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1. INTRODUCTION

Ultrasound imaging and tomography are critical techniques in clinical diagnostics, providing non-
invasive and real-time visualization of internal tissues. Traditional ultrasound image acquisition primarily
relies on the pulse-echo method, where reflected signals from tissue boundaries are used to reconstruct the
underlying structure of the imaged object [1]. However, this approach has inherent limitations in resolution
and contrast, particularly in highly scattering media. To address these challenges, inverse scattering
techniques have been developed, allowing for more accurate image reconstruction by incorporating multiple
viewing angles around the object [2]. These methods enable improved imaging quality, especially under
strong scattering conditions, making them suitable for biomedical applications such as breast cancer detection
and soft tissue characterization. In ultrasound tomography, two primary imaging modalities are commonly
studied: attenuation imaging and sound-speed imaging [3]. While attenuation images provide valuable
information about tissue properties, sound-speed imaging generally offers superior resolution and contrast,
making it a preferred choice for high-fidelity tomographic reconstructions. Despite its potential, ultrasound
tomography has not been widely commercialized due to the computational complexity and limited efficiency
of state-of-the-art inverse scattering techniques. The born iterative method (BIM) and its advanced variant,
the distorted born iterative method (DBIM), are among the most widely used reconstruction algorithms in
diffraction tomography [4]-[6]. DBIM, in particular, is known for its faster convergence compared to BIM
but suffers from higher sensitivity to noise due to the iterative nature of the forward and inverse solvers.
Additionally, DBIM has been successfully applied in both 2D and 3D reconstructions, as well as in layered
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media and lossy environments [7]-[9]. These studies demonstrate the flexibility of DBIM, though the
computational burden remains a significant challenge, as each iteration requires solving large-scale matrix
equations, making real-time implementation impractical for many clinical applications [10]. DBIM, in
particular, is known for its faster convergence compared to BIM but suffers from higher sensitivity to noise
due to the iterative nature of the forward and inverse solvers. Additionally, the computational burden of these
methods remains a significant challenge, as each iteration requires solving large-scale matrix equations,
making real-time implementation impractical for many clinical applications.

Several studies have attempted to mitigate these computational and noise-related challenges. For
instance, edge detection methods were incorporated into DBIM to enhance convergence speed and improve
reconstruction quality [1]. However, this approach does not fully address the issue of noise sensitivity and
may introduce artifacts in highly scattering environments. Another notable advancement is the use of the
multi-level fast multi-pole algorithm (MLFMA) as a forward solver to accelerate the reconstruction process
[11]. While MLFMA effectively reduces computation time, it incurs a high setup cost and demands extensive
pre-processing, making practical implementation difficult. To stabilize DBIM in the presence of noise,
Tikhonov regularization has traditionally been employed to solve the inverse problem by incorporating linear
measurements of pressure signals [12]. While Tikhonov regularization mitigates some ill-posedness, it does not
effectively suppress noise, often leading to degraded reconstruction quality in noisy environments. Several
machine learning techniques have been explored for ultrasound tomography. For instance, Cheng et al. [13]
proposed a deep learning method for limited-angle prostate imaging, while Shi et al. [14] focused on time of
flight (TOF) extraction in bone ultrasound tomography. These methods highlight the potential of data-driven
approaches in improving image quality. Further developments in deep learning-based tomographic
reconstruction have been reported in [15], [16], where sparse sampling and general tomographic inversion
were enhanced using convolutional architectures. Additional studies demonstrated fast learning-based
approaches for ultrasound speed mapping [17], [18]. Despite these advances, deep learning models often
require extensive training datasets and computational resources, making their real-time deployment
challenging. Despite these advances, deep learning models often require extensive training datasets and
computational resources, making their real-time deployment challenging. To address this, we propose an
alternative k-nearest neighbors (KNN)-based machine learning denoising approach to enhance the robustness
of DBIM reconstructions. Unlike deep learning methods that rely on data-driven feature extraction, KNN
denoising leverages local neighborhood information to suppress noise while preserving structural details,
making it particularly suitable for iterative reconstruction frameworks like DBIM. The simplicity and
efficiency of KNN make it an attractive choice for real-time tomographic imaging applications, particularly
in scenarios with limited training data or computational constraints. Ultrasound tomography is a significant
imaging modality, particularly in breast cancer detection, soft tissue imaging, and non-destructive testing
(NDT), where high-resolution and low-cost solutions are vital. The proposed KNN-filtered DBIM addresses
key limitations in conventional methods by offering a low-complexity, training-free denoising strategy
suitable for clinical and real-time applications. This work presents a novel integration of KNN-based
denoising within the DBIM framework, which, to the best of our knowledge, has not been previously
reported in ultrasound tomography. While DBIM and KNN are individually well-established, the
methodological innovation lies in the adaptive KNN filtering applied in each iterative update of DBIM,
effectively enhancing noise suppression without compromising structural resolution. This novel integration
addresses the critical limitations of conventional regularization, particularly under high-noise scenarios, and
thus represents a substantial advancement beyond existing approaches.

The remainder of this paper is organized as follows. Section 2 describes the theoretical background
of the DBIM and presents the proposed integration of KNN-based denoising into the reconstruction
framework. Section 3 provides simulation results to evaluate the effectiveness of the proposed method under
various noise conditions. Section 4 discusses the key findings, compares them with existing approaches,
highlights the implications and limitations, and outlines potential directions for future research. Finally,
Section 5 concludes the paper by summarizing the main contributions and results.

2. METHOD
2.1. DBIM

The region of interest (ROI) encompasses the reconstructed object, which is centered at the origin of
a two-dimensional space and discretized into an NxN grid of square pixels, each with a side length of h. The
system includes N: transmitters and N, receivers. Figure 1 provides a schematic representation of the
geometrical and acoustic setup of the ultrasound tomography system.
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Figure 1. Ultrasound tomography imaging system

Given the circular scattering region illustrated in Figure 1, the object function can be determined

using:
2 _p2_,2(1 _ 1\ <
o = [l =13 a)(C% C%) if r <R W
0Oif r>R

where c¢; and c, represent the speed of sound within the object and in water, respectively. The ultrasound
frequency is denoted by f, while ® corresponds to the angular frequency, given by w = 2mf. Additionally, R
signifies the radius of the object.

To acquire the scattered data, we establish a measurement configuration for the transmitters and
receivers. At any given moment, only a single transmitter and a single receiver are active, corresponding to
one measured data point. Assuming that density variations are negligible, the inhomogeneous wave equation
is expressed as:

(V2 + k3(@)p(r) = —0()p(r) @)

where k, = w/c, represents the wavenumber in the reference medium (i.e., water), and p(r) denotes the
total pressure field.

By solving (2), the scattered pressure can be expressed in an integral form using the Green’s
function as:

p*() = p(r) — p"() = [ [ OP@G(r—1') ®)

where p™™¢(r) represents the incident pressure, and G denotes the free-space Green’s function. In (3) can be
solved using the method of moments, employing sinc basis functions and delta functions [19].
The pressure at the grid points can be represented as an N2 x 1 vector,

p = p™"+ C'D(0")p’ 4)
and the scattered pressure can also be determined as a scalar value.
p* = B;/D(0")p" Q)

where B} is a 1 x N2 vector derived from a matrix constructed using the Green’s coefficient G, (r, ") for each
pixel to the it" receiver. The matrix C is an N2 X N? matrix formed by Green’s coefficient among all pixels
in the meshing area. The operator D(-) converts a vector into a diagonal matrix. Detailed computations of B;
and C* can be found in [19].

If N, transmitters and N,. receivers are employed, the scattered pressure signal can be represented as
a vector of size NN, x 1, which is derived from (5) as:

p* = B;D(0")p" = MO" (6)
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where M = BD(p*) is the matrix whose size is NN, x N?

Since the Green’s function satisfies the same differential equation as the pressure field, the forward
solver is utilized to compute the Green’s function for an arbitrary reference background. Given an initial
value Oo" and the corresponding reference background at time step k, the object function at step k + 1 is
updated as:

Op41 = Oy + A0y @)
where AO is the update of the object function which can be deduced from (6) as:
Ap*S€ = MAO (8)

Obviously, there is an iterative process in DBIM in order to estimate the object function O*. Moreover, in
each DBIM step, we need another iterative process mentioned in the next subsection.

2.2. Inverse problem

It is well known that the matrix M is ill-conditioned, meaning that small measurement errors in the
surface data can result in significant perturbations in the reconstruction outcome. The inverse solver matrix M
is weakly diagonal and ill-conditioned due to the placement of detectors outside the meshing area.
Consequently, it is often reformulated as a least-squares problem:

n||Ap™¢ — MAO®||, 9)

where the symbol || ||, represents the Euclidean norm of vector space.
In conventional methods [20], the estimation of AO* at the time step k can be performed by using
Tikhonov regularization [12]:

AO; = min||Ap*s¢ — MAO*||22 + y|| AO*||22 10
k

where Ap*s¢ represents the difference between the predicted and measured scattered fields and y is the
regularization parameter. The regularized solution is expressed as:

A0 = ¥ o] g/[(o; + VIvi] 11)
where u;and v; are the component of the two matrixes U and V that satisfy:
M= USVT =3YI_, oul 12)

where X = diag(o,,05,..0,) With 0, = 0, = - > ¢, > 0 and UTU = VTV = I. We assume that o, is the
smallest nonzero singular value that we wish to retain.

From (11), it is evident that the regularization parameter y must be carefully selected, as it plays a
crucial role in maintaining the stability of the system [20]. A large y value results in a rough reconstructed
image, whereas a small y increases computational complexity. These data are processed using the DBIM to
reconstruct the speed of sound contrast. This approach enables the detection of tissue presence within the
medium. DBIM relies on the Born approximation to iteratively solve the nonlinear inverse scattering
problem. Algorithm 1 presents the calculation process of the DBIM as follows:

Algorithm 1. The distorted born iterative method

Select the positions of the transmitters and detectors as illustrated in Figure 1.
Choose initial values: O"=0 and po"=p*i"® as shown in (15)
While N<Nmax or RRE<g
1. Calculate B"and C”
Calculate p* and p™c corresponds to O," using (4) and (5)
Calculate RRE corresponds to Oy”
Calculate the AO," by solving (10)
Calculate a new value of On+1" by using (7)
n=n+1

I

End.
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In Algorithm 1, the relative residual error is defined by:
RRE = ||MAO* — Ap™“measured ||/||Ap™**measured|| (13)

The relative residual error (RRE) is computed at each iteration. The iterative process will terminate when the
RRE falls below a predefined tolerance or when the number of iterations reaches the maximum limit Nmax.

2.3. KNN for denoising in DBIM

The KNN denoising approach is a machine learning-based technique that enhances the DBIM by
reducing noise in the reconstructed images. Traditional DBIM suffers from high noise sensitivity, which can
degrade image quality and slow down convergence. By integrating KNN filtering into the iterative process,
noise can be adaptively suppressed while preserving important structural details. KNN denoising leverages
the spatial correlation among neighboring data points to smooth out noise while maintaining the integrity of
the signal. This makes it particularly effective for ill-conditioned inverse problems such as DBIM-based
tomographic reconstruction. DBIM is widely used in diffraction tomography due to its ability to iteratively
refine reconstructions of small-scale structures. However, its high sensitivity to noise remains a major
limitation, particularly in scenarios where the input data is contaminated by measurement errors or system
instability. Traditional regularization is commonly used to address this issue, but it does not effectively
remove noise, especially when dealing with strong scattering environments. KNN filtering is introduced as an
alternative approach to improve noise robustness without significantly increasing computational complexity.
The key advantages of using KNN in DBIM include: (a) preservation of structural details: Unlike traditional
smoothing filters, KNN does not blur edges or distort fine features in the reconstructed images; (b)
adaptability to nonlinear data: KNN operates based on similarity metrics rather than fixed transformations,
making it suitable for complex biomedical imaging scenarios; and (c) computational efficiency: KNN does
not require pre-training, making it a lightweight and easy-to-integrate solution within the iterative DBIM
framework. KNN denoising is applied within the DBIM framework as: i) noise identification: at each
iteration of DBIM, the reconstructed field is affected by noise, which can cause numerical instability and
image degradation; ii) local neighborhood selection: for each pixel (or grid point) in the reconstructed image,
a set of K nearest neighbors is identified based on Euclidean distance; iii) weighted averaging: the intensity
value of the target pixel is replaced with the weighted mean of its K-nearest neighbors. This step smooths out
noise while preserving high-contrast features; and iv) iterative refinement: the denoised image is fed back
into the next DBIM iteration, enhancing stability and accelerating convergence. Mathematically, the denoised
value for a pixel x; is given by:

;1
X; = ;ZjeN(i) Xi (14)

where N (i) represents the set of K-nearest neighbors of x;.

The KNN filter in this study was implemented with K=5, which provided an optimal trade-off
between noise suppression and structural preservation. Several values of K (3, 5, and 7) were tested
experimentally; while smaller K values led to insufficient denoising, larger values tended to oversmooth
object boundaries. The Euclidean distance metric was used to determine the nearest neighbors, and each
neighbor’s contribution was weighted inversely proportional to its distance from the target pixel. This
configuration yielded the most stable convergence behavior and lowest reconstruction error across different
noise levels, as demonstrated in the simulation results. KNN denoising is integrated directly after noise-
contaminated field estimation and before the inverse problem is solved in each DBIM iteration. This
integration ensures that DBIM receives a cleaner input at each iteration, leading to faster con-vergence and
improved reconstruction accuracy. Algorithm 2 shows the K-nearest neighbors-filtered distorted born
iterative method.

Algorithm 2. The KNN-filtered DBIM

Initialize DBIM with measured scattering data.

Add Gaussian noise to simulate real-world measurement uncertainties.

Apply KNN-based filtering on the scattered field to remove high-frequency noise components.
Use the denoised data to update the contrast function using the DBIM iterative process.
Repeat steps 3-4 until convergence criteria are met.

aghrwNPE

Unlike median, bilateral, or wavelet-based denoisers that either blur edges or require transform-
domain tuning, and unlike computationally intensive methods such as BM3D or NLM, our KNN-based
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approach provides a favorable trade-off: training-free, computationally lightweight, locally adaptive
smoothing that preserves structural edges and is straightforward to embed into each DBIM iteration.

The overall workflow of the proposed KNN-filtered DBIM is illustrated in Figure 2. The process
begins with initializing the DBIM using measured scattered field data, followed by the addition of Gaussian
noise to emulate realistic measurement uncertainties. A KNN-based denoising step is then applied to the
scattered field to suppress high-frequency noise components while preserving structural information. The
denoised data are subsequently used in the DBIM iterative update to refine the contrast function. These
filtering and updating steps are repeated until the convergence criteria are satisfied, yielding the final
reconstructed sound-speed distribution.

I//é t;lzt\\l

N S
U

Initialize DBIM with measured data

1

‘ Add Gaussian noise ‘

.

e
‘ Apply KNN-based filtering

U

‘ Update contrast function using DBIM ‘

Tl

‘ Output final reconstruction ‘
[
<End>

Figure 2. Flowchart of the proposed KNN-filtered DBIM

The computational cost of the proposed KNN-filtered DBIM was slightly higher than that of the
standard DBIM due to the additional denoising step. On average, the KNN-based filtering increased the total
computation time by approximately 8-10% per iteration, which is negligible compared with the overall
DBIM reconstruction time. Unlike deep-learning-based denoisers, the KNN operation requires no model
training and only involves simple distance computations, keeping the method lightweight and
computationally efficient. Therefore, the proposed approach achieves a favorable balance between improved
reconstruction quality and minimal added computational overhead.

3. RESULTS AND DISCUSSION

The DBIM implementation and our proposed configuration are validated using simulation on target
with moderate speed contrast. Simulated data were generated for an infinitely long circular cylinder,
discretized into an N x N = 12 x 12 pixel grid. The cylinder has a radius of 7.3 mm, an ultrasound signal
frequency of 0.5 MHz, and a sound speed contrast of 10%. The system includes N.=12 transmitters and
N,.=12 receivers. The transmitters are positioned at 11 evenly spaced locations along a circular path
surrounding the object. For each transmitter, 12 detectors are placed on the opposite side of the circle to
capture the scattered signals. The incident pressure for a zero-order Bessel beam in a two-dimensional case is
given by:

p*e = Jo(kolr — 7 1) (15)

where J, is the 0™ order Bessel function and |r — 7| is the distance between the transmitter and the k™ point
in the ROI. Figure 3 is the ideal object function corresponding to (1). In order to have a quantitative
comparison, (13) can be used to calculate the RRE for each case.
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Figure 4 shows the normalized reconstruction error after the first iteration for DBIM and KNN-
filtered DBIM at signal-to-noise ratio (SNR) levels of 6 dB, 3 dB, and 1 dB. The corresponding reconstructed
sound-speed maps are displayed in Figure 5; visual inspection indicates improved structural preservation
with KNN filtering.
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Figure 4. Normalized error of the DBIM and KNN-filtered DBIM with various signal-to-noise ratio

The results in Figure 4 indicate that the proposed KNN-based denoising method consistently
reduces error across all noise levels, demonstrating superior robustness in high-noise environments. At SNR
= 6 dB, as shown in Figure 6, the KNN-filtered DBIM achieves a 49.5% reduction in error compared to
conventional DBIM (2.0653 vs. 4.0936). This trend continues at SNR = 3 dB as shown in Figure 7, where the
proposed method reduces the error by 49% (2.6417 vs. 5.1774). The most significant improvement is
observed at SNR = 1 dB, where the error is reduced by 57.2% (3.3998 vs. 7.9431), highlighting the
effectiveness of KNN denoising in extremely noisy conditions. These findings suggest that integrating KNN-
based denoising into DBIM enhances convergence speed by providing a cleaner initial estimate (as shown in
Figure 5), reducing the burden on the iterative reconstruction process. The ability of KNN to adaptively
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smooth noise while preserving structural details contributes to more stable and accurate reconstructions,
particularly in low-SNR conditions. Consequently, the KNN-filtered DBIM not only accelerates the
convergence rate but also improves overall image quality, making it a promising approach for tomographic
imaging in challenging environments.

DBIM KNN-filtered DBIM

SNR=6dB

percent of the sound contrast
percent of the sound contrast

SNR=3dB

percent of the sound contrast
percent of the sound contrast

SNR=1dB

percent of the sound contrast
percent of the sound contrast

Figure 5. Reconstructed object function after the first iteration, using the conventional DBIM and proposed
KNN-filtered DBIM methods in case of SNR = 6, 3, and 1 dB, respectively. Colorbar indicates percent of
sound-speed contrast (%)

—&— DBIM with SNR=3 dB
==EF-" KNN-filtered DBIM with SNR=3 dB ||

—©— DBIM with SNR=6 dB
==EF=- KNN-filtered DBIM with SNR=6 dB
4D o

Normalized error
Normalized error

1 12 14 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3
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Figure 6. The normalization error after the first ~ Figure 7. The normalization error after the first three

three iterations using the conventional DBIM and iterations using the conventional DBIM and
proposed KNN-filtered DBIM method in case of proposed KNN-filtered DBIM method in case of
SNR =6 dB SNR=3dB
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Figure 8 plots normalized error across the first three iterations at SNR = 1 dB, demonstrating faster
error reduction for the KNN-filtered scheme. The result demonstrates the effectiveness of the KNN-filtered
DBIM approach in reducing reconstruction errors compared to conventional DBIM under high-noise
conditions. Over three iterations, the normalized error of the proposed method remains consistently lower
than that of the traditional DBIM. In the first iteration, the error reduction is particularly significant, with the
KNN-filtered DBIM achieving a 57.2% lower error than the conventional approach. This trend continues
across subsequent iterations, showing an overall improvement in reconstruction accuracy. The results
indicate that KNN-based denoising effectively removes noise before the iterative reconstruction process,
leading to better initial conditions and improved stability.

We further examined a more complex scenario consisting of two circular objects located within the
region of interest, as illustrated by the ideal object function in Figure 9. This configuration introduces
stronger multiple-scattering interactions and overlapping diffraction patterns, posing a more challenging
reconstruction problem compared with the single-object case. The reconstruction performance of the
conventional DBIM and the proposed KNN-filtered DBIM was evaluated and compared under this setting at
an input SNR of 1 dB. The normalized reconstruction errors for three successive iterations were 7.34, 4.09,
and 2.41 for DBIM, and 4.99, 3.58, and 2.08 for the KNN-filtered DBIM, respectively. The results clearly
indicate that the proposed approach achieves faster error reduction and superior reconstruction fidelity,
effectively mitigating noise and preserving the structural boundaries of both inclusions.

30

—©— DBIM with SNR=1 dB.
==EF-KNN-filtered DBIM with SNR=1 dB

25

20

a
T

15

Normalized error

IS
T

10

percent of the sound contrast

Figure 8. The normalization error after the Figure 9. Ideal object function (two objects in the region of
first three iterations using the conventional interest). Color bar indicates percent of sound-speed contrast
DBIM and proposed KNN-filtered DBIM (%)

method in case of SNR =1 dB

The effectiveness of KNN denoising in DBIM depends on factors such as noise level, object
complexity, and spatial resolution. It is particularly beneficial when the dataset has moderate to high levels of
noise, where traditional regularization methods fail to maintain image quality; the reconstruction problem is
highly ill-conditioned, requiring robust denoising techniques; fine structural details need to be preserved,
such as in medical ultrasound imaging or non-destructive testing. Simulation results confirm that KNN
denoising consistently improves DBIM performance by reducing reconstruction artifacts and enhancing
SNR. The proposed KNN-based DBIM framework can be advantageous in various biomedical and industrial
applications, including medical ultrasound tomography for high-resolution tissue imaging; breast cancer
detection, where improved sound-speed maps enable better lesion characterization; non-destructive
evaluation (NDE) of materials using ultrasound-based imaging. By providing better noise suppression and
reconstruction accuracy, this approach can make ultrasound tomography more viable for clinical and
industrial adoption. By applying KNN-based machine learning denoising in DBIM, this study introduces a
efficient approach to enhance reconstruction stability, noise robustness, and convergence speed. Unlike
conventional regularization techniques, KNN effectively adapts to local variations in the dataset, making it
highly effective for inverse scattering problems. The experimental results demonstrate significant
improvements in image quality, error reduction, and iterative efficiency, confirming that KNN-based
denoising is a promising enhancement for DBIM in practical biomedical imaging applications.
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To further validate the robustness of the proposed method, we extended the analysis by introducing
another lightweight denoising baseline-the median filter-within the DBIM iterative framework. This
comparison aims to examine whether the improvement achieved by the KNN-based denoising originates
from its adaptive neighborhood weighting or merely from generic local smoothing. Figure 10 illustrates the
normalized reconstruction errors across three successive iterations for conventional DBIM, median-filtered
DBIM, and the proposed KNN-filtered DBIM at an input SNR of 1 dB. The quantitative results show that the
proposed KNN-filtered DBIM achieves the lowest reconstruction error (3.40—1.65) compared with median-
filtered DBIM (6.77—2.41) and conventional DBIM (7.94—3.23). This represents an error reduction of
approximately 49% relative to DBIM and 32% relative to median filtering after the third iteration. The KNN-
based approach converges faster and preserves structural boundaries more effectively, demonstrating its
superior ability to suppress noise without over smoothing object edges. Unlike the median filter, which
applies uniform local averaging and tends to blur fine details, the KNN filter adaptively weights neighboring
pixels based on similarity, leading to enhanced edge fidelity and stability in low-SNR conditions. These
findings confirm that the proposed KNN-filtered DBIM provides a more accurate and robust reconstruction
framework while maintaining computational efficiency comparable to other lightweight denoisers.

EDBIM W Median-filtered DBIM KNN-filtered DBIM

7.9431

6.7668

51155 4 8791
3.3998
50517 3.2275
2.414
I I1.6482
1 2 3

Number of iterations

Normalized error
o [ N w D (93] (o)) ~N [0)e] [(o]

Figure 10. Normalized reconstruction error versus iteration number for the three methods-conventional
DBIM, median-filtered DBIM, and KNN-filtered DBIM-at SNR = 1 dB

4. RESULT AND DISCUSSION

The central contribution of this work lies in the integration of a simple yet effective KNN-based
denoising mechanism into the DBIM reconstruction framework. Unlike conventional DBIM approaches that
rely solely on regularization or heavy deep-learning-based post-processing, the proposed method embeds
adaptive, data-driven noise suppression directly within each iteration. This conceptual modification enhances
convergence stability and reconstruction fidelity under strong noise conditions while maintaining low
computational complexity. The approach demonstrates that classical, non-parametric techniques such as
KNN can be successfully hybridized with iterative tomographic algorithms to achieve robust and efficient
ultrasound image reconstruction. This study addresses the challenge of noise sensitivity and slow
convergence in conventional DBIM reconstructions, particularly under SNR conditions. To overcome this
limitation, a KNN-based denoising step was integrated into the DBIM iterative loop, forming the proposed
KNN-filtered DBIM algorithm. Simulation results demonstrated that the proposed method significantly
improves reconstruction fidelity and convergence speed compared with both standard DBIM and median-
filtered DBIM, while maintaining computational efficiency. These findings suggest that incorporating simple,
adaptive, non-parametric filters such as KNN into iterative imaging frameworks can offer a practical and
lightweight alternative to complex deep-learning-based denoising approaches for robust tomographic
ultrasound reconstruction.

This study has demonstrated the effectiveness of incorporating a KNN-based denoising strategy into
the DBIM framework to improve the quality and robustness of ultrasound tomographic reconstruction under
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noisy conditions. The simulation results clearly indicate that the proposed KNN-filtered DBIM method
consistently outperforms the conventional DBIM approach in terms of normalized error and structural
preservation, especially in low environments. The error reduction reached up to 57.2% at 1 dB SNR, and the
visual quality of the reconstructed sound-speed maps was substantially improved after even a single iteration.

Compared to existing denoising and regularization approaches in DBIM, such as Tikhonov
regularization and edge-preserving priors [1], [12], the KNN-based method offers several advantages. The
proposed method is training-free, simple to implement, and computationally efficient. Moreover, while
traditional regularization techniques aim to stabilize the inverse problem mathematically, they often struggle
to adapt to spatially varying noise or preserve fine structural details. In contrast, KNN filtering leverages
local spatial relationships and performs adaptive smoothing that maintains edge information critical for high-
resolution tomographic imaging. The implications of these findings are notable. The integration of KNN
filtering into DBIM provides a lightweight and flexible enhancement to an already well-established
reconstruction algorithm, enabling its deployment in clinical or real-time applications where computational
resources and data availability are limited. This is especially important for point-of-care ultrasound systems
or low-cost imaging platforms used in remote or resource-constrained environments. Furthermore, the
approach preserves the physical interpretability of the DBIM framework while improving its robustness to
measurement noise, a long-standing challenge in ultrasound tomography.

The main limitations of this study have been clearly stated in the revised manuscript. The proposed
KNN-filtered DBIM was evaluated only in two-dimensional simulations, and the KNN parameter K was kept
fixed throughout all experiments. These constraints may limit the generalization of the results to more
complex three-dimensional or heterogeneous media. Future work will address these limitations by extending
the method to 3D configurations and implementing an adaptive KNN scheme where K is optimized
dynamically during iterations.

Future research should focus on validating the proposed method using experimental datasets from
actual ultrasound hardware. Further work may also explore the integration of adaptive KNN parameter
selection, or hybrid approaches combining KNN with learning-based models to balance generalization and
interpretability [21], [22]. Extending the approach to three-dimensional imaging, as well as applying it to
attenuation imaging in addition to sound-speed reconstruction, could open new directions in high-fidelity
ultrasound tomography. Beside that, new century is the era in which there is a large quantity of data, and that
number is increasing. When dealing with such large amounts of data, the usual performance of computers is
inadequate, so we need ultrasound hardware more powerful and more intelligence is required to response
with the current explosion of big data [23]-27].

5. CONCLUSION

This paper has successfully introduced a KNN-based machine learning denoising approach into the
DBIM to enhance reconstruction stability and reduce noise sensitivity. The conventional DBIM framework,
while effective for tomographic imaging, suffers from high sensitivity to noise and slow convergence in
challenging conditions. By integrating KNN filtering into the iterative reconstruction process, we have
demonstrated significant improvements in both reconstruction accuracy and convergence stability. Unlike
conventional regularization techniques such as Tikhonov regularization, which only alleviates ill-posedness
without effectively reducing noise, the proposed KNN-based approach leverages local neighborhood
relationships to perform adaptive noise suppression, leading to better noise robustness and improved image
fidelity. A simulation scenario involving sound-speed contrast reconstruction has been conducted to compare
the performance of the conventional DBIM method and the proposed KNN-enhanced DBIM framework. The
results, analyzed through both reconstructed object functions and relative residual errors, confirm that the
proposed approach outperforms traditional DBIM in terms of noise resilience, convergence speed, and
overall image quality. Specifically, our findings indicate that KNN-based denoising reduces reconstruction
artifacts while preserving crucial structural details, making it a promising alternative to standard noise
suppression techniques in iterative tomographic imaging. For further work, we will implement an adaptive
KNN where K is optimized per iteration using cross-validation on a validation set.
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