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This paper presents the first benchmarking of you only look once version 11
(YOLO11) on the Rockchip RK3566 neural processing unit (NPU) within the
Orange Pi 3B platform. Performance was compared between the quad-core
ARM Cortex-A55 CPU and the integrated NPU using the COC02017 dataset,
evaluating latency, energy, and accuracy. NPU acceleration achieved >80%
latency reduction and = 94% lower per-inference energy consumption, with
speedup of up to 16.7x while maintaining accuracy within 0.03 mean average
precision (MAP) of the baseline. Average power remained nearly constant
(3.60 W central processing unit (CPU) vs. 3.59 W NPU), indicating that the
efficiency gains stem from reduced inference time rather than lower wattage.
Limitations included unstable INT8 quantization due to unsupported operators
and calibration-range mismatch, as well as minor CPU-side overhead in
preprocessing and non-maximum suppression. The findings confirm that the
RK3566 NPU delivers substantial efficiency gains without accuracy loss,

enabling compact and low-cost platforms to sustain modern object-detection
workloads. This demonstrates that affordable NPUs can provide reliable, real-
time artificial intelligence (Al) inference for embedded vision, internet of
things (10T), and robotics applications.
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1. INTRODUCTION

Object detection has become a central component of modern computer vision, powering applications
in surveillance, robotics, autonomous vehicles, and the internet of things (IoT) [1]. Among the available
approaches, the you only look once (YOLO) algorithm [2] is widely used because it balances accuracy with
computational efficiency. Unlike region proposal-based methods that operate in multiple stages, YOLO
processes an entire image in a single pass [3], [4], simultaneously predicting bounding boxes, confidence
scores, and class labels. This design enables low-latency inference, even on resource-limited platforms.

YOLO11 extends this line of development with several improvements. It introduces faster inference
optimized for low-power devices, integrates global scene awareness for more precise bounding box predictions
[5], [6], and offers built-in support for embedded acceleration on neural processing units (NPUs) [7], [8]. These
features position YOLO11 as a strong candidate for deployment in edge environments where latency and
energy efficiency are critical. The present study restricted its scope to low-latency, per-image inference on
static images and isolated compute-backend effects (central processing unit (CPU) vs. RK3566 NPU) on per-
image latency and energy at matched accuracy; sequential or temporal processing was excluded.
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Previous studies have surveyed YOLO versions and demonstrated the potential of earlier models on
affordable platforms such as the Raspberry Pi [9], [10] and NVIDIA Jetson Nano [11]. Ali and Zhang [12]
provided a comparative review of YOLO versions 1 through 11, whereas Zagitov et al. [13] benchmarked
YOLOvV5-v8 on embedded boards, showing the importance of hardware acceleration and quantization for
sustaining inference performance. However, to the best of our knowledge, YOLO11 has not yet been
systematically evaluated on the Rockchip RK3566 NPU within a cost-effective single-board computer such as
the Orange Pi 3B.

This is the first study to benchmark YOLO11 on the Orange Pi 3B (RK3566 NPU) and to compare CPU-
based and NPU-based executions under representative real-world scenarios. We evaluated end-to-end latency,
including preprocessing, inference, and postprocessing, along with per-inference energy and model accuracy.
NPU acceleration reduced inference latency by 82-94% and per-inference energy by 80-94%, while accuracy
remained within 0.026-0.030 mean average precision (mAP) of the Ultralytics baseline [14]. These findings
confirm that compact, affordable platforms can sustain modern object detection workloads without substantial
accuracy loss, supporting cost-effective deployment in surveillance, robotics, and 10T applications [15].

2. METHOD

YOLO11 incorporates several new modules, including cross stage partial with kernel size 2 (C3K2),
spatial pyramid pooling-fast (SPPF) [16], [17], and the convolutional block with parallel spatial attention
(C2PSA). These components streamline computation and accelerate detection without requiring high-end
processors. Building on these improvements, the present study examines YOLO11’s performance when paired
with an Orange Pi 3B Figure 1 and the Rockchip RK3566 NPU, with particular emphasis on speed and energy
consumption. The study also introduces a dedicated YOLO11 port for the RK3566 platform, demonstrating
that compact, affordable hardware can still deliver practical, low-latency image inference performance at the
edge.

Figure 1. Orange Pi 3B with Rockchip NPU RK3566

As shown in Figure 2, these new modules were integrated into the YOLO11 pipeline to refine feature
extraction, improve sensitivity across object scales, and enhance spatial attention. The C3K2 block replaces
heavier layers with lightweight 3x3 convolutions, enabling the model to maintain detection accuracy while
reducing computational load and accelerating the overall process.

The SPPF module streamlines the pooling stage to capture information from multiple scales more
efficiently, thereby improving the detection of both small and large objects. In parallel, the C2PSA block
applies dual spatial attention paths that highlight the most informative regions, enabling the network to refine
object boundaries and improve localization accuracy.

In addition to these modules, YOLO11 updates its backbone with lighter blocks, such as C3K2 and a
cross-stage partial block with a 3x3 kernel (C3K). Compared with the earlier coarse-to-fine (C2F) design, these
structures reduce redundant operations while preserving feature richness, giving the network a leaner path for
training and inference. To emphasize this refinement, Figure 3 directly compares the C2F block with the newer
C3K2/C3K structures, illustrating how efficiency is improved without sacrificing representational power.

An NPU is a specialized accelerator for deep-learning workloads [18]-[20], designed to perform large
matrix operations more efficiently than CPUs or graphics processing units (GPUs). Its efficiency derives from
parallel dataflow architectures, on-chip memory, and low-power circuitry, making it suitable for energy-
constrained edge devices such as smartphones and single-board computers.

Performance enhancement of embedded object detection via neural hardware .. (Alwin Hartono Limaran)
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Figure 2. YOLO11 architecture
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Figure 3. Comparison of C2F and C3K2 blocks

This study evaluated YOLO11 performance on the Orange Pi 3B by comparing CPU processing with
NPU acceleration from the RK3566 chip. The analysis considered three stages of detection. In preprocessing,
raw images were resized, normalized, and reformatted to meet input requirements. Inference then executed the
trained YOLO11 network, scanned each image, extracted features, and predicted bounding boxes with class
labels, a process dominated by large matrix multiplications constituting most of the computational load [21].
Finally, postprocessing applied non-maximum suppression (NMS) to filter overlaps and generate final object
classes and confidence scores.

2.1. Hardware platform

The Orange Pi 3B single-board computer is built on the Rockchip RK3566 system-on-chip (SoC)
[22], a low-power ARM-based platform designed for embedded and artificial intelligence of things (AloT)
applications. The SoC integrates a quad-core ARM Cortex-A55 CPU [23], a Mali-G52 GPU, and an RK3566
NPU officially rated at 0.8-1 tera operations per second (TOPS) [24], [25], depending on arithmetic precision.
In practice, this corresponds to approximately 0.8 TOPS for 16-bit integer (INT16) precision [26] and 1 TOPS
for 8-bit integer (INT8) precision [27]. However, such peak ratings are theoretical and do not always reflect
real performance, particularly under the floating-point (FP32) [28] workloads used in this study. The board
includes LPDDR4 memory and a 256 GB non-volatile memory express (NVMe) M.2 solid-state drive (SSD)
as primary storage. These specifications offer sufficient bandwidth and capacity for modern object detection
models while maintaining a compact design and low power consumption, making the platform suitable for
edge artificial intelligence (Al) experiments.
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2.2. Software environment

All experiments were conducted on Orange Pi OS 1.0.8 (Ubuntu Jammy) with the Linux 5.10.160-
Rockchip-RK356X kernel, running on a 64-bit ARM architecture. The workflow used Python 3.10.12, with
PyTorch 2.8.0 and TorchVision 0.23.0 as the primary deep-learning frameworks. YOLO11 was deployed using
the Ultralytics library [29] (version 8.3.202). The pycocotools package (version 2.0.10) ensured compliance
with the COCO evaluation protocol. Supporting libraries included NumPy 2.2.6, SciPy 1.15.3, Pillow 11.3.0,
and OpenCV 4.12.0 for preprocessing and numerical computation. Deployment on the RK3566 NPU used
Rockchip’s rockchip neural network (RKNN)-Toolkit Lite2 (version 1.6.0), installed from the official aarch64
wheel, supporting pretrained model import from PyTorch, TensorFlow, and open neural network exchange
(ONNX) format.

2.3. Model conversion workflow

YOLO11 models were obtained as official pretrained weights from Ultralytics, trained on the COCO
dataset. Conversion used the Ultralytics export utility with the command “yolo export model=model name.pt
format=rknn name=rk3566,” which first generated an ONNX model before producing the RKNN format. The
command exported the PyTorch model to ONNX and then converted it to RKNN using RKNN-Toolkit Lite2.
This intermediate step was automated within the Ultralytics library, enabling execution as a single command.

All models were maintained at FP32 precision without pruning or quantization to preserve baseline
accuracy. Detection outputs were refined using class-agnostic NMS at an loU threshold of 0.45. The
experiments were run with a batch size of 1, and the maximum detections (max_det) were limited by the 8 GB
system RAM.

Although the RK3566 NPU supports INT8 and INT16 inference, several INT8 conversion trials on
COCO Val2017 (500-5000 images) produced invalid results due to quantization noise. Pruning was also
excluded to avoid confounding effects. FP32 precision was therefore maintained throughout to ensure that the
measured CPU-NPU differences reflected the hardware efficiency alone.

2.4. Dataset

The Microsoft COCO 2017 dataset was used to evaluate detection accuracy. It defines 80 object
categories and provides 118,287 training images (train2017), 5,000 validation images (val2017), and 40,670
unlabeled test images divided into test-dev and test-challenge [30], [31]. The validation set was used for mAP
evaluation, consistent with the Ultralytics YOLO11 benchmark. Accuracy was computed using pycocotools
and the COCO protocol at a confidence threshold of 0.001. For Orange Pi 3B inference, a 0.25 threshold filtered
low-confidence predictions. Latency and energy benchmarking were conducted on five random Internet images
representing diverse visual conditions. This ensured accuracy aligned with the official benchmark, whereas
hardware performance was assessed independently of large-scale dataset processing.

2.5. Processing pipeline

The workflow was measured in three stages Figure 4: preprocessing (resize, normalization, and tensor
reformatting), inference, and postprocessing (NMS). In the CPU baseline, all stages ran on the CPU. In the
NPU configuration, inference ran on the RK3566 NPU (device), whereas preprocessing and postprocessing
ran on the CPU (host); host—NPU and NPU—host tensor transfers were included in the latency and energy
totals. Stage times were summed for end-to-end latency, and power draw was logged continuously with a
digital DC ammeter to compute energy per inference. Static, single-image inputs were used in the evaluations
to isolate the CPU vs. NPU effects at matched accuracy.

2.6. Evaluation metrics

YOLO11 on the Orange Pi 3B was evaluated using three indicators: processing time, power
consumption, and detection accuracy. Processing time was obtained from millisecond-level timestamps for
preprocessing, inference, and postprocessing, with the total as their sum. Power consumption was measured
inline on the 5 V USB-C supply using a HiDance type-C power meter (DC 4.5-50 V, 0-6 A continuous).
Voltage and current were logged in real time, and instantaneous power was calculated as their product. Per-
image mean power was derived by averaging readings across each inference interval. Detection accuracy was
reported as mAP@[0.5:0.95] under the COCO protocol, with mAP at a 0.001 confidence threshold (as in
Ultralytics YOLO) and deployment inference at 0.25.

Additional indicators included throughput (images per second at batch size 1), energy per image
(average power x inference duration), performance per watt, and CPU-NPU speedup and energy-reduction
ratios. The results are reported as per-image averages, with distributions provided where relevant.

Performance enhancement of embedded object detection via neural hardware .. (Alwin Hartono Limaran)
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Figure 4. CPU vs. NPU processing pipeline

2.7. Experimental scenarios
Five practical scenarios were developed to evaluate how YOLO11 adapts to different environmental
conditions on the Orange Pi 3B. The representative frames shown in Figures 5(a)—(e) capture variations,
including diverse lighting conditions, motion levels, and object sizes.
These scenarios were specifically designed to probe YOLO11’s performance under various real-world
conditions.
—  Classroom (Image 1; Figure 5(a) - quiet classroom with eight standing subjects under uniform lighting; it
evaluates the stability of multi-person detection on a single frame.
—  Urban street crossing (Image 2; Figure 5(b) - busy crosswalk with pedestrians and cyclists; it tests
detection under crowding and occlusion.
—  Warehouse operations (Image 3; Figure 5(c) - loading-dock CCTV with aisles and clutter; it assesses
robustness against occlusion and visually similar classes.
—  Parking lot monitoring (Image 4; Figure 5(d) - mid-afternoon lot with vehicles and pedestrians; strong
shadows and high contrast challenge the separation of adjacent objects.
—  Nighttime street scene (Image 5; Figure 5(e) - dim urban street with lamps and headlights; it probes low
light, glare, and noise effects on detection.

Figure 5. Benchmark input scenes used for testing YOLO11 performance across diverse environments:
(a) classroom setting, (b) urban street crossing, (c) warehouse operations, (d) parking lot monitoring, and
(e) nighttime street scene

These scenarios provided complementary benchmarks for comparing CPU-only and NPU-accelerated
inference. The measurements included preprocessing, inference, postprocessing, and total per-image times.
Five scenarios captured real-world conditions: (i) lighting from bright outdoor to low-light nighttime,
(ii) motion from static indoor to crowded streets, and (iii) object sizes and densities, including pedestrians,
vehicles, and warehouse goods. Source images also varied in file size (hundreds of kilobytes to several
megabytes) and resolution (72-300 DPI), enhancing input diversity.

Together, these selections ensured that the evaluation reflected realistic, challenging deployment
without additional datasets. The methodology also outlined the Orange Pi 3B hardware, COCO 2017 dataset
with local validation subsets, model conversion, parameter settings, and performance metrics. Accuracy and
efficiency were reported through mAP scores, processing times, and power measurements for CPU and NPU
runs. With the procedures established, the next section presents the experimental results and discusses
YOLO11 performance under embedded edge hardware constraints.

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 126-141
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3. RESULTS AND DISCUSSION

This section compares YOLO11 on the CPU and on the RK3566 NPU under matched-accuracy, static-
image conditions. We evaluate per-image latency—decomposed into preprocessing, inference, and
postprocessing and energy, and quantify efficiency as percentage change. Table 1 consolidates the results by
juxtaposing CPU Table 1(a) and NPU Table 1(b) wall-clock times and reporting acceleration as percentage

reduction.
Table 1. Visual comparison of YOLO11 detection performance across two platforms
(a) CPU-based inference using PyTorch
Model Picture Preprocess Inference  Postprocess Total time (ms) Detection result
(ms) (ms) (ms)
YOLO11ln Imagel 42.10 1,597.20 19.80 1,659.10 8 persons
YOLO11ln Image 2 44.30 1,622.50 10.60 1,677.40 12 persons, 3 cars, and 3 traffic lights
YOLO11n Image 3 28.40 1,428.10 9.80 1,466.30 4 persons and 2 trucks
YOLO11ln Image 4 27.20 1,431.80 9.80 1,468.80 19 cars and 7 trucks
YOLO11ln Image5 18.40 1,635.20 10.50 1,664.10 6 persons and 4 cars
YOLO1ls Imagel 36.40 5,122.20 10.20 5,168.80 8 persons
YOLO11ls Image 2 41.30 5,110.20 10.60 5,162.10 13 persons, 2 cars, 2 traffic lights, 3 handbags, 1 tie,
and 1 cup
YOLO11ls Image 3 25.90 4,484.80 9.90 4,520.60 8 persons and 1 truck
YOLO11ls Image 4 25.00 4,445.00 10.30 4,480.30 1 person, 30 cars, and 5 trucks
YOLO11ls Image5 16.00 5,130.80 10.20 5,157.00 7 persons, 2 cars, and 1 handbag
YOLO11m Image 1 36.20 16,952.70 10.60 16,999.50 8 persons and 1 tie
YOLO11lm Image 2 40.80 16,868.20 10.90 16,919.90 15 persons, 3 cars, 3 traffic lights, and 5 handbags
YOLO11lm Image 3 25.00 14,625.40 9.80 14,660.20 5 persons
YOLO11m Image 4 25.30 14,771.40 10.80 14,807.50 1 person, 26 cars, and 5 trucks
YOLO11lm Image5 16.70 16,885.90 10.80 16,913.40 7 persons, 2 cars, 1 backpack, and 1 baseball glove
YOLO11l  Imagel 35.50 21,201.70 10.30 21,247.50 8 persons and 1 tie
YOLO11l  Image 2 39.20 21,326.40 11.10 21,376.70 16 persons, 3 cars, 3 traffic lights, and 5 handbags
YOLO11l  Image 3 25.50 18,500.10 9.90 18,535.50 6 persons and 1 backpack
YOLO11ll  Image 4 25.60 18,406.10 10.40 18,442.10 1 person, 25 cars, 6 trucks, and 2 traffic lights
YOLO11l  Image5 17.00 21,257.10 10.40 21,284.50 7 persons and 2 cars
YOLO11x Image 1 35.80 42,672.20 10.30 42,718.30 8 persons and 1 tie
YOLO11x  Image 2 36.60 42,701.10 10.80 42,748.50 14 persons, 3 cars, 1 traffic light. 4 handbags, and 1 cup
YOLO11x Image 3 25.60 36,741.20 9.70 36,776.50 6 persons, 1 truck, and 1 dining table
YOLO11x Image 4 24.90 36,757.60 10.00 36,792.50 1 person, 21 cars, 6 trucks, and 2 traffic lights
YOLO11x  Image5 16.50 43,144.60 10.30 43,171.40 7 persons, 2 cars, 1 airplane, and 1 tie
(b) RK3566 NPU-based inference using RKNN
Model Picture Preprocess Inference  Postprocess Total time Detection result
(ms) (ms) (ms) (ms)
YOLO11ln  Image 1 35.90 266.10 12.90 314.90 8 persons
YOLO11ln  Image 2 49.00 270.10 13.10 332.20 12 persons, 3 cars, and 4 traffic lights
YOLO11ln  Image 3 33.90 273.50 14.50 321.90 6 persons and 2 trucks
YOLO1ln  Image 4 33.90 271.70 13.40 319.00 22 cars and 7 trucks
YOLO11n  Image5 21.20 280.10 14.40 315.70 7 persons and 4 cars
YOLO11n  Image 1l 42.50 429.40 13.00 484.90 8 persons
YOLO11n  Image 2 48.50 434.30 13.40 496.20 12 persons, 2 cars, 1 traffic light, 3 handbags, 1 tie,
and 1 cup
YOLO11ln  Image 3 33.60 437.40 13.20 484.20 8 persons and 2 trucks
YOLO11ln  Image 4 34.10 435.90 13.90 483.90 1 person, 29 cars, and 4 trucks
YOLO11n  Image5 21.40 444.10 13.10 478.60 7 persons, 2 cars, and 1 handbag
YOLO11lm  Image 1 37.40 946.60 13.00 997.00 8 persons and 1 tie
YOLO11lm  Image 2 49.00 952.20 13.90 1,015.10 17 persons, 3 cars, 4 traffic lights, and 5 handbags
YOLO11m  Image 3 33.40 955.40 13.00 1,001.80 5 persons
YOLO11lm  Image 4 34.10 956.10 14.10 1,004.30 1 person, 29 cars, and 5 trucks
YOLO11lm Image5 20.70 959.90 13.00 993.60 7 persons, 2 cars, 1 backpack, and 1 baseball glove
YOLO11l Image 1 35.80 1,153.10 13.00 1,201.90 8 persons and 1 tie
YOLO11l Image 2 49.00 1,158.50 13.70 1,221.20 17 persons, 4 cars, 3 traffic lights, and 5 handbags
YOLO11l Image 3 33.60 1,160.50 14.10 1,208.20 7 persons
YOLO11l Image 4 33.90 1,160.40 13.70 1,208.00 1 person, 29 cars, 7 trucks, and 2 traffic lights
YOLO11l Image 5 21.10 1,168.80 13.20 1,203.10 7 persons and 2 cars
YOLO11x  Imagel 42.50 2,525.10 13.00 2,580.60 8 persons and 1tie
YOLO11x  Image 2 49.10 2,642.00 13.50 2,704.60 14 persons, 3 cars, 1 traffic light, and 5 handbags
YOLO11x  Image 3 33.80 2,646.80 13.20 2,693.80 6 persons, 1 truck, and 1 dining table
YOLO11x  Image 4 33.70 2,644.20 13.50 2,691.40 1 person, 22 cars, 6 trucks, and 2 traffic lights
YOLO11x  Image5 21.40 2,612.40 13.00 2,646.80 7 persons and 2 cars

Performance enhancement of embedded object detection via neural hardware .. (Alwin Hartono Limaran)
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After recording preprocessing, inference, postprocessing, and total elapsed time for each image, we
computed the mean for each YOLO11 variant. The results are reported for both CPU and NPU executions. The
data were organized by model type and processing path, providing an interpretable view of workload translation
from general-purpose to hardware-accelerated environments.

The arithmetic mean for each pipeline stage was calculated using the standard definition, expressed

(1)-(4):
Y.(Preprocess)

Avg.Preprocess = Q)

Number of Data Preprocess

Avg. Inference = —>dnference) ”

Number of Data Inference

Y.(Postprocess) (3)

Number of Data Postprocess

Avg. Postprocess =

Y.(Total Time )
Number of Data Total Time

Avg.Total Time = 4)

The evaluation results of YOLO11 on CPU and NPU are presented in Table 2 and Figures 6(a)—(d),
which compare execution times for preprocessing [32], inference [33], [34], and postprocessing [35]. The NPU
consistently outperformed the CPU, particularly during inference, where hardware acceleration played the dominant
role. For YOLO11n, inference time decreased from 1,542.96 ms on the CPU to 272.30 ms on the NPU, representing
an 82.4% reduction. Regarding larger models, for YOLO11l it dropped from 20,138.28 to 1,160.26 ms (-94.2%),
whereas for YOLO11x, the largest variant, it decreased from 40,403.34 to 2,614.10 ms (-93.5%). End-to-end
total time also fell sharply: for YOLO11s, it decreased from 4,897.76 to 485.56 ms (-90.1%), and for
YOLO11m, it dropped from 16,060.10 to 1,002.36 ms (-93.8%). Latency differences in preprocessing and
postprocessing were relatively small, indicating that interface overhead and optimization routines had minimal
impact on these phases. Inference thus remained the dominant component of overall latency and benefited most
from NPU acceleration. Figure 6(d) provides a heatmap of execution time patterns across all variants (n, s, m, I,
and x), where darker shades correspond to shorter durations, particularly in NPU runs. NPUs enable acceleration
of up to 724x compared with software-only microcontroller implementations, as reported by Manor and
Greenberg [36]; our results corroborate this, demonstrating substantial inference latency reduction at the edge.
Energy consumption was measured in real time with a digital analyzer that logged instantaneous voltage, current,
and power during model execution on the Orange Pi 3B (RK3566), ensuring accurate calculations.

Table 2. Average time calculation results
Processing YOLO11n YOLO11s YOLO11m YOLO11l YOLO11x
stage CPU NPU CPU NPU CPU NPU CPU NPU CPU NPU
Preprocess (ms) 3208 3478 2892  36.02 28.80 34.92 28.56 34.68 27.88 36.10
15429 2723 48586 4362 160207 oo, ., 201382 11602 404033  2,614.1
6 0 0 2 2 ' 8 6 4 0

12.10 13.66 10.24 13.32 10.58 13.40 10.42 13.54 10.22 13.24

15871  320.7 4,897.7 4855 16,060.1 1,002.3 20,177.2 12084 40,4414  2,663.4
4 4 6 6 0 6 6 8 4 4

Inference (ms)

Postprocess
(ms)

Total time (ms)

Elapsed time was measured within the execution script, with each condition repeated several times to
confirm repeatability and accuracy. The results are summarized in comparative tables contrasting CPU and
NPU executions, from which mean values were extracted, highlighting the speed gains from NPU acceleration
and reductions in total processing time.

Although NPU acceleration drastically reduced inference time, preprocessing [37] and postprocessing
latencies increased modestly (approximately 8-30%) compared with those in CPU-only execution.
Postprocessing, dominated by CPU-executed NMS with quadratic complexity, remained small in absolute
terms relative to the inference speedup.

The increase arises because only inference is offloaded to the RK3566 NPU, whereas preprocessing
(resize, normalization, reformatting) [37] and postprocessing (non-maximum suppression, bounding-box
adjustment) [38]-[40] remain on the CPU. Host-device tensor transfers (CPU«<NPU) including input upload
and output download introduce interface latency, memory copies, and format conversions that account for most
of the residual overhead (cost).
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Despite these trade-offs, detection quality is preserved. Table 3 compares mMAP@0.5:0.95 between the
official benchmark and the Orange Pi 3B results. The 500-image subset shows larger fluctuations (A =~ -0.010 to
-0.074), whereas the full 5,000-image evaluation is consistent, with deviations of approximately -0.026 to -0.030
across YOLO11 variants. These findings confirm that RKNN conversion preserved baseline accuracy within a
narrow margin of the Ultralytics benchmark while delivering substantial efficiency improvements [41].
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Figure 6. CPU vs. NPU performance comparison: (a) preprocessing, (b) inference, (c) postprocessing, and
(d) execution time heatmap across YOLO11 variants. X-axis = model variant (YOLO11n-YOLO11x);
Y-axis = execution time (ms)

Table 3. Comparison of YOLO11 mAP results (official Ultralytics vs. Orange Pi 3B, COC02017 val2017)
Model Official mMAP50-95  On-device mAP (500)  On-device mAP (5,000) A on-device -500 A on-device -5,000

YOLO11n 0.395 0.361 0.369 -0.034 -0.026
YOLO11s 0.470 0.427 0.441 -0.043 -0.029
YOLO11lm 0.515 0.505 0.487 -0.010 —0.028
YOLO11l 0.534 0.488 0.504 —0.046 -0.030
YOLO11x 0.547 0.473 0.517 -0.074 -0.030

Note: on-device mAP refers to the accuracy measured directly on the Orange Pi 3B platform, whereas the official mAP denotes the
benchmark reported by Ultralytics on the COC0O2017 validation set.

After confirming consistent detection accuracy across YOLO11 variants with minimal mAP
deviations (-0.026 to -0.030), we examined energy efficiency. Table 4 presents nearly identical average power
consumption for CPU (3.60 W) and NPU (3.59 W), differing by less than 0.3%. However, the much lower
inference latency of the NPU (82-94% faster) sharply reduced energy per inference: YOLO11x consumed
145.59 J on the CPU versus 9.56 J on the NPU, a 93.4% reduction. These results confirm the NPU as the most
energy-efficient processor for YOLO11 workloads on the Orange Pi 3B.

NPUs allow edge devices such as the Orange Pi 3B to perform substantially more inference passes
within the same power budget, an advantage for platforms powered by batteries or other low-wattage sources.
The benefit comes not only from throughput but also from sharply reduced latency at nearly constant average
power. This enhances the feasibility of energy-intensive Al workloads and supports near-real-time deep
learning in low-power networks.

Verification confirmed that acceleration on the RK3566 NPU did not degrade detection quality [42].
Evaluations used the COC0O2017 validation set (val2017). The official YOLO11 results were based on the full
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5,000-image set, whereas Orange Pi 3B tests employed both a random 500-image subset and the full set of
5,000 images to ensure consistency.

Tables 4(a) and (b) detail the recorded voltage, current, and power during detection. Table 5 then
consolidates latency, speedup, per-inference energy, and accuracy deviation across YOLO11 variants. The
results show that average power consumption was nearly identical between CPU and NPU executions.
However, the NPU consistently achieved 5-17x faster inference and ~80-94% lower energy per inference
[43], [44], while maintaining accuracy within -0.03 mAP of the official baseline. Energy per inference was
calculated as average power multiplied by total latency.

Table 4. Recorded voltage, current, and power consumption during the YOLO11 execution on the two

platforms
(a) CPU-based
. Average per picture Average per model
Model Picture Voltage Current Power (W) Voltage Current Power (W)

Imaae 1 5.35 0.68 3.69
Image 2 5.35 0.65 3.53

YOLO11n Image 3 5.36 0.65 351 5.35 0.66 3.58
Image 4 5.35 0.66 3.54
Image 5 5.35 0.67 3.65
Image 1 5.34 0.71 3.81
Image 2 5.35 0.70 3.75

YOLO11s Image 3 5.36 0.70 3.76 5.35 0.69 3.72
Image 4 5.35 0.66 3.58
Image 5 5.35 0.68 3.69
Image 1 5.36 0.66 3.59
Image 2 5.34 0.69 3.72

YOLO11m Image 3 5.35 0.68 3.68 5.35 0.68 3.67
Image 4 5.35 0.67 3.64
Image 5 5.35 0.69 3.71
Image 1 5.35 0.68 3.69
Image 2 5.35 0.69 3.73

YOLO11l Image 3 5.36 0.64 3.49 5.35 0.67 3.62
Image 4 5.35 0.66 3.59
Image 5 5.36 0.66 3.58
Image 1 5.33 0.67 3.59
Image 2 5.36 0.66 3.59

YOLO11x Image 3 5.35 0.67 3.62 5.35 0.67 3.62
Image 4 5.35 0.68 3.66
Image 5 5.35 0.67 3.63

(b) NPU-based

Average per picture Average per model
Model Picture
V(El\t;;ge Current (A)  Power (W)  Voltage (V) Clégjm Power (W)

Image 1 5.37 0.68 3.67
Image 2 5.38 0.66 3.59

YOLO11n Image 3 5.38 0.65 3.54 5.38 0.66 3.57
Image 4 5.38 0.65 3.53
Image 5 5.38 0.65 3.50
Image 1 5.38 0.66 3.56
Image 2 5.38 0.66 3.76

YOLO11s Image 3 5.38 0.65 3.72 5.38 0.65 3.61
Image 4 5.38 0.65 3.52
Image 5 5.38 0.64 3.48
Image 1 5.38 0.68 3.67
Image 2 5.39 0.64 347

YOLO11lm Image 3 5.38 0.65 3.53 5.38 0.66 3.54
Image 4 5.39 0.64 3.48
Image 5 5.38 0.66 3.57
Image 1 5.38 0.67 3.60
Image 2 5.38 0.65 3.48

YOLO11l Image 3 5.38 0.64 3.45 5.38 0.65 3.50
Image 4 5.39 0.64 3.46
Image 5 5.39 0.65 351
Image 1 5.38 0.67 3.60
Image 2 5.38 0.66 3.61

YOLO11x Image 3 5.39 0.66 3.55 5.38 0.66 3.57
Image 4 5.38 0.65 3.50
Image 5 5.38 0.66 3.56
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Table 5. Unified summary of CPU vs. NPU performance for YOLO11 variants, including latency, energy per
inference, and accuracy
CPU time NPU time Speedup CPU NPU CPU NPU Energy Official On- A mAP

Model (ms) (ms) () power  power energy energy saving (%) YOLO11l  device
(W) (W) V) V) mMAP mAP

(5,000)
YOLO1ln 1,587.14  320.74 4.95 3.60 3.59 571 1.15 79.8 0.395 0.369 -0.026
YOLO11ls 4,897.76 485.56 10.09 3.60 3.59 17.63 1.74 90.1 0.470 0.441 -0.029
YOLO11m 16,060.10 1,002.36  16.02 3.60 3.59 57.82 3.60 93.8 0.515 0.487 -0.028
YOLO11l 20,177.26 1,208.48  16.70 3.60 3.59 72.64 4.34 94.0 0.534 0.504 -0.030
YOLO11x 40,441.44 2,663.44 15.18 3.60 3.59 145.59 9.56 93.4 0.547 0.517 -0.030

These findings support real-time or near-real-time deployment of modern object detection on
affordable embedded platforms, which has practical significance. The RK3566 NPU enables 5-17x faster
inference at comparable accuracy (AmAP =~ -0.03) with ~80-94% lower energy per inference, increasing the
feasibility of applications in surveillance, robotics, and 10T edge workloads.

Speedup (X)

CPU Time

Speedup = NPU Time (5)
CPU Energy (J)
CPU Time

Ecpy = Pepy x “Tooo (6)

NPU Energy (J)
NPU Ti
Enpy = Pypy X T:)me (7)

Energy Saving (%)

Energy Saving (%) = Z2YU=ENPU 4 100 (8)
Ecpu

A mAP

AmAP = on — device mAP 5,000 — Official mAP 9

To explain the origin of latency reductions, Table 6 reports the relative changes in preprocessing,
inference, and postprocessing times when shifting from CPU to NPU, showing that modest CPU-bound
overheads are outweighed by dominant inference acceleration.

Table 6. Relative change in processing time when shifting from CPU to NPU (A time in %, relative to CPU

execution)

Model Preprocess A time (%) Inference A time (%) Postprocess A time (%) Total time A (%)
YOLO11n +8.40 -82.3 +12.9 -79.8
YOLO11s +245 -91.0 +30.1 -90.1
YOLO11m +21.3 -94.0 +26.7 -93.8
YOLO11l +214 -94.2 +30.0 -94.0
YOLO11x +29.5 -935 +29.6 -934

Table 5 summarizes the aggregate performance latency, energy per inference, and accuracy across
YOLO11 variants. However, these metrics do not capture scene-specific behaviors. Table 6 provides a stage-
wise breakdown, showing that preprocessing and postprocessing incur modest increases (8-30%), whereas
inference dominates acceleration with reductions of 82-94%. This view clarifies the source of latency gains in
Table 5.

To contextualize these quantitative results, Figure 6 presents representative detection scenarios. These
qualitative case studies illustrate how the latency and accuracy patterns in Table 5 appear in real images,
highlighting localized variations under diverse conditions. In the warehouse scene, as shown in Figure 7(a),
CPU inference required 1,466.3 ms and detected four persons and two trucks, whereas the NPU completed
inference in 321.9 ms and detected six persons and two trucks, including one additional person at a confidence
of 0.28. Both configurations occasionally misclassified stacked boxes as trucks.
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In the crosswalk scenario, as shown in Figure 7(b), the inference duration for the CPU was 5,162.1 ms,
and it detected 13 persons, 2 cars, 2 traffic lights, 3 handbags, 1 tie, and 1 cup. The NPU, in 496.2 ms, reported
12 persons, 2 cars, 1 traffic light, 3 handbags, 1 tie, and 1 cup. The crowded setting caused missed detections
of small or occluded pedestrians, lowering frame-level recall Table 7.

In the parking lot test Figure 7(c), CPU processing lasted 14,807.5 ms, yielding one person, 26 cars,
and five trucks. The NPU, at 1,004.3 ms, detected one person, 29 cars, and five trucks, showing more consistent
vehicle counts under dense traffic. This latency improvements align with the trends observed from Table 6.

In the classroom image Figure 7(d), CPU and NPU produced consistent results across YOLO11
variants, detecting 7-8 people and occasionally one tie. Tie detections occurred in both outputs, reflecting
model behavior rather than hardware differences.

In the nighttime CCTYV test Figure 7(e), CPU processing consumed 43,171.4 ms, detecting seven
persons, two cars, one airplane, and one tie. The NPU, in 2,646.8 ms, found seven persons and two cars,
omitting smaller objects but maintaining higher confidence on detected individuals. These results illustrate the
latency gap in Table 6 and precision—recall trade-offs in Table 7.

Figure 7. CPU (left) and NPU (right) inference results across representative scenarios: (a) warehouse
(YOLO11n), (b) crosswalk (YOLO115s), (c) parking lot (YOLO11m), (d) classroom (YOLO11l), and
(e) nighttime CCTV using YOLO11 variants (YOLO11x)

Overall, these cases show that although aggregate mAP deviation from the official benchmark is small
(-0.026 to -0.030 across variants, Table 4), localized variations, missed detections, over-detections, and
misclassifications persist. CPU and NPU inferences are broadly consistent, yet subtle divergences emerge
under challenging conditions, underscoring the need to balance speed and energy gains with robustness in
safety-critical deployments.

Table 6, Figure 7, and Table 7 provide a comprehensive view of CPU-NPU differences. They also
highlight detection variations across YOLO11 scales. The NPU consistently shortens processing time [45] by
over 80% while maintaining narrow accuracy deviations. Local anomalies, such as false positives or missed
detections, appeared only in certain scenes, confirming situational rather than systemic differences.

Figure 7 illustrates CPU-NPU differences across diverse scenes. It reveals occasional false positives
and missed detections. Confidence also shifts in crowded or low-light conditions. To quantify these variations,
Table 6 summarizes the frame-level ground truth alongside detection outcomes for both backends across the
same five scenarios. Precision and recall values show that CPU and NPU deliver broadly comparable accuracy,
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with on-device mAP deviations confined to -0.026 to -0.030. Local discrepancies occur sporadically rather
than systematically, confirming that the NPU maintains detection quality relative to the CPU baseline while
achieving substantial improvements in processing efficiency.

Although all YOLOL11 variants (n, s, m, [, and x) used identical pretrained weights, CPU and NPU
inference showed small differences. PyTorch executed models on the CPU, whereas RKNN kernels ran on the
NPU with parallel scheduling. Kernel-level differences reorder floating-point operations, which are
nonassociative in FP32, producing small rounding variations. With wide receptive fields, these shifts can alter
feature activations and confidence scores.

Further variations stem from preprocessing and postprocessing. The RKNN pipeline tiles inputs for
device transfer and applies interpolation and normalization that is not bit-identical to PyTorch. I1ts NMS also
uses different tie-breaking rules; thus, boxes near thresholds (e.g., 0.49 vs. 0.51) may be retained on one runtime
but suppressed on another. These add slight preprocessing and postprocessing overheads, though NPU
inference remains much faster.

In the warehouse case Figure 7(a), the CPU detected four persons and two trucks in 1,466.3 ms,
whereas the NPU detected six persons and two trucks in 321.9 ms. One NPU detection (confidence 0.28)
misclassified a hanging raincoat as a person, and both runtimes sometimes labeled stacked boxes as trucks.
Such errors reflect the probabilistic nature of YOLO11, which assigns the most likely class from training data,
so visually ambiguous objects may align with incorrect labels.

These factors explain occasional low confidence or borderline differences between CPU and NPU.
Deviations were local, with mAP bias limited to -0.026 to -0.030. Detection quality remained consistent, but
the NPU achieved up to 16.7x lower latency and superior energy efficiency.

Table 7 summarizes relative processing-time changes when shifting from CPU to NPU. Preprocessing
and postprocessing rose modestly (8—30%) due to interface and conversion overheads, while inference dropped
substantially (82-94%), yielding ~80-94% overall latency reduction. This confirms NPU overheads are minor
compared with dominant inference acceleration.

Table 7. Frame-level ground truth and comparative detection performance between CPU and NPU
GT (person /

Object / image Vt?‘;];‘(f:il(?)/ CPU detection NPU detection Pzgc;stlf))n Fgg&l; Pziﬁ:l,stlsn ?Ne;f,:;
Image 1 8/0/0 8 persons, 1 tie (FP) 8 persons, 1 tie 0.90 1.00 1.00 1.00
(classroom)
Image 2 13/4/2 13 persons, 2 cars, 2 12 persons, 2 0.93 0.86 0.89 0.79
(crosswalk) traffic lights, extras cars, 1 traffic
light
Image 3 7/0/0 4 persons, 2 trucks 6 persons, 2 0.67 0.57 0.75 0.86
(warehouse) (FP) trucks (1 FP low-
conf)
Image 4 1/40/0 1 person, 26 cars,5 1 person, 29 cars, 1.00 0.87 1.00 0.97
(parking lot) trucks 5 trucks
Image 5 7/210 7 persons, 2 cars, 7 persons, 2 cars 0.75 1.00 1.00 1.00
(nighttime) +FP airplane/tie

A comparative evaluation of YOLO11 inference on CPU versus NPU shows clear benefits from
hardware acceleration. End-to-end latency decreased by 80-94%, confirming the RK3566 NPU’s suitability
for low-latency image inference. Inference time drops sharply, whereas preprocessing and postprocessing
increase modestly (8-30%) due to transfer, synchronization, and format conversion overheads. These stages
form the main bottlenecks, suggesting that future designs should offload postprocessing to the NPU, minimize
host—device transfers, and standardize data interfaces. The findings apply only to per-image inference on static
inputs; sequential or temporal processing was excluded.

INT8 instability likely arises from unsupported or partially supported RKNN operators and
calibration-range mismatch; per-tensor quantization with activation outliers can saturate the scales, driving
class logits below thresholds and yielding empty or degraded detections. In our RK3566 pipeline, NMS remains
on the CPU because a compatible batched-NMS kernel is unavailable; coupled with host—device tensor
shuttling, this explains the modest increase in postprocessing despite large NPU-side speedups.

Accuracy was stable, with mAP deviations of -0.026 to -0.030 relative to the benchmark. Qualitative
differences were limited to low-confidence or ambiguous cases (e.g., raincoats as persons, stacked boxes as
trucks), reflecting dataset limits rather than hardware constraints [46]. Future work should expand training
diversity, include rare categories, and apply domain-adaptive fine-tuning.
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This study extends that of Tan and Cao [47], who explored hybrid CPU-NPU partitioning on early
FP16/INT8 NPUs where full offload risked accuracy loss. With the RK3566 and PyTorch—ONNX-RKNN
toolchain, YOLO11 runs fully on the NPU without accuracy degradation, achieving up to 16.7x speedup and
major energy savings. Hybrid partitioning still applies under strict precision or quantized pipelines, while
modern stacks enable accurate full-NPU inference.

To provide a compact numerical baseline, Table 8 summarizes throughput (FPS) and mAP across
various platforms: RK3566, Intel Myriad X on Raspberry Pi 4 as reported by Feng et al. [48], and Coral Edge
TPU as reported by Amanatidis et al. [49]. Because the architectures, precisions, and input sizes differ, these
figures are contextual baselines rather than a head-to-head comparison. Future work will extend to sequential
inference (e.g., streaming, tracking) and reassess NMS placement and INT8 quantization stability on the
RK3566 NPU.

Overall, the RK3566 NPU delivered substantial efficiency gains without compromising detection
quality. Continued progress depends on optimizing the preprocessing and postprocessing pipeline and
enriching datasets to mitigate misclassification in complex real-world scenes. Future work will extend to
sequential inference (e.g., streaming and tracking) and reassess NMS placement and INT8 quantization
stability on the RK3566 NPU. All data supporting this study are openly available on Zenodo [50].

Table 8. Cross-platform summary

Platform Model (precision and input) Throughput Accuracy / AmAP
Orange Pi 3B + RK3566 YOLO11 n/sim/l/x (FP32, 3.12/2.06/1.00/0.83/0.38 —0.026 / —0.029 / —0.028 /
640) FPS —0.030 /—0.030
RPi4 + Intel Myriad X YOLOvV3 (INT8/FP16, 416) ~2.5FPS n/a (pipeline-dependent)
(NCS2)
RPi4 + Intel Myriad X YOLOv3-tiny (INT8/FP16, ~19.0 FPS n/a (unstable across
(NCS2) 416) sequences)
RPi4 + Coral Edge TPU YOLOVS5 (INT8, 224) ~10.1-11.1 FPS mAP = 0.44-0.45

- n/a (pipeline-dependent): accuracy not reported due to conversion variability (e.g., region layers, anchors, INT8 calibration).
- n/a (unstable): mean confidence fluctuates across sequences; no representative accuracy.

4. CONCLUSION

To our knowledge, this is the first comprehensive benchmark of YOLO11 on the Orange Pi 3B with
the RK3566 NPU. Evaluations of latency, energy, and accuracy show >80% reduction in inference time, up to
94% lower end-to-end latency, and similar reductions in energy per inference, while maintaining detection
reliability (mAP deviations of -0.026 to -0.030 vs. the official Ultralytics map report). These results establish
RK3566 as a feasible, efficient, low-cost platform for edge object detection.

Two limitations emerged: i) CPU-bound preprocessing/postprocessing overheads from data transfers
and format conversions and ii) INT8 quantization on RK3566, which did not yield valid results, requiring FP32
for all experiments. Future work should integrate postprocessing into the NPU pipeline, streamline conversion
workflows to reduce interface costs, stabilize INT8 for efficient execution, and validate performance in domain
deployments (e.g., traffic monitoring, industrial inspection, and mobile robotics) and distributed multi-board
settings. This demonstrates that low-cost NPUs can enable real-time edge-Al applications without
compromising accuracy.
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