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 Tornado detection in Indonesia remains challenging as most areas are 

monitored by single-polarization weather radar, while dual-polarization 

systems offer superior detection capabilities. This study presents a novel 

approach by applying random forest (RF) and XGBoost machine learning 

algorithms to detect tornadoes using single-polarization radar data, addressing 

a critical gap in tropical tornado monitoring where dual-pol infrastructure is 

limited. Four tornado cases in Surabaya during 2024 were analyzed. Radar 

features including reflectivity, radial velocity, vorticity, and angular 

momentum were extracted through a multi-elevation sliding window 

technique. Spatial labels were assigned based on reports from the Indonesian 

Agency for Meteorology, Climatology and Geophysics (BMKG) with a 7.5 

km radius from the event center. The dataset was balanced using synthetic 

minority over-sampling technique (SMOTE). Evaluation was performed 

using the leave-one-case-out (LOCO) scheme. Within-case evaluation 

showed strong performance with area under the curve (AUC) >0.94 for both 

models. XGBoost achieved higher probability of detection (POD 0.67-0.72) 

but with elevated false alarm rates (FAR up to 70%). RF demonstrated more 

balanced performance (POD 0.61-0.65, FAR 0.34-0.35). LOCO evaluation 

revealed significant POD reduction and FAR increase when tested on new 

cases. This indicates generalization challenges due to variability in tornado 

characteristics. This study demonstrates the potential of machine learning for 

tropical tornado early detection using readily available single-polarization 

radar. 
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1. INTRODUCTION  

Severe convective storms present a significant challenge to meteorological monitoring and 

forecasting, particularly in tropical regions. These systems frequently produce significant weather phenomena, 

including heavy rain, thunderstorms, hail, and tornadoes. Among these, “puting beliung” a local term used in 

Indonesia for small-scale, short-lived tornadoes is a frequent occurrence, particularly during transitional 

seasons [1]-[3]. Tornadoes, though typically small and short-lived in Indonesia, can still cause severe damage 

to infrastructure and pose risks to human safety [4]. Meanwhile, in terms of economic losses, for example in 

Semarang, Central Java, which carries a tornado risk hazard level as high as 28.502%, tornadoes caused an 
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estimated economic loss of up to USD 51,000 during the period from January 2014 to December 2018 [5]. 

This extreme phenomenon accounts for approximately 21% of all natural disasters that occurred in Indonesia 

between 1815 and 2014 [6]. 

Given these risks, understanding the characteristics of Indonesian tornadoes is critical. Several 

domestic studies have attempted to analyze these events using available meteorological data. For example, a 

study by Siswanto and Supari [7] utilized satellite and surface observation data to identify tornado precursors, 

characterized by a rapid increase in relative humidity approximately one hour in advance, accompanied by a 

sharp temperature drop and the presence of a “horn-like” pressure anomaly. Rusmala et al. [8] analyzed a 

tornado event in Jakarta using C-band weather radar data from column maximum reflectivity (CMAX), vertical 

cut (VCUT), and constant altitude plan position indicator (velocity) (CAPPI (V)) at 0.5 km, 1.0 km, and 1.5 

km, combined with horizontal wind (HWIND) data. The results showed that the tornado-generating convective 

cloud developed rapidly, with reflectivity between 35-45 dBZ and wind speeds up to 35 knots. Another study 

by Kiki et al. [3] analyzed the spatiotemporal distribution and trends of tornado occurrences in Indonesia over 

the past decade and reported that the primary tornado hotspots are located on the island of Java, with a positive 

trend in tornado frequency of approximately 12 events per year. Yudistira et al. [9] analyzed upper-air data and 

found that negative lifted index (LI) values, elevated K index (KI), total totals index (TT), and convective 

available potential energy (CAPE) indices, along with higher severe weather threat index (SWEAT) readings, 

indicated unstable atmospheric conditions conducive to convection and thunderstorm development. Overall, 

the results demonstrated increasing atmospheric instability and a rising potential for convective and lightning 

activity compared to the preceding days. Other study has attempted to evaluate community resilience to tornado 

events. For instance, Hidayat et al. [10] conducted research in Donohudan Village, Central Java, and identified 

a moderate level of resilience among residents. This condition was influenced by factors such as adaptability 

to changing circumstances and challenges, familial and social support networks, spiritual values, and a strong 

sense of purpose. Despite these analytical efforts, the detection and monitoring of such short-lived events 

remain difficult, necessitating robust early warning systems. 

The primary technological constraint in Indonesia lies in the radar infrastructure, whereas weather 

radar is recognized as the primary tool for tornado monitoring and forecasting globally [11]. While Indonesian 

Agency for Meteorology, Climatology and Geophysics (BMKG) has begun deploying dual-polarization 

weather radars, the network remains limited. As of 2025, BMKG operates 44 weather radars, comprising 33 

single-polarization C-band radars and 11 dual-polarization systems (C-band and X-band). Consequently, most 

regions, including those frequently experiencing tornado events, are predominantly by single-polarization radar 

systems. This limitation restricts the availability of advanced polarimetric variables often used in modern storm 

detection, creating a need for methods that can maximize the utility of existing single-polarization data. 

In the global context, advances in data science and artificial intelligence (AI) offer significant 

opportunities to complement numerical weather prediction and enhance real-time guidance [4]. Recent years 

have seen the successful application of machine learning to improve tornado detection. For dual-polarization 

data, Zeng et al. [12] introduced an extreme gradient boosting (XGBoost)-based algorithm that enhanced 

detection accuracy. However, progress has also been made using single-radar data, Sandmæl et al. [13] 

developed the tornado probability algorithm (TORP), a probabilistic machine learning approach utilizing 

single-radar data to estimate tornado occurrence probabilities. Veillette et al. [11] presented the tornado 

network (TorNet) benchmark dataset, comprising full-resolution polarimetric weather radar data to facilitate 

developing and evaluating machine learning algorithms for tornado detection and prediction. Various deep 

learning architectures were evaluated for tornado detection using weather radar data, demonstrating the 

potential of these models in operational settings [11]. Furthermore, deep learning architectures have shown 

potential in operational settings, with Zhou [14] proposed a hybrid models combining Kalman filtering, 

convolutional neural networks (CNNs), and bidirectional long short-term memory networks with multi-head 

attention mechanisms to improve tornado prediction in the United States. Sufi et al. [15] built a tornado 

compendium that encompasses both current and historical records of tornadoes in Bangladesh, in conjunction 

with AI-based regression analysis and the new dashboard system, which would enable any strategic decision 

maker to make evidence-based policy decisions regarding tornado events in Bangladesh. Complementing this, 

Xue et al. [16] introduced the multi-task identification network (MTI-Net), a detection model that utilizes a 

novel backbone with spatial and channel attention units. This approach has proven highly effective, reducing 

false alarm rates from 0.94 to 0.46 and achieving a nearly fourfold increase in the hit rate. 

Despite these global advancements, there remains a notable gap in the literature concerning the 

application of machine learning techniques for detecting tornadoes in specifically within the Indonesian 

maritime continent. Most critical is the lack of research utilizing single-polarization radar data for this purpose, 

which constitutes the bulk of Indonesia’s observational network. Addressing this gap is essential for developing 

detection systems that are effective in the context of Indonesia’s unique meteorological conditions and 

infrastructure constraints. 
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Therefore, this study aims to evaluate the performance of machine learning algorithms, specifically 

random forest (RF) and XGBoost, in detecting tornado events in Indonesia using single-polarization weather 

radar data. Additionally, the study assesses the impact of incorporating multi-elevation radar data on detection 

accuracy. By addressing the identified research gap, this study contributes to developing more effective early 

warning systems for tornadoes in the region. The findings will provide valuable insights into the application of 

machine learning techniques for tropical regions and archipelagic countries, where conventional detection 

methods face unique challenges due to complex topography and meteorological patterns. 

 

 

2. METHOD 

2.1.  Material 

The analysis focused on tornado events within the coverage area of the single-polarization weather radar 

operated by BMKG in Surabaya (SBY). This location was chosen because it is located in East Java, which is one 

of the provinces with the highest frequency of tornado events in Indonesia in recent years [3]. Four documented 

tornado events on 1, 9, 17, and 26 January 2024 were selected based on detailed incident reports from the 

BMKG [17]. These reports provided accurate geographic coordinates, event timings, duration, and impact 

descriptions, essential for spatial labeling of the radar data. These cases were selected primarily based on data 

availability and the absence of significant radar beam blockage due to terrain at the event locations. Detailed 

summaries of the selected tornado events, including coordinates, timings, and reported impacts, are presented 

in Table 1. The Surabaya radar operates in 5.6 GHz frequency with a Nyquist velocity of 32 m/s, employing a 

staggered pulse repetition frequency (PRF) scheme of 1000 Hz with a staggering 3/4 ratio and a spatial range 

resolution of 250 meters. Radar beam blockage analysis results for the three lowest radar elevation angles (0.5°, 

0.8°, and 1.8°) are presented in Figures 1(a) and (b), confirming minimal or negligible blockage at all event 

sites. 

 

 

Table 1. Selected tornado case studies 
Date/time Location Impacts 

2024-01-01/ 13.00 LT Kemlangi, Mojokerto, East Java (7.40857907 

S,112.36547617 E) 

16 houses damaged, several trees uprooted, two 

vehicles hit by fallen trees 

2024-01-17/ 14.30 LT Megaluh, Jombang, East Java (7.50154633 
S,112.18614237 E) 

8 houses damage 

2024-01-26/ 17.00 LT Soko, Tuban, East Java (7.09412375 

S,111.93226544 E) 

Dozens of houses damaged, one injury 

2024-02-04/ 16.00 LT Tarik, Sidoarjo, East Java (7.44837777 

S,112.51783611 E) 

200 houses damaged, one fatality, two injuries 

 

 

  
(a) (b) 

 

Figure 1. Coverage analysis of the Surabaya weather radar; (a) beam spreading for one volume scan and  

(b) beam blocking analysis for the three lowest elevations 
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2.2.  Methods 

2.2.1. Radar data extraction and preprocessing 

The initial phase of the methodology involves preparing the raw radar observations for computational 

analysis. Radar data were stored in Rainbow-5 format (“.vol”). Volume scans at each elevation angle were 

processed to extract reflectivity, radial velocity, and spectrum width. Extracted radar data were organized into 

polar coordinates of azimuth angles and range bins. Subsequently, missing or erroneous data were identified 

and removed using numerical masking procedures to ensure data quality for subsequent analysis. The Wradlib 

python library is dominantly used in this study to extract radar data [18]. 

 

2.2.2. Feature extraction via the sliding window technique 

Following data cleaning, spatial features were derived to capture the micro-scale structure of 

convective storms. Radar-derived features were computed using a sliding window approach, following similar 

methodologies in previous studies [12]. Each radar scan was divided into overlapping 4×4 pixel spatial blocks 

(~2 km2 each, based on 250 meter resolution). Within each block, we extracted reflectivity features (mean, 

maximum, minimum) to characterize precipitation intensity and heterogeneity, and radial velocity-based 

features (mean velocity, delta-V, rotational velocity, angular momentum) to capture kinematic properties. 

Shear and vorticity were derived from velocity gradients to quantify rotational motion, while mean spectrum 

width assessed turbulence intensity. 

To enhance sensitivity to small-scale vortices, a central 2×2 pixel sub-block within each 4×4 block was 

analyzed separately, adopted following the methodology proposed by [13], which demonstrated that this spatial 

extent effectively captures convective storm morphology while preserving the resolution of fine-scale vortex 

signatures. Localized features maximum reflectivity (c4_z_max), maximum radial velocity (c4_v_max), mean 

spectrum width (c4_w_avg), and central vorticity (c4_vorticity)—were extracted to focus on fine-scale rotational 

signatures associated with tornadoes. The sliding window operated with stride = 1, ensuring dense sampling and 

maximizing detection probability of localized vortex structures. Figure 2(a) illustrates the block organization, 

while Figure 2(b) demonstrates the sequential overlapping movement across the radar field. 

 

 

  
(a) (b) 

 

Figure 2. Feature extraction via sliding window scheme: (a) 4×4 sliding window and 2×2 center block from 

radar data and (b) illustration of overlapping sliding window movement with stride = 1 pixel across the radar 

scan 

 

 

2.2.3. Labeling and spatial referencing 

To enable supervised learning, the extracted features required precise geospatial alignment with 

historical ground truth records. Radar blocks were geospatially referenced by converting radar polar 

coordinates (range and azimuth) into geographic latitude and longitude coordinates. A radius-based labeling 

approach was implemented, where blocks within a 7.5 km radius from the documented tornado center were 

labeled as positive (label = 1). In contrast, blocks outside this radius were labeled negative (label = 0). The 

tornado center was determined from BMKG ground-truth reports. This approach ensured consistent spatial 

labeling of tornado and non-tornado blocks while reducing uncertainties from radar coverage limitations. The 

7.5 km radius was selected based on a preliminary sensitivity analysis. We evaluated labeling radii of 2.5 km, 
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5.0 km, 7.5 km, and 10.0 km relative to the reported tornado center. The 7.5 km threshold yielded the highest 

probability of detection (POD) in our validation set, offering the optimal balance between encompassing the 

tornado’s parent circulation and minimizing the inclusion of non-rotational storm areas. Figure 3 illustrates the 

spatial distribution of positive and negative radar blocks relative to the tornado center. 

 

 

 
 

Figure 3. Spatial distribution of radar blocks after labeling, red crosses represent blocks labeled as tornado 

(1), gray points represent non-tornado blocks (0), and the blue circle marks the documented tornado center 

 

 

2.2.4. Machine learning algorithm and balancing techniques 

Having established a labeled dataset, the study proceeded to implement and evaluate specific 

classification algorithm. This study employed two supervised machine learning algorithms to classify radar-

derived features for tornado detection: RF and XGBoost. The RF algorithm is an ensemble learning method 

based on aggregating multiple decision trees [19], [20]. Each tree is trained on a random bootstrap sample of 

the training data, and at each split, a random subset of features is considered. The final prediction is obtained 

by majority voting among the outputs of individual trees. Mathematically, the RF classifier can be expressed 

as in (1). 

 

𝑦̂ = 𝑚𝑜𝑑𝑒(ℎ1(𝑥), ℎ2(𝑥), … . , ℎ𝑡(𝑥)) (1) 

 

where ℎ𝑇(𝑥) denotes the prediction of the t-th decision tree for input feature vector 𝑥, and 𝑇 is the total number 

of trees. XGBoost [21] is a scalable and efficient implementation of gradient-boosted decision trees (GBDT). 

XGBoost builds additive models in a forward stage-wise fashion, where new trees are fitted to correct the 

residual errors of prior trees. The objective function ℒ minimized during training consists of a regularized loss, 

expressed as in (2). 

 

ℒ = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)
𝑛
𝑖=1 +∑ Ω(𝑓𝑘)

𝐾

𝑘=1
 (2) 

 

where l(yi,ŷi) denotes the loss function (e.g., logistic loss for binary classification) between the true label y 

and the predicted label ŷi , fk  is the k-th tree, and Ω(f)  represents a regularization term penalizing the 

complexity of each tree to avoid overfitting. Both RF and XGBoost were trained using the radar-derived feature 

set described previously. Hyperparameters were selected empirically based on preliminary experiments: for 

RF, the number of trees was set to 100; for XGBoost, the number of estimators was set to 2000 with a learning 

rate of 0.01, maximum tree depth of 5, and a column subsampling ratio of 0.1. 

Due to the severe imbalance between positive (tornado) and negative samples, a synthetic minority 

oversampling technique (SMOTE) [22] was applied prior to model training. SMOTE generates synthetic 

examples of the minority class by interpolating between existing minority class samples and their nearest 

neighbors. Given a minority sample x and one of its nearest neighbors xnn, a synthetic sample xnew is generated 

as in (3). The initial dataset exhibited a severe class imbalance inherent to the rare nature of tornado events. 

The radar domain was gridded into a 1000×1000 matrix, yielding a total of 1,000,000 potential samples per 
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scan. Based on the 7.5 km radius labeling criteria, the minority class (positive/tornado) comprised 

approximately 2,800 samples, whereas the majority class (negative/non-tornado) accounted for the remaining 

~997,000 samples. SMOTE generated synthetic minority samples to achieve parity with the majority class. 

Consequently, the post-balancing dataset consisted of approximately 997,000 positive samples (combining real 

and synthetic instances) and 997,000 negative samples, resulting in a total training dataset of approximately 

2,000,000 samples. SMOTE improves accuracy in unbalanced datasets by generating synthetic samples that 

maintain the same statistical distribution as the tornado data [23]. 

 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝜆(𝑥𝑛𝑛 − 𝑥)  (3) 

 

where 𝜆 is a random number in [0,1]. This balancing procedure was applied only to the training set to avoid 

information leakage into the test set. 

 

2.2.5. Model training and validation 

The compiled dataset was divided into training and testing subsets using a 70-30% split, stratified by 

class labels to ensure proportional representation of both tornado and non-tornado samples. Before training, 

feature scaling was performed using the StandardScaler to normalize feature distributions, thereby improving 

the convergence behavior and stability of the machine learning algorithms. The RF and XGBoost models were 

trained and validated on this balanced and scaled dataset. Table 2 summarizes the features extracted for this 

analysis. 

Model performance was quantitatively assessed using multiple evaluation metrics. The area under the 

curve (AUC) [24] and the receiver operating characteristic (ROC) [25] curve was used to measure the model’s 

ability to discriminate between positive and negative classes. The POD, equivalent to recall, was calculated to 

quantify the proportion of correctly identified tornado events. In addition, the false alarm rate (FAR) was 

evaluated to indicate the frequency of incorrect positive predictions. The F1-score was computed as a harmonic 

mean between precision and recall, providing a balanced measure of classification performance. Lastly, a 

confusion matrix was analyzed to offer a comprehensive view of true positive, true negative, false positive, 

and false negative rates. To rigorously assess the generalization capability of the models, a leave-one-case-out 

(LOCO) evaluation was conducted, where the model was trained on all but one case and tested on the remaining 

unseen event. This approach enabled the evaluation of model robustness across different tornado cases, 

emphasizing the challenges of generalizing machine learning models for small-scale tropical vortices with 

highly localized characteristics. 

 

 

Table 2. Features extracted in the study 
Features Definition Physical interpretation 

Reflectivity Z_max_1, Z_max_2, Z_max_3, Z_avg_1, 

Z_avg_2, Z_avg_3, Z_min_1, Z_min_2, 

Z_min_3, c4_z_max_1, c4_z_max_2, 
c4_z_max_3 

Reflectivity (max/avg/min) from horizontal 

polarization from tilt 1, 2, and 3; c4 is central-

block reflectivity on the localized core of the 
storm 

Velocity V_avg_1, V_avg_2, V_avg_3, 

rotational_velocity_avg_1, 
rotational_velocity_avg_2, 

rotational_velocity_avg_3, 

rotational_velocity_max_1, 
rotational_velocity_max_2, 

rotational_velocity_max_3, 

angular_momentum_max_1, 
angular_momentum_max_2, 

angular_momentum_max_3, 

angular_momentum_avg_1, 
angular_momentum_avg_2, 

angular_momentum_avg_3, delta_V_1, 

delta_V_2, delta_V_3, shear_min_1, 
shear_min_2, shear_min_3, shear_max_1, 

shear_max_2, shear_max_3, 

c4_vorticity_1, c4_vorticity_2, 
c4_vorticity_3 

Radial velocity (max/min/avg) from horizontal 

polarization from tilt 1, 2, and 3; rotational 
velocity represents the magnitude of the 

inbound and outbound wind couplet; angular 

momentum and vorticity represents the radius 
of a rotating column contracts (stretching), 

wind speeds increase; delta_V and shear 

capture the lateral change in wind speed over a 
short distance 

Spectral width W_avg_1, W_avg_2, W_avg_3, W_max_1, 

W_max_2, W_max_3, W_min_1, 
W_min_2, W_min_3, c4_w_avg_1, 

c4_w_avg_2, c4_w_avg_3, c4_w_max_1, 

c4_w_max_2, c4_w_max_3 

Spectral width (max, avg, min) from horizontal 

polarization from tilt 1, 2, and 3; c4 is central-
block reflectivity on the localized core of the 

storm 
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In addition to the LOCO evaluation, inference was also performed on an independent tornado event 

that was not used during model training. This inference step served as a real-world validation to further examine 

the model’s operational applicability and its ability to predict unseen cases based solely on the extracted radar 

features. The overall workflow of the tornado detection system, encompassing data preparation, feature 

engineering, and classification stages presented in Figure 4. 

 

 

 
 

Figure 4. Flowchart of the proposed methodology 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Spatial feature distribution and feature importance 

Each panel in Figures 5(a) to (d) displays four spatial maps on the left: vorticity, delta-v, angular 

momentum, and z_max reflectivity, all derived from the lowest radar elevation (0.5°). The blue dot indicates 

the center of the reported tornado. Right-side barplots show the top five most important features according to 

the RF and XGB models. feature selection patterns generally emphasize z_max and rotational features, 

consistent with spatial intensification near the event center. 

The analysis of radar-derived features reveals that reflectivity (Z) remains the most robust indicator 

for identifying the core of tornado-producing storms in tropical settings. As visualized in the spatial distribution 

maps Figures 5(a) to (d), maximum reflectivity (Z_max) consistently exhibits concentrated high values in the 

immediate vicinity of the reported tornado centers across all four cases. This aligns with the physical 

understanding that strong convective updrafts, manifested as high reflectivity cores, are a prerequisite for 

sustaining these storm systems. 

In contrast, dynamic features such as vorticity, delta-V, and angular momentum show significant 

variability between events. While localized clusters of high vorticity were distinct in the cases of January 1 and 

January 17, the signatures were much more dispersed or weaker in the other two cases. This inconsistency 

highlights the challenge of detecting non-supercell tornadoes compared to supercell counterparts, which 

typically possess coherent and persistent mesocyclones. 

The feature importance evaluation using RF and XGB further corroborates these spatial observations. 

As shown in the bar charts in Figures 5(a) to (d), both models heavily prioritize reflectivity-based features (e.g., 

Z_max, Z_avg) as the primary predictors. However, the models diverge in their secondary selections; XGB 

tends to assign higher importance to rotational velocity and angular momentum derived from higher elevations, 

whereas RF focuses more on near-surface statistics. This divergence suggests that while thermodynamic 

intensity (reflectivity) is a universal predictor, the kinematic (rotational) signatures of Indonesian tornadoes are 

too variable to be captured uniformly by different algorithms. 

 

3.2.  Model performance and operational trade-offs 

The quantitative evaluation focused on comparing the predictive performance of random forest 

(TDA-RF) and XGBoost (TDA-XGB) models across four tornado cases, using ROC curves and a suite of 

evaluation metrics including AUC, F1-score, POD, FAR, and confusion matrices Figures 6(a) to (d). Across 

all cases, both models achieved consistently high AUC values above 0.94, indicating excellent discrimination 

capability between tornado and non-tornado samples. Notably, TDA-RF tended to yield higher F1-scores in 

three out of four cases, suggesting a better balance between precision and recall. For instance, in 
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SBY_20240101, TDA-RF achieved an F1-score of 0.629 with a POD of 0.611 and FAR of 0.353, compared 

to TDA-XGB’s lower F1-score of 0.595 despite a higher POD of 0.722. 

However, a typical pattern emerged where TDA-XGB showed superior POD, capturing more 

tornado cases (true positives), albeit at higher FAR. For example, on 2024-01-17, TDA-XGB reached a POD 

of 0.723 but with a FAR of 0.647, while TDA-RF offered a more conservative performance with a lower FAR 

of 0.341 but also slightly lower POD (0.651). This trade-off highlights the critical balance between sensitivity 

and specificity in operational applications. Interestingly, in 2024-02-04, which had a much larger test sample 

size, both models achieved relatively balanced AUCs (0.946 for TDA-RF and 0.942 for TDA-XGB). However, 

TDA-XGB’s FAR soared to 0.693, signaling potential over-sensitivity when exposed to large imbalanced 

datasets. 

 

 

    
(a) (b) 

    
(c) (d) 

    

Figure 5. Spatial distribution of radar-derived features and feature importance for each tornado case:  

(a) 2024-01-01, (b) 2024-01-17, (c) 2024-01-26, and (d) 2024-02-02 

 

 

These results underscore the challenge of achieving generalizable performance across highly 

localized and small-scale tornado events. While ensemble methods like RF offer stability, XGBoost may better 

capture rare events, albeit with a higher risk of false positives. The variability in performance across cases also 
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supports the need for tailored model calibration and possibly spatiotemporal stratification during model training 

and deployment. 

From an operational perspective, this trade-off dictates distinct deployment strategies depending on the 

forecasting philosophy. A high-sensitivity model like TDA-XGB acts as an effective “safety net” or “early vigilance” 

tool, ensuring that forecasters are alerted to most potential threats. However, its high FAR implies that it cannot be 

used as a fully automated warning trigger, as this would likely lead to “warning fatigue” among the public. 

Conversely, the more conservative TDA-RF, with its lower FAR, is better suited for scenarios where maintaining 

public trust and reducing false positives is prioritized, though it carries the risk of missing weaker events. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 6. ROC curves and evaluation metrics for random forest (TDA-RF) and XGBoost (TDA-XGB) 

models using the top features of each case:(a) 2024-01-01, (b) 2024-01-17,  

(c) 2024-01-26, and (d) 2024-02-02 

 

 

Compared to studies like Zeng et al. [26], which applied machine learning to detect large-scale 

supercell tornadoes using dual-polarization radar and environmental data, our models trained solely on single-

polarization radar features demonstrated comparable AUC but generally lower F1-scores and higher FARs. 

This discrepancy arises from the inherently small scale, short duration, and disorganized nature of tornado 

events in Indonesia, which lack the coherent rotational signatures found in temperate supercells. Additionally, 

limited sample size and label uncertainty from field-based reports present robust model learning and 

generalization challenges. While RF and XGBoost showed promising results, particularly in recall, their 
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performance varied significantly across cases, reflecting the difficulty of building universal detectors for 

tropical tornadoes without broader environmental context or high-resolution multi-source data. 

Both models achieved high AUC values across all cases. TDA-XGB generally offered a higher POD 

at the expense of an increased FAR, while TDA-RF provided more balanced performance. These results 

highlight the trade-off between sensitivity and specificity when detecting small-scale, non-supercell tornadoes 

from radar-derived features. 

To further evaluate the generalization ability of the models, a LOCO evaluation was conducted in 

which each of the four cases was held out as the test set while the remaining three were used for training. The 

results of this rigorous evaluation are presented in Figure 7. LOCO results reveal a notable decline in overall 

detection performance compared to the within-case evaluations. While the area under the ROC curve (AUC) 

remained relatively stable above 0.85 for most cases both random forest (TDA-RF) and XGBoost (TDA-XGB) 

suffered significant drops in F1-scores and POD. TDA-XGB generally achieved higher POD across all cases, 

indicating stronger sensitivity to tornado occurrences; however, this came at the cost of substantially higher 

FAR, in some cases exceeding 70%. For instance, when SBY_20240117 was used as the unseen test set, TDA-

XGB reached a POD of 0.667 but with a FAR of 0.723, highlighting the tendency of the model to over-predict 

positives. Meanwhile, TDA-RF showed more conservative behavior, producing lower FAR but failing to detect 

a significant portion of tornado instances. 

These findings have significant implications for operational implementation in tropical regions like 

Indonesia. The current performance levels suggest that these machine learning (ML) models are best utilized 

as decision-support tools rather than standalone automated warning systems. Given the short lead times of 

tornado events, the model outputs can serve as a “first-guess” guidance field, drawing the forecaster’s attention 

to specific storm cells that exhibit micro-scale rotational characteristics often invisible to the naked eye on 

standard radar displays. By integrating the ML probability maps with environmental analysis, forecasters can 

filter out the false alarms generated by TDA-XGB, effectively combining human expertise with machine 

sensitivity. 

 

 

 
 

Figure 7. Model performance using LOCO evaluation for both TDA-RF and TDA-XGB 

 

 

These results demonstrate the complexity of generalizing radar-based machine learning models to 

detect highly localized and short-lived tropical vortex phenomena. Unlike significant supercell tornadoes, 

which tend to exhibit consistent spatial and structural radar patterns, tornadoes in Indonesia show case-

dependent variability in both structure and radar signature, limiting cross-case model performance. The LOCO 

evaluation highlights the need for future research on incorporating domain adaptation, temporal ensemble 

methods, or additional atmospheric predictors to boost generalization across operationally diverse conditions. 

The LOCO evaluation results further highlight the challenges in building generalizable machine 

learning models for tornadoes in tropical environments like Indonesia. Unlike the within-case evaluation, 

where the models performed well on data drawn from the same event, LOCO results revealed performance 
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degradation when tested on unseen cases, particularly regarding F1-score and POD. This suggests that radar-

derived feature patterns associated with tornadoes vary significantly from case to case, possibly due to 

differences in storm morphology, terrain influences, or local mesoscale dynamics. Compared to prior studies 

such as Zeng et al. [26] which reported stable cross-case performance using dual-polarization radar data for 

significant tornadoes, the findings here underscore the difficulty of applying similar methods to weak, short-

lived vortices with limited spatial extent and single-polarization input. These discrepancies emphasize the need 

for further research on transfer learning, regional tuning, or the integration of environmental parameters (e.g., 

CAPE, shear) to support operational nowcasting of tornadoes in data-sparse tropical regions. 

 

 

4. CONCLUSION  

This study assessed the feasibility of detecting non-supercell tornadoes in Indonesia using single-

polarization weather radar and machine learning. Analysis of four cases near Surabaya demonstrated that RF 

and XGBoost can achieve strong within-case performance (AUC > 0.94), though XGBoost produced more 

false alarms while RF provided more balanced results. Feature analysis highlighted the dominance of 

reflectivity-based predictors, with rotational features contributing less consistently across cases. The LOCO 

evaluation revealed major challenges in generalization, underscoring the event-specific nature of tropical 

tornado signatures. These results emphasize both the potential and the limitations of machine learning for radar-

based tornado detection in Indonesia. To enhance operational viability as automated tornado warning triggers, 

future work must integrate multi-source data such as Himawari-8 satellite imagery and surface observations. 

Additionally, exploring hybrid spatiotemporal deep learning models (e.g., CNN-long short-term memory 

(LSTM)) and transfer learning from global polarimetric datasets will be essential to overcome generalization 

hurdles. Future progress will require larger and more diverse datasets, integration of environmental predictors, 

and adoption of deep learning architectures. By establishing a first baseline for radar-based ML detection in 

the tropics, this study contributes to advancing BMKG’s early warning capabilities for localized hazardous 

weather in Indonesia and similar regions. 
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