [12]. While Tikhonov regularization mitigates some ill-posedness, it does not 

effectively suppress noise, often leading to degraded reconstruction quality in noisy environments. Several 

machine learning techniques have been explored for ultrasound tomography. For instance, Cheng et al. [13] 

proposed a deep learning method for limited-angle prostate imaging, while Shi et al. [14] focused on time of 

flight (TOF) extraction in bone ultrasound tomography. These methods highlight the potential of data-driven 

approaches in improving image quality. Further developments in deep learning-based tomographic 

reconstruction have been reported in [15], [16], where sparse sampling and general tomographic inversion 

were enhanced using convolutional architectures. Additional studies demonstrated fast learning-based 

approaches for ultrasound speed mapping [17], [18]. Despite these advances, deep learning models often 

require extensive training datasets and computational resources, making their real-time deployment 

challenging. Despite these advances, deep learning models often require extensive training datasets and 

computational resources, making their real-time deployment challenging. To address this, we propose an 

alternative k-nearest neighbors (KNN)-based machine learning denoising approach to enhance the robustness 

of DBIM reconstructions. Unlike deep learning methods that rely on data-driven feature extraction, KNN 

denoising leverages local neighborhood information to suppress noise while preserving structural details, 

making it particularly suitable for iterative reconstruction frameworks like DBIM. The simplicity and 

efficiency of KNN make it an attractive choice for real-time tomographic imaging applications, particularly 

in scenarios with limited training data or computational constraints. Ultrasound tomography is a significant 

imaging modality, particularly in breast cancer detection, soft tissue imaging, and non-destructive testing 

(NDT), where high-resolution and low-cost solutions are vital. The proposed KNN-filtered DBIM addresses 

key limitations in conventional methods by offering a low-complexity, training-free denoising strategy 

suitable for clinical and real-time applications. This work presents a novel integration of KNN-based 

denoising within the DBIM framework, which, to the best of our knowledge, has not been previously 

reported in ultrasound tomography. While DBIM and KNN are individually well-established, the 

methodological innovation lies in the adaptive KNN filtering applied in each iterative update of DBIM, 

effectively enhancing noise suppression without compromising structural resolution. This novel integration 

addresses the critical limitations of conventional regularization, particularly under high-noise scenarios, and 

thus represents a substantial advancement beyond existing approaches.  

The remainder of this paper is organized as follows. Section 2 describes the theoretical background 

of the DBIM and presents the proposed integration of KNN-based denoising into the reconstruction 

framework. Section 3 provides simulation results to evaluate the effectiveness of the proposed method under 

various noise conditions. Section 4 discusses the key findings, compares them with existing approaches, 

highlights the implications and limitations, and outlines potential directions for future research. Finally, 

Section 5 concludes the paper by summarizing the main contributions and results. 

 

 

2. METHOD 

2.1.  DBIM 

The region of interest (ROI) encompasses the reconstructed object, which is centered at the origin of 

a two-dimensional space and discretized into an N×N grid of square pixels, each with a side length of h. The 

system includes Nt transmitters and Nr receivers. Figure 1 provides a schematic representation of the 

geometrical and acoustic setup of the ultrasound tomography system. 
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Figure 1. Ultrasound tomography imaging system 

 

 

Given the circular scattering region illustrated in Figure 1, the object function can be determined 

using: 

 

𝑂(𝑟) = {
𝑘1(𝑟)2  − 𝑘2

2 = 𝜔2 (
1

𝑐1
2 −

1

𝑐2
2)  𝑖𝑓 𝑟 ≤ 𝑅

0 𝑖𝑓 𝑟 > 𝑅 
 (1) 

 

where c1 and c2 represent the speed of sound within the object and in water, respectively. The ultrasound 

frequency is denoted by f, while ω corresponds to the angular frequency, given by ω = 2πf. Additionally, R 

signifies the radius of the object. 

To acquire the scattered data, we establish a measurement configuration for the transmitters and 

receivers. At any given moment, only a single transmitter and a single receiver are active, corresponding to 

one measured data point. Assuming that density variations are negligible, the inhomogeneous wave equation 

is expressed as: 

 

(𝛻2 + 𝑘0
2(𝑟))𝑝(𝑟) = −𝑂(𝑟)𝑝(𝑟) (2) 

 

where k0 = ω/c0 represents the wavenumber in the reference medium (i.e., water), and p(r) denotes the 

total pressure field.  

By solving (2), the scattered pressure can be expressed in an integral form using the Green’s 

function as: 

 

𝑝𝑠𝑐(𝑟)  =  𝑝(𝑟)  −  𝑝𝑖𝑛𝑐(𝑟)  =  ∫ ∫ 𝑂(𝑟)𝑝(𝑟)𝐺(׀r − r’(3) (׀ 

 

where 𝑝𝑖𝑛𝑐(𝑟) represents the incident pressure, and G denotes the free-space Green’s function. In (3) can be 

solved using the method of moments, employing sinc basis functions and delta functions [19].  

The pressure at the grid points can be represented as an N2 × 1 vector, 

 

𝑝 =  𝑝𝑖𝑛𝑐 +  𝐶∗𝐷(𝑂∗)𝑝∗ (4) 

 

and the scattered pressure can also be determined as a scalar value. 

 

𝑝𝑠𝑐 =  𝐵𝑖
∗𝐷(𝑂∗)𝑝∗ (5) 

 

where 𝐵𝑖
∗ is a 1 × N2 vector derived from a matrix constructed using the Green’s coefficient G0(r, r’) for each 

pixel to the ith receiver. The matrix 𝐶̅ is an N2 × N2 matrix formed by Green’s coefficient among all pixels 

in the meshing area. The operator D(⋅) converts a vector into a diagonal matrix. Detailed computations of 𝐵𝑖
∗ 

and 𝐶∗ can be found in [19]. 

If Nt transmitters and Nr receivers are employed, the scattered pressure signal can be represented as 

a vector of size NtNr × 1, which is derived from (5) as: 

 

𝑝𝑠𝑐 =  𝐵𝑖
∗𝐷(𝑂∗)𝑝∗ = 𝑀𝑂∗ (6) 

 



TELKOMNIKA Telecommun Comput El Control   

 

 Distorted born iterative method reconstruction in high-noise environments using … (Nguyen Quang Huy) 

209 

where M = BD(p∗) is the matrix whose size is NtNr × N2 

Since the Green’s function satisfies the same differential equation as the pressure field, the forward 

solver is utilized to compute the Green’s function for an arbitrary reference background. Given an initial 

value O0
* and the corresponding reference background at time step k, the object function at step k + 1 is 

updated as: 

 

𝑂𝑘+1
∗ = 𝑂𝑘

∗ + ∆𝑂𝑘   (7) 

 

where ∆O is the update of the object function which can be deduced from (6) as: 

 

∆𝑝∗𝑠𝑐 = 𝑀∆𝑂 (8) 

 

Obviously, there is an iterative process in DBIM in order to estimate the object function O∗. Moreover, in 

each DBIM step, we need another iterative process mentioned in the next subsection. 

 

2.2.  Inverse problem 

It is well known that the matrix M is ill-conditioned, meaning that small measurement errors in the 

surface data can result in significant perturbations in the reconstruction outcome. The inverse solver matrix M 

is weakly diagonal and ill-conditioned due to the placement of detectors outside the meshing area. 

Consequently, it is often reformulated as a least-squares problem: 

 

𝑛||∆𝑝∗𝑠𝑐 − 𝑀∆𝑂∗||2 (9) 

 

where the symbol || ||2 represents the Euclidean norm of vector space. 

In conventional methods [20], the estimation of ∆O∗ at the time step k can be performed by using 

Tikhonov regularization [12]: 

 

∆𝑂𝑘
∗ = 𝑚𝑖𝑛||∆𝑝∗𝑠𝑐 − 𝑀∆𝑂∗||22 +  𝛾|| ∆𝑂∗||22 (10) 

 

where ∆p∗sc represents the difference between the predicted and measured scattered fields and γ is the 

regularization parameter. The regularized solution is expressed as: 

 

∆𝑂 =  ∑ 𝜎𝑖𝑢𝑖
𝑇𝑔/[(𝜎𝑖 +  𝛾)𝑣𝑖]𝑟

𝑖=1  (11) 

 

where ui and vi are the component of the two matrixes U and V that satisfy: 

 

𝑀 =  𝑈𝛴𝑉𝑇 = ∑ 𝜎𝑖𝑢𝑖
𝑇𝑟

𝑖=1  (12) 

 

where Σ = 𝑑𝑖𝑎𝑔(σ1, σ2, . . σr) with 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 and 𝑈𝑇𝑈 = 𝑉𝑇𝑉 = 𝐼. We assume that 𝜎𝑟 is the 

smallest nonzero singular value that we wish to retain.  

From (11), it is evident that the regularization parameter γ must be carefully selected, as it plays a 

crucial role in maintaining the stability of the system [20]. A large γ value results in a rough reconstructed 

image, whereas a small γ increases computational complexity. These data are processed using the DBIM to 

reconstruct the speed of sound contrast. This approach enables the detection of tissue presence within the 

medium. DBIM relies on the Born approximation to iteratively solve the nonlinear inverse scattering 

problem. Algorithm 1 presents the calculation process of the DBIM as follows:  

 

Algorithm 1. The distorted born iterative method 

Select the positions of the transmitters and detectors as illustrated in Figure 1. 

Choose initial values: O0
*=0 and p0

*=p*inc as shown in (15) 

While n<Nmax or RRE<ε 

1. Calculate B* and C* 

2. Calculate p* and p*sc corresponds to On
* using (4) and (5) 

3. Calculate RRE corresponds to On
* 

4. Calculate the ∆On
* by solving (10) 

5. Calculate a new value of On+1
* by using (7) 

6. n=n+1 

End. 
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In Algorithm 1, the relative residual error is defined by: 

 

𝑅𝑅𝐸 = ||M∆𝑂∗ − ∆𝑝∗𝑠𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ||/||∆𝑝∗𝑠𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|| (13) 

 

The relative residual error (RRE) is computed at each iteration. The iterative process will terminate when the 

RRE falls below a predefined tolerance or when the number of iterations reaches the maximum limit Nmax. 

 

2.3.  KNN for denoising in DBIM 

The KNN denoising approach is a machine learning-based technique that enhances the DBIM by 

reducing noise in the reconstructed images. Traditional DBIM suffers from high noise sensitivity, which can 

degrade image quality and slow down convergence. By integrating KNN filtering into the iterative process, 

noise can be adaptively suppressed while preserving important structural details. KNN denoising leverages 

the spatial correlation among neighboring data points to smooth out noise while maintaining the integrity of 

the signal. This makes it particularly effective for ill-conditioned inverse problems such as DBIM-based 

tomographic reconstruction. DBIM is widely used in diffraction tomography due to its ability to iteratively 

refine reconstructions of small-scale structures. However, its high sensitivity to noise remains a major 

limitation, particularly in scenarios where the input data is contaminated by measurement errors or system 

instability. Traditional regularization is commonly used to address this issue, but it does not effectively 

remove noise, especially when dealing with strong scattering environments. KNN filtering is introduced as an 

alternative approach to improve noise robustness without significantly increasing computational complexity. 

The key advantages of using KNN in DBIM include: (a) preservation of structural details: Unlike traditional 

smoothing filters, KNN does not blur edges or distort fine features in the reconstructed images; (b) 

adaptability to nonlinear data: KNN operates based on similarity metrics rather than fixed transformations, 

making it suitable for complex biomedical imaging scenarios; and (c) computational efficiency: KNN does 

not require pre-training, making it a lightweight and easy-to-integrate solution within the iterative DBIM 

framework. KNN denoising is applied within the DBIM framework as: i) noise identification: at each 

iteration of DBIM, the reconstructed field is affected by noise, which can cause numerical instability and 

image degradation; ii) local neighborhood selection: for each pixel (or grid point) in the reconstructed image, 

a set of K nearest neighbors is identified based on Euclidean distance; iii) weighted averaging: the intensity 

value of the target pixel is replaced with the weighted mean of its K-nearest neighbors. This step smooths out 

noise while preserving high-contrast features; and iv) iterative refinement: the denoised image is fed back 

into the next DBIM iteration, enhancing stability and accelerating convergence. Mathematically, the denoised 

value for a pixel 𝑥𝑖 is given by: 

 

𝑥𝑖
′ =

1

𝐾
∑ 𝑥𝑖𝑗∈𝑁(𝑖)  (14) 

 

where 𝑁(𝑖) represents the set of K-nearest neighbors of 𝑥𝑖. 

The KNN filter in this study was implemented with 𝐾=5, which provided an optimal trade-off 

between noise suppression and structural preservation. Several values of 𝐾 (3, 5, and 7) were tested 

experimentally; while smaller 𝐾 values led to insufficient denoising, larger values tended to oversmooth 

object boundaries. The Euclidean distance metric was used to determine the nearest neighbors, and each 

neighbor’s contribution was weighted inversely proportional to its distance from the target pixel. This 

configuration yielded the most stable convergence behavior and lowest reconstruction error across different 

noise levels, as demonstrated in the simulation results. KNN denoising is integrated directly after noise-

contaminated field estimation and before the inverse problem is solved in each DBIM iteration. This 

integration ensures that DBIM receives a cleaner input at each iteration, leading to faster con-vergence and 

improved reconstruction accuracy. Algorithm 2 shows the K-nearest neighbors-filtered distorted born 

iterative method.  

 

Algorithm 2. The KNN-filtered DBIM 

1. Initialize DBIM with measured scattering data. 

2. Add Gaussian noise to simulate real-world measurement uncertainties. 

3. Apply KNN-based filtering on the scattered field to remove high-frequency noise components. 

4. Use the denoised data to update the contrast function using the DBIM iterative process. 

5. Repeat steps 3-4 until convergence criteria are met. 

 

Unlike median, bilateral, or wavelet-based denoisers that either blur edges or require transform-

domain tuning, and unlike computationally intensive methods such as BM3D or NLM, our KNN-based 
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approach provides a favorable trade-off: training-free, computationally lightweight, locally adaptive 

smoothing that preserves structural edges and is straightforward to embed into each DBIM iteration. 

The overall workflow of the proposed KNN-filtered DBIM is illustrated in Figure 2. The process 

begins with initializing the DBIM using measured scattered field data, followed by the addition of Gaussian 

noise to emulate realistic measurement uncertainties. A KNN-based denoising step is then applied to the 

scattered field to suppress high-frequency noise components while preserving structural information. The 

denoised data are subsequently used in the DBIM iterative update to refine the contrast function. These 

filtering and updating steps are repeated until the convergence criteria are satisfied, yielding the final 

reconstructed sound-speed distribution. 

 

 

 
 

Figure 2. Flowchart of the proposed KNN-filtered DBIM 

 

 

The computational cost of the proposed KNN-filtered DBIM was slightly higher than that of the 

standard DBIM due to the additional denoising step. On average, the KNN-based filtering increased the total 

computation time by approximately 8–10% per iteration, which is negligible compared with the overall 

DBIM reconstruction time. Unlike deep-learning-based denoisers, the KNN operation requires no model 

training and only involves simple distance computations, keeping the method lightweight and 

computationally efficient. Therefore, the proposed approach achieves a favorable balance between improved 

reconstruction quality and minimal added computational overhead. 

 

 

3. RESULTS AND DISCUSSION 

The DBIM implementation and our proposed configuration are validated using simulation on target 

with moderate speed contrast. Simulated data were generated for an infinitely long circular cylinder, 

discretized into an N × N = 12 × 12 pixel grid. The cylinder has a radius of 7.3 mm, an ultrasound signal 

frequency of 0.5 MHz, and a sound speed contrast of 10%. The system includes Nt=12 transmitters and 

Nr=12 receivers. The transmitters are positioned at 11 evenly spaced locations along a circular path 

surrounding the object. For each transmitter, 12 detectors are placed on the opposite side of the circle to 

capture the scattered signals. The incident pressure for a zero-order Bessel beam in a two-dimensional case is 

given by: 

 

𝑝∗𝑖𝑛𝑐 = 𝐽0(𝑘0׀𝑟 − 𝑟𝑘(15) (׀ 

 

where 𝐽0 is the 0th order Bessel function and |𝑟 − 𝑟𝑘| is the distance between the transmitter and the kth point 

in the ROI. Figure 3 is the ideal object function corresponding to (1). In order to have a quantitative 

comparison, (13) can be used to calculate the RRE for each case. 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 206-218 

212 

 
 

Figure 3. Ideal object function (one object in the region of interest). Color bar indicates percent of sound-

speed contrast (%) 

 

 

Figure 4 shows the normalized reconstruction error after the first iteration for DBIM and KNN-

filtered DBIM at signal-to-noise ratio (SNR) levels of 6 dB, 3 dB, and 1 dB. The corresponding reconstructed 

sound-speed maps are displayed in Figure 5; visual inspection indicates improved structural preservation 

with KNN filtering.  

 

 

 
 

Figure 4. Normalized error of the DBIM and KNN-filtered DBIM with various signal-to-noise ratio 

 

 

The results in Figure 4 indicate that the proposed KNN-based denoising method consistently 

reduces error across all noise levels, demonstrating superior robustness in high-noise environments. At SNR 

= 6 dB, as shown in Figure 6, the KNN-filtered DBIM achieves a 49.5% reduction in error compared to 

conventional DBIM (2.0653 vs. 4.0936). This trend continues at SNR = 3 dB as shown in Figure 7, where the 

proposed method reduces the error by 49% (2.6417 vs. 5.1774). The most significant improvement is 

observed at SNR = 1 dB, where the error is reduced by 57.2% (3.3998 vs. 7.9431), highlighting the 

effectiveness of KNN denoising in extremely noisy conditions. These findings suggest that integrating KNN-

based denoising into DBIM enhances convergence speed by providing a cleaner initial estimate (as shown in 

Figure 5), reducing the burden on the iterative reconstruction process. The ability of KNN to adaptively 
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smooth noise while preserving structural details contributes to more stable and accurate reconstructions, 

particularly in low-SNR conditions. Consequently, the KNN-filtered DBIM not only accelerates the 

convergence rate but also improves overall image quality, making it a promising approach for tomographic 

imaging in challenging environments. 

 

 

 DBIM KNN-filtered DBIM 

SNR = 6 dB 

  

SNR = 3 dB 

  

SNR = 1 dB 

  
 

Figure 5. Reconstructed object function after the first iteration, using the conventional DBIM and proposed 

KNN-filtered DBIM methods in case of SNR = 6, 3, and 1 dB, respectively. Colorbar indicates percent of 

sound-speed contrast (%) 

 

 

  
  

Figure 6. The normalization error after the first 

three iterations using the conventional DBIM and 

proposed KNN-filtered DBIM method in case of 

SNR = 6 dB 

Figure 7. The normalization error after the first three 

iterations using the conventional DBIM and 

proposed KNN-filtered DBIM method in case of 

SNR = 3 dB 
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Figure 8 plots normalized error across the first three iterations at SNR = 1 dB, demonstrating faster 

error reduction for the KNN-filtered scheme. The result demonstrates the effectiveness of the KNN-filtered 

DBIM approach in reducing reconstruction errors compared to conventional DBIM under high-noise 

conditions. Over three iterations, the normalized error of the proposed method remains consistently lower 

than that of the traditional DBIM. In the first iteration, the error reduction is particularly significant, with the 

KNN-filtered DBIM achieving a 57.2% lower error than the conventional approach. This trend continues 

across subsequent iterations, showing an overall improvement in reconstruction accuracy. The results 

indicate that KNN-based denoising effectively removes noise before the iterative reconstruction process, 

leading to better initial conditions and improved stability. 

We further examined a more complex scenario consisting of two circular objects located within the 

region of interest, as illustrated by the ideal object function in Figure 9. This configuration introduces 

stronger multiple-scattering interactions and overlapping diffraction patterns, posing a more challenging 

reconstruction problem compared with the single-object case. The reconstruction performance of the 

conventional DBIM and the proposed KNN-filtered DBIM was evaluated and compared under this setting at 

an input SNR of 1 dB. The normalized reconstruction errors for three successive iterations were 7.34, 4.09, 

and 2.41 for DBIM, and 4.99, 3.58, and 2.08 for the KNN-filtered DBIM, respectively. The results clearly 

indicate that the proposed approach achieves faster error reduction and superior reconstruction fidelity, 

effectively mitigating noise and preserving the structural boundaries of both inclusions. 

 

 

  
  

Figure 8. The normalization error after the 

first three iterations using the conventional 

DBIM and proposed KNN-filtered DBIM 

method in case of SNR = 1 dB 

Figure 9. Ideal object function (two objects in the region of 

interest). Color bar indicates percent of sound-speed contrast 

(%) 

 

 

The effectiveness of KNN denoising in DBIM depends on factors such as noise level, object 

complexity, and spatial resolution. It is particularly beneficial when the dataset has moderate to high levels of 

noise, where traditional regularization methods fail to maintain image quality; the reconstruction problem is 

highly ill-conditioned, requiring robust denoising techniques; fine structural details need to be preserved, 

such as in medical ultrasound imaging or non-destructive testing. Simulation results confirm that KNN 

denoising consistently improves DBIM performance by reducing reconstruction artifacts and enhancing 

SNR. The proposed KNN-based DBIM framework can be advantageous in various biomedical and industrial 

applications, including medical ultrasound tomography for high-resolution tissue imaging; breast cancer 

detection, where improved sound-speed maps enable better lesion characterization; non-destructive 

evaluation (NDE) of materials using ultrasound-based imaging. By providing better noise suppression and 

reconstruction accuracy, this approach can make ultrasound tomography more viable for clinical and 

industrial adoption. By applying KNN-based machine learning denoising in DBIM, this study introduces a 

efficient approach to enhance reconstruction stability, noise robustness, and convergence speed. Unlike 

conventional regularization techniques, KNN effectively adapts to local variations in the dataset, making it 

highly effective for inverse scattering problems. The experimental results demonstrate significant 

improvements in image quality, error reduction, and iterative efficiency, confirming that KNN-based 

denoising is a promising enhancement for DBIM in practical biomedical imaging applications.  
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To further validate the robustness of the proposed method, we extended the analysis by introducing 

another lightweight denoising baseline-the median filter-within the DBIM iterative framework. This 

comparison aims to examine whether the improvement achieved by the KNN-based denoising originates 

from its adaptive neighborhood weighting or merely from generic local smoothing. Figure 10 illustrates the 

normalized reconstruction errors across three successive iterations for conventional DBIM, median-filtered 

DBIM, and the proposed KNN-filtered DBIM at an input SNR of 1 dB. The quantitative results show that the 

proposed KNN-filtered DBIM achieves the lowest reconstruction error (3.40→1.65) compared with median-

filtered DBIM (6.77→2.41) and conventional DBIM (7.94→3.23). This represents an error reduction of 

approximately 49% relative to DBIM and 32% relative to median filtering after the third iteration. The KNN-

based approach converges faster and preserves structural boundaries more effectively, demonstrating its 

superior ability to suppress noise without over smoothing object edges. Unlike the median filter, which 

applies uniform local averaging and tends to blur fine details, the KNN filter adaptively weights neighboring 

pixels based on similarity, leading to enhanced edge fidelity and stability in low-SNR conditions. These 

findings confirm that the proposed KNN-filtered DBIM provides a more accurate and robust reconstruction 

framework while maintaining computational efficiency comparable to other lightweight denoisers. 

 

 

 
 

Figure 10. Normalized reconstruction error versus iteration number for the three methods-conventional 

DBIM, median-filtered DBIM, and KNN-filtered DBIM-at SNR = 1 dB 

 

 

4. RESULT AND DISCUSSION 

The central contribution of this work lies in the integration of a simple yet effective KNN-based 

denoising mechanism into the DBIM reconstruction framework. Unlike conventional DBIM approaches that 

rely solely on regularization or heavy deep-learning-based post-processing, the proposed method embeds 

adaptive, data-driven noise suppression directly within each iteration. This conceptual modification enhances 

convergence stability and reconstruction fidelity under strong noise conditions while maintaining low 

computational complexity. The approach demonstrates that classical, non-parametric techniques such as 

KNN can be successfully hybridized with iterative tomographic algorithms to achieve robust and efficient 

ultrasound image reconstruction. This study addresses the challenge of noise sensitivity and slow 

convergence in conventional DBIM reconstructions, particularly under SNR conditions. To overcome this 

limitation, a KNN-based denoising step was integrated into the DBIM iterative loop, forming the proposed 

KNN-filtered DBIM algorithm. Simulation results demonstrated that the proposed method significantly 

improves reconstruction fidelity and convergence speed compared with both standard DBIM and median-

filtered DBIM, while maintaining computational efficiency. These findings suggest that incorporating simple, 

adaptive, non-parametric filters such as KNN into iterative imaging frameworks can offer a practical and 

lightweight alternative to complex deep-learning-based denoising approaches for robust tomographic 

ultrasound reconstruction. 

This study has demonstrated the effectiveness of incorporating a KNN-based denoising strategy into 

the DBIM framework to improve the quality and robustness of ultrasound tomographic reconstruction under 
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noisy conditions. The simulation results clearly indicate that the proposed KNN-filtered DBIM method 

consistently outperforms the conventional DBIM approach in terms of normalized error and structural 

preservation, especially in low environments. The error reduction reached up to 57.2% at 1 dB SNR, and the 

visual quality of the reconstructed sound-speed maps was substantially improved after even a single iteration. 

Compared to existing denoising and regularization approaches in DBIM, such as Tikhonov 

regularization and edge-preserving priors [1], [12], the KNN-based method offers several advantages. The 

proposed method is training-free, simple to implement, and computationally efficient. Moreover, while 

traditional regularization techniques aim to stabilize the inverse problem mathematically, they often struggle 

to adapt to spatially varying noise or preserve fine structural details. In contrast, KNN filtering leverages 

local spatial relationships and performs adaptive smoothing that maintains edge information critical for high-

resolution tomographic imaging. The implications of these findings are notable. The integration of KNN 

filtering into DBIM provides a lightweight and flexible enhancement to an already well-established 

reconstruction algorithm, enabling its deployment in clinical or real-time applications where computational 

resources and data availability are limited. This is especially important for point-of-care ultrasound systems 

or low-cost imaging platforms used in remote or resource-constrained environments. Furthermore, the 

approach preserves the physical interpretability of the DBIM framework while improving its robustness to 

measurement noise, a long-standing challenge in ultrasound tomography. 

The main limitations of this study have been clearly stated in the revised manuscript. The proposed 

KNN-filtered DBIM was evaluated only in two-dimensional simulations, and the KNN parameter 𝐾 was kept 

fixed throughout all experiments. These constraints may limit the generalization of the results to more 

complex three-dimensional or heterogeneous media. Future work will address these limitations by extending 

the method to 3D configurations and implementing an adaptive KNN scheme where 𝐾 is optimized 

dynamically during iterations. 

Future research should focus on validating the proposed method using experimental datasets from 

actual ultrasound hardware. Further work may also explore the integration of adaptive KNN parameter 

selection, or hybrid approaches combining KNN with learning-based models to balance generalization and 

interpretability [21], [22]. Extending the approach to three-dimensional imaging, as well as applying it to 

attenuation imaging in addition to sound-speed reconstruction, could open new directions in high-fidelity 

ultrasound tomography. Beside that, new century is the era in which there is a large quantity of data, and that 

number is increasing. When dealing with such large amounts of data, the usual performance of computers is 

inadequate, so we need ultrasound hardware more powerful and more intelligence is required to response 

with the current explosion of big data [23]-27]. 

 

 

5. CONCLUSION 

This paper has successfully introduced a KNN-based machine learning denoising approach into the 

DBIM to enhance reconstruction stability and reduce noise sensitivity. The conventional DBIM framework, 

while effective for tomographic imaging, suffers from high sensitivity to noise and slow convergence in 

challenging conditions. By integrating KNN filtering into the iterative reconstruction process, we have 

demonstrated significant improvements in both reconstruction accuracy and convergence stability. Unlike 

conventional regularization techniques such as Tikhonov regularization, which only alleviates ill-posedness 

without effectively reducing noise, the proposed KNN-based approach leverages local neighborhood 

relationships to perform adaptive noise suppression, leading to better noise robustness and improved image 

fidelity. A simulation scenario involving sound-speed contrast reconstruction has been conducted to compare 

the performance of the conventional DBIM method and the proposed KNN-enhanced DBIM framework. The 

results, analyzed through both reconstructed object functions and relative residual errors, confirm that the 

proposed approach outperforms traditional DBIM in terms of noise resilience, convergence speed, and 

overall image quality. Specifically, our findings indicate that KNN-based denoising reduces reconstruction 

artifacts while preserving crucial structural details, making it a promising alternative to standard noise 

suppression techniques in iterative tomographic imaging. For further work, we will implement an adaptive 

KNN where K is optimized per iteration using cross-validation on a validation set.  
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