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1. INTRODUCTION

Severe convective storms present a significant challenge to meteorological monitoring and
forecasting, particularly in tropical regions. These systems frequently produce significant weather phenomena,
including heavy rain, thunderstorms, hail, and tornadoes. Among these, “puting beliung” a local term used in
Indonesia for small-scale, short-lived tornadoes is a frequent occurrence, particularly during transitional
seasons [1]-[3]. Tornadoes, though typically small and short-lived in Indonesia, can still cause severe damage
to infrastructure and pose risks to human safety [4]. Meanwhile, in terms of economic losses, for example in
Semarang, Central Java, which carries a tornado risk hazard level as high as 28.502%, tornadoes caused an
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estimated economic loss of up to USD 51,000 during the period from January 2014 to December 2018 [5].
This extreme phenomenon accounts for approximately 21% of all natural disasters that occurred in Indonesia
between 1815 and 2014 [6].

Given these risks, understanding the characteristics of Indonesian tornadoes is critical. Several
domestic studies have attempted to analyze these events using available meteorological data. For example, a
study by Siswanto and Supari [7] utilized satellite and surface observation data to identify tornado precursors,
characterized by a rapid increase in relative humidity approximately one hour in advance, accompanied by a
sharp temperature drop and the presence of a “horn-like” pressure anomaly. Rusmala et al. [8] analyzed a
tornado event in Jakarta using C-band weather radar data from column maximum reflectivity (CMAX), vertical
cut (VCUT), and constant altitude plan position indicator (velocity) (CAPPI (V)) at 0.5 km, 1.0 km, and 1.5
km, combined with horizontal wind (HWIND) data. The results showed that the tornado-generating convective
cloud developed rapidly, with reflectivity between 35-45 dBZ and wind speeds up to 35 knots. Another study
by Kiki ef al. [3] analyzed the spatiotemporal distribution and trends of tornado occurrences in Indonesia over
the past decade and reported that the primary tornado hotspots are located on the island of Java, with a positive
trend in tornado frequency of approximately 12 events per year. Yudistira et al. [9] analyzed upper-air data and
found that negative lifted index (LI) values, elevated K index (KI), total totals index (TT), and convective
available potential energy (CAPE) indices, along with higher severe weather threat index (SWEAT) readings,
indicated unstable atmospheric conditions conducive to convection and thunderstorm development. Overall,
the results demonstrated increasing atmospheric instability and a rising potential for convective and lightning
activity compared to the preceding days. Other study has attempted to evaluate community resilience to tornado
events. For instance, Hidayat ef al. [10] conducted research in Donohudan Village, Central Java, and identified
a moderate level of resilience among residents. This condition was influenced by factors such as adaptability
to changing circumstances and challenges, familial and social support networks, spiritual values, and a strong
sense of purpose. Despite these analytical efforts, the detection and monitoring of such short-lived events
remain difficult, necessitating robust early warning systems.

The primary technological constraint in Indonesia lies in the radar infrastructure, whereas weather
radar is recognized as the primary tool for tornado monitoring and forecasting globally [11]. While Indonesian
Agency for Meteorology, Climatology and Geophysics (BMKG) has begun deploying dual-polarization
weather radars, the network remains limited. As of 2025, BMKG operates 44 weather radars, comprising 33
single-polarization C-band radars and 11 dual-polarization systems (C-band and X-band). Consequently, most
regions, including those frequently experiencing tornado events, are predominantly by single-polarization radar
systems. This limitation restricts the availability of advanced polarimetric variables often used in modern storm
detection, creating a need for methods that can maximize the utility of existing single-polarization data.

In the global context, advances in data science and artificial intelligence (Al) offer significant
opportunities to complement numerical weather prediction and enhance real-time guidance [4]. Recent years
have seen the successful application of machine learning to improve tornado detection. For dual-polarization
data, Zeng et al. [12] introduced an extreme gradient boosting (XGBoost)-based algorithm that enhanced
detection accuracy. However, progress has also been made using single-radar data, Sandmeel et al. [13]
developed the tornado probability algorithm (TORP), a probabilistic machine learning approach utilizing
single-radar data to estimate tornado occurrence probabilities. Veillette et al. [11] presented the tornado
network (TorNet) benchmark dataset, comprising full-resolution polarimetric weather radar data to facilitate
developing and evaluating machine learning algorithms for tornado detection and prediction. Various deep
learning architectures were evaluated for tornado detection using weather radar data, demonstrating the
potential of these models in operational settings [11]. Furthermore, deep learning architectures have shown
potential in operational settings, with Zhou [14] proposed a hybrid models combining Kalman filtering,
convolutional neural networks (CNNs), and bidirectional long short-term memory networks with multi-head
attention mechanisms to improve tornado prediction in the United States. Sufi ef al. [15] built a tornado
compendium that encompasses both current and historical records of tornadoes in Bangladesh, in conjunction
with Al-based regression analysis and the new dashboard system, which would enable any strategic decision
maker to make evidence-based policy decisions regarding tornado events in Bangladesh. Complementing this,
Xue et al. [16] introduced the multi-task identification network (MTI-Net), a detection model that utilizes a
novel backbone with spatial and channel attention units. This approach has proven highly effective, reducing
false alarm rates from 0.94 to 0.46 and achieving a nearly fourfold increase in the hit rate.

Despite these global advancements, there remains a notable gap in the literature concerning the
application of machine learning techniques for detecting tornadoes in specifically within the Indonesian
maritime continent. Most critical is the lack of research utilizing single-polarization radar data for this purpose,
which constitutes the bulk of Indonesia’s observational network. Addressing this gap is essential for developing
detection systems that are effective in the context of Indonesia’s unique meteorological conditions and
infrastructure constraints.
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Therefore, this study aims to evaluate the performance of machine learning algorithms, specifically
random forest (RF) and XGBoost, in detecting tornado events in Indonesia using single-polarization weather
radar data. Additionally, the study assesses the impact of incorporating multi-elevation radar data on detection
accuracy. By addressing the identified research gap, this study contributes to developing more effective early
warning systems for tornadoes in the region. The findings will provide valuable insights into the application of
machine learning techniques for tropical regions and archipelagic countries, where conventional detection
methods face unique challenges due to complex topography and meteorological patterns.

2. METHOD
2.1. Material

The analysis focused on tornado events within the coverage area of the single-polarization weather radar
operated by BMKG in Surabaya (SBY). This location was chosen because it is located in East Java, which is one
of the provinces with the highest frequency of tornado events in Indonesia in recent years [3]. Four documented
tornado events on 1, 9, 17, and 26 January 2024 were selected based on detailed incident reports from the
BMKG [17]. These reports provided accurate geographic coordinates, event timings, duration, and impact
descriptions, essential for spatial labeling of the radar data. These cases were selected primarily based on data
availability and the absence of significant radar beam blockage due to terrain at the event locations. Detailed
summaries of the selected tornado events, including coordinates, timings, and reported impacts, are presented
in Table 1. The Surabaya radar operates in 5.6 GHz frequency with a Nyquist velocity of 32 m/s, employing a
staggered pulse repetition frequency (PRF) scheme of 1000 Hz with a staggering 3/4 ratio and a spatial range
resolution of 250 meters. Radar beam blockage analysis results for the three lowest radar elevation angles (0.5°,
0.8°, and 1.8°) are presented in Figures 1(a) and (b), confirming minimal or negligible blockage at all event
sites.

Table 1. Selected tornado case studies

Date/time Location Impacts

2024-01-01/13.00 LT Kemlangi, Mojokerto, East Java (7.40857907 16 houses damaged, several trees uprooted, two
S,112.36547617 E) vehicles hit by fallen trees

2024-01-17/ 1430 LT Megaluh, Jombang, East Java (7.50154633 8 houses damage
S,112.18614237 E)

2024-01-26/ 17.00 LT Soko, Tuban, East Java (7.09412375 Dozens of houses damaged, one injury
S,111.93226544 E)

2024-02-04/ 16.00 LT Tarik, Sidoarjo, East Java (7.44837777 200 houses damaged, one fatality, two injuries

S,112.51783611 E)

S8 Rader Seaning Strategy. Based on - 20240101060804006.v0|

Figure 1. Coverage analysis of the Surabaya weather radar; (a) beam spreading for one volume scan and
(b) beam blocking analysis for the three lowest elevations
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2.2. Methods
2.2.1. Radar data extraction and preprocessing

The initial phase of the methodology involves preparing the raw radar observations for computational
analysis. Radar data were stored in Rainbow-5 format (“.vol”). Volume scans at each elevation angle were
processed to extract reflectivity, radial velocity, and spectrum width. Extracted radar data were organized into
polar coordinates of azimuth angles and range bins. Subsequently, missing or erroneous data were identified
and removed using numerical masking procedures to ensure data quality for subsequent analysis. The Wradlib
python library is dominantly used in this study to extract radar data [18].

2.2.2. Feature extraction via the sliding window technique

Following data cleaning, spatial features were derived to capture the micro-scale structure of
convective storms. Radar-derived features were computed using a sliding window approach, following similar
methodologies in previous studies [12]. Each radar scan was divided into overlapping 4x4 pixel spatial blocks
(~2 km? each, based on 250 meter resolution). Within each block, we extracted reflectivity features (mean,
maximum, minimum) to characterize precipitation intensity and heterogeneity, and radial velocity-based
features (mean velocity, delta-V, rotational velocity, angular momentum) to capture kinematic properties.
Shear and vorticity were derived from velocity gradients to quantify rotational motion, while mean spectrum
width assessed turbulence intensity.

To enhance sensitivity to small-scale vortices, a central 2x2 pixel sub-block within each 4x4 block was
analyzed separately, adopted following the methodology proposed by [13], which demonstrated that this spatial
extent effectively captures convective storm morphology while preserving the resolution of fine-scale vortex
signatures. Localized features maximum reflectivity (¢4 z max), maximum radial velocity (c4 v_max), mean
spectrum width (c4_w_avg), and central vorticity (c4_vorticity—were extracted to focus on fine-scale rotational
signatures associated with tornadoes. The sliding window operated with stride = 1, ensuring dense sampling and
maximizing detection probability of localized vortex structures. Figure 2(a) illustrates the block organization,
while Figure 2(b) demonstrates the sequential overlapping movement across the radar field.

Sliding Window Feature Extraction from Radar Data Sliding Window Movement with Stride = 1

Reflectivity
o Mean/Max/Min 8

4x4 Block

welocity
Mean/Delta-

Ratational elocity
6 Angular Momentum 6

Azimuth Bins
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[ shear
4 Vorticity 4

Spectrum Width
Mean

Figure 2. Feature extraction via sliding window scheme: (a) 4x4 sliding window and 2x2 center block from
radar data and (b) illustration of overlapping sliding window movement with stride = 1 pixel across the radar
scan

2.2.3. Labeling and spatial referencing

To enable supervised learning, the extracted features required precise geospatial alignment with
historical ground truth records. Radar blocks were geospatially referenced by converting radar polar
coordinates (range and azimuth) into geographic latitude and longitude coordinates. A radius-based labeling
approach was implemented, where blocks within a 7.5 km radius from the documented tornado center were
labeled as positive (label = 1). In contrast, blocks outside this radius were labeled negative (label = 0). The
tornado center was determined from BMKG ground-truth reports. This approach ensured consistent spatial
labeling of tornado and non-tornado blocks while reducing uncertainties from radar coverage limitations. The
7.5 km radius was selected based on a preliminary sensitivity analysis. We evaluated labeling radii of 2.5 km,
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5.0 km, 7.5 km, and 10.0 km relative to the reported tornado center. The 7.5 km threshold yielded the highest
probability of detection (POD) in our validation set, offering the optimal balance between encompassing the
tornado’s parent circulation and minimizing the inclusion of non-rotational storm areas. Figure 3 illustrates the
spatial distribution of positive and negative radar blocks relative to the tornado center.
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Figure 3. Spatial distribution of radar blocks after labeling, red crosses represent blocks labeled as tornado
(1), gray points represent non-tornado blocks (0), and the blue circle marks the documented tornado center

2.2.4. Machine learning algorithm and balancing techniques

Having established a labeled dataset, the study proceeded to implement and evaluate specific
classification algorithm. This study employed two supervised machine learning algorithms to classify radar-
derived features for tornado detection: RF and XGBoost. The RF algorithm is an ensemble learning method
based on aggregating multiple decision trees [19], [20]. Each tree is trained on a random bootstrap sample of
the training data, and at each split, a random subset of features is considered. The final prediction is obtained
by majority voting among the outputs of individual trees. Mathematically, the RF classifier can be expressed
as in (1).

¥ = mode(h,(x), hy(x), ...., hy(x)) (1)

where hy(x) denotes the prediction of the t-th decision tree for input feature vector x, and T is the total number
of trees. XGBoost [21] is a scalable and efficient implementation of gradient-boosted decision trees (GBDT).
XGBoost builds additive models in a forward stage-wise fashion, where new trees are fitted to correct the
residual errors of prior trees. The objective function £ minimized during training consists of a regularized loss,
expressed as in (2).

L= 009+ 3, Q) @)

where /(y;7;) denotes the loss function (e.g., logistic loss for binary classification) between the true label y
and the predicted label y;, f; is the k-th tree, and Q(f) represents a regularization term penalizing the
complexity of each tree to avoid overfitting. Both RF and XGBoost were trained using the radar-derived feature
set described previously. Hyperparameters were selected empirically based on preliminary experiments: for
RF, the number of trees was set to 100; for XGBoost, the number of estimators was set to 2000 with a learning
rate of 0.01, maximum tree depth of 5, and a column subsampling ratio of 0.1.

Due to the severe imbalance between positive (tornado) and negative samples, a synthetic minority
oversampling technique (SMOTE) [22] was applied prior to model training. SMOTE generates synthetic
examples of the minority class by interpolating between existing minority class samples and their nearest
neighbors. Given a minority sample x and one of its nearest neighbors Xx,,,, a synthetic sample X, is generated
as in (3). The initial dataset exhibited a severe class imbalance inherent to the rare nature of tornado events.
The radar domain was gridded into a 10001000 matrix, yielding a total of 1,000,000 potential samples per
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scan. Based on the 7.5 km radius labeling criteria, the minority class (positive/tornado) comprised
approximately 2,800 samples, whereas the majority class (negative/non-tornado) accounted for the remaining
~997,000 samples. SMOTE generated synthetic minority samples to achieve parity with the majority class.
Consequently, the post-balancing dataset consisted of approximately 997,000 positive samples (combining real
and synthetic instances) and 997,000 negative samples, resulting in a total training dataset of approximately
2,000,000 samples. SMOTE improves accuracy in unbalanced datasets by generating synthetic samples that
maintain the same statistical distribution as the tornado data [23].

Xnew = X + l(xnn - x) (3)

where A is a random number in [0,1]. This balancing procedure was applied only to the training set to avoid
information leakage into the test set.

2.2.5. Model training and validation

The compiled dataset was divided into training and testing subsets using a 70-30% split, stratified by
class labels to ensure proportional representation of both tornado and non-tornado samples. Before training,
feature scaling was performed using the StandardScaler to normalize feature distributions, thereby improving
the convergence behavior and stability of the machine learning algorithms. The RF and XGBoost models were
trained and validated on this balanced and scaled dataset. Table 2 summarizes the features extracted for this
analysis.

Model performance was quantitatively assessed using multiple evaluation metrics. The area under the
curve (AUC) [24] and the receiver operating characteristic (ROC) [25] curve was used to measure the model’s
ability to discriminate between positive and negative classes. The POD, equivalent to recall, was calculated to
quantify the proportion of correctly identified tornado events. In addition, the false alarm rate (FAR) was
evaluated to indicate the frequency of incorrect positive predictions. The F1-score was computed as a harmonic
mean between precision and recall, providing a balanced measure of classification performance. Lastly, a
confusion matrix was analyzed to offer a comprehensive view of true positive, true negative, false positive,
and false negative rates. To rigorously assess the generalization capability of the models, a leave-one-case-out
(LOCO) evaluation was conducted, where the model was trained on all but one case and tested on the remaining
unseen event. This approach enabled the evaluation of model robustness across different tornado cases,
emphasizing the challenges of generalizing machine learning models for small-scale tropical vortices with
highly localized characteristics.

Table 2. Features extracted in the study

Features Definition Physical interpretation
Reflectivity Z max _1,Z max 2,7 max 3,Z avg 1, Reflectivity (max/avg/min) from horizontal

Z avg 2,7 avg 3,Z min_1,Z min 2, polarization from tilt 1, 2, and 3; c4 is central-
Z min 3,c4 z max_1,c4 z max 2, block reflectivity on the localized core of the
c4 z max 3 storm

Velocity V_avg 1,V avg 2,V avg 3, Radial velocity (max/min/avg) from horizontal
rotational velocity avg 1, polarization from tilt 1, 2, and 3; rotational
rotational velocity avg 2, velocity represents the magnitude of the
rotational_velocity avg 3, inbound and outbound wind couplet; angular
rotational _velocity max_1, momentum and vorticity represents the radius
rotational_velocity max_2, of a rotating column contracts (stretching),
rotational_velocity_max_3, wind speeds increase; delta_V and shear
angular momentum max_1, capture the lateral change in wind speed over a
angular momentum max_2, short distance

angular_momentum_max_3,

angular momentum_avg 1,

angular momentum_avg 2,

angular momentum_avg 3, delta V_1,
delta V_2, delta V_3, shear min_1,
shear min_2, shear min 3, shear max 1,
shear_max_2, shear_max_3,

c4 vorticity 1, c4 vorticity 2,

c4 vorticity 3

Spectral width W_avg 1, W avg 2, W avg 3, W max 1, Spectral width (max, avg, min) from horizontal
W_max 2, W max 3, W min 1, polarization from tilt 1, 2, and 3; c4 is central-
W _min 2, W min 3,c4 w avg 1, block reflectivity on the localized core of the
c4 w avg 2,c4 w avg 3,c4 w_max_1, storm

¢4 w max 2,¢c4 w max 3

Challenges in radar-based non-supercell tornado detection using machine learning approaches (Kiki)
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In addition to the LOCO evaluation, inference was also performed on an independent tornado event
that was not used during model training. This inference step served as a real-world validation to further examine
the model’s operational applicability and its ability to predict unseen cases based solely on the extracted radar
features. The overall workflow of the tornado detection system, encompassing data preparation, feature
engineering, and classification stages presented in Figure 4.

BHASE 2 ACHINE LEARNING

PHASE 1: DATA PROCESSING

2. Feat., Extraction

3. Lanating

= Preparation

Figure 4. Flowchart of the proposed methodology

3.  RESULTS AND DISCUSSION
3.1. Spatial feature distribution and feature importance

Each panel in Figures 5(a) to (d) displays four spatial maps on the left: vorticity, delta-v, angular
momentum, and z_max reflectivity, all derived from the lowest radar elevation (0.5°). The blue dot indicates
the center of the reported tornado. Right-side barplots show the top five most important features according to
the RF and XGB models. feature selection patterns generally emphasize z max and rotational features,
consistent with spatial intensification near the event center.

The analysis of radar-derived features reveals that reflectivity (Z) remains the most robust indicator
for identifying the core of tornado-producing storms in tropical settings. As visualized in the spatial distribution
maps Figures 5(a) to (d), maximum reflectivity (Z_max) consistently exhibits concentrated high values in the
immediate vicinity of the reported tornado centers across all four cases. This aligns with the physical
understanding that strong convective updrafts, manifested as high reflectivity cores, are a prerequisite for
sustaining these storm systems.

In contrast, dynamic features such as vorticity, delta-V, and angular momentum show significant
variability between events. While localized clusters of high vorticity were distinct in the cases of January 1 and
January 17, the signatures were much more dispersed or weaker in the other two cases. This inconsistency
highlights the challenge of detecting non-supercell tornadoes compared to supercell counterparts, which
typically possess coherent and persistent mesocyclones.

The feature importance evaluation using RF and XGB further corroborates these spatial observations.
As shown in the bar charts in Figures 5(a) to (d), both models heavily prioritize reflectivity-based features (e.g.,
Z max, Z avg) as the primary predictors. However, the models diverge in their secondary selections; XGB
tends to assign higher importance to rotational velocity and angular momentum derived from higher elevations,
whereas RF focuses more on near-surface statistics. This divergence suggests that while thermodynamic
intensity (reflectivity) is a universal predictor, the kinematic (rotational) signatures of Indonesian tornadoes are
too variable to be captured uniformly by different algorithms.

3.2. Model performance and operational trade-offs

The quantitative evaluation focused on comparing the predictive performance of random forest
(TDA-RF) and XGBoost (TDA-XGB) models across four tornado cases, using ROC curves and a suite of
evaluation metrics including AUC, F1-score, POD, FAR, and confusion matrices Figures 6(a) to (d). Across
all cases, both models achieved consistently high AUC values above 0.94, indicating excellent discrimination
capability between tornado and non-tornado samples. Notably, TDA-RF tended to yield higher F1-scores in
three out of four cases, suggesting a better balance between precision and recall. For instance, in
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SBY 20240101, TDA-RF achieved an F1-score of 0.629 with a POD of 0.611 and FAR of 0.353, compared
to TDA-XGB’s lower F1-score of 0.595 despite a higher POD of 0.722.

However, a typical pattern emerged where TDA-XGB showed superior POD, capturing more
tornado cases (true positives), albeit at higher FAR. For example, on 2024-01-17, TDA-XGB reached a POD
0f 0.723 but with a FAR of 0.647, while TDA-RF offered a more conservative performance with a lower FAR
of 0.341 but also slightly lower POD (0.651). This trade-off highlights the critical balance between sensitivity
and specificity in operational applications. Interestingly, in 2024-02-04, which had a much larger test sample
size, both models achieved relatively balanced AUCs (0.946 for TDA-RF and 0.942 for TDA-XGB). However,
TDA-XGB’s FAR soared to 0.693, signaling potential over-sensitivity when exposed to large imbalanced
datasets.
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Figure 5. Spatial distribution of radar-derived features and feature importance for each tornado case:
(a) 2024-01-01, (b) 2024-01-17, (c¢) 2024-01-26, and (d) 2024-02-02

These results underscore the challenge of achieving generalizable performance across highly
localized and small-scale tornado events. While ensemble methods like RF offer stability, XGBoost may better
capture rare events, albeit with a higher risk of false positives. The variability in performance across cases also
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supports the need for tailored model calibration and possibly spatiotemporal stratification during model training

and deployment.

From an operational perspective, this trade-off dictates distinct deployment strategies depending on the
forecasting philosophy. A high-sensitivity model like TDA-XGB acts as an effective “safety net” or “early vigilance”
tool, ensuring that forecasters are alerted to most potential threats. However, its high FAR implies that it cannot be
used as a fully automated warning trigger, as this would likely lead to “warning fatigue” among the public.
Conversely, the more conservative TDA-RF, with its lower FAR, is better suited for scenarios where maintaining

public trust and reducing false positives is prioritized, though it carries the risk of missing weaker events.
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Figure 6. ROC curves and evaluation metrics for random forest (TDA-RF) and XGBoost (TDA-XGB)

(d

models using the top features of each case:(a) 2024-01-01, (b) 2024-01-17,
(c) 2024-01-26, and (d) 2024-02-02

Compared to studies like Zeng et al. [26], which applied machine learning to detect large-scale
supercell tornadoes using dual-polarization radar and environmental data, our models trained solely on single-
polarization radar features demonstrated comparable AUC but generally lower F1-scores and higher FARs.
This discrepancy arises from the inherently small scale, short duration, and disorganized nature of tornado
events in Indonesia, which lack the coherent rotational signatures found in temperate supercells. Additionally,
limited sample size and label uncertainty from field-based reports present robust model learning and
generalization challenges. While RF and XGBoost showed promising results, particularly in recall, their
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performance varied significantly across cases, reflecting the difficulty of building universal detectors for
tropical tornadoes without broader environmental context or high-resolution multi-source data.

Both models achieved high AUC values across all cases. TDA-XGB generally offered a higher POD
at the expense of an increased FAR, while TDA-RF provided more balanced performance. These results
highlight the trade-off between sensitivity and specificity when detecting small-scale, non-supercell tornadoes
from radar-derived features.

To further evaluate the generalization ability of the models, a LOCO evaluation was conducted in
which each of the four cases was held out as the test set while the remaining three were used for training. The
results of this rigorous evaluation are presented in Figure 7. LOCO results reveal a notable decline in overall
detection performance compared to the within-case evaluations. While the area under the ROC curve (AUC)
remained relatively stable above 0.85 for most cases both random forest (TDA-RF) and XGBoost (TDA-XGB)
suffered significant drops in F1-scores and POD. TDA-XGB generally achieved higher POD across all cases,
indicating stronger sensitivity to tornado occurrences; however, this came at the cost of substantially higher
FAR, in some cases exceeding 70%. For instance, when SBY 20240117 was used as the unseen test set, TDA-
XGB reached a POD of 0.667 but with a FAR of 0.723, highlighting the tendency of the model to over-predict
positives. Meanwhile, TDA-RF showed more conservative behavior, producing lower FAR but failing to detect
a significant portion of tornado instances.

These findings have significant implications for operational implementation in tropical regions like
Indonesia. The current performance levels suggest that these machine learning (ML) models are best utilized
as decision-support tools rather than standalone automated warning systems. Given the short lead times of
tornado events, the model outputs can serve as a “first-guess” guidance field, drawing the forecaster’s attention
to specific storm cells that exhibit micro-scale rotational characteristics often invisible to the naked eye on
standard radar displays. By integrating the ML probability maps with environmental analysis, forecasters can
filter out the false alarms generated by TDA-XGB, effectively combining human expertise with machine
sensitivity.

AUC per Test Case (LOCO) F1 per Test Case (LOCO)

0,00 ’ < 0 = ’
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Figure 7. Model performance using LOCO evaluation for both TDA-RF and TDA-XGB

These results demonstrate the complexity of generalizing radar-based machine learning models to
detect highly localized and short-lived tropical vortex phenomena. Unlike significant supercell tornadoes,
which tend to exhibit consistent spatial and structural radar patterns, tornadoes in Indonesia show case-
dependent variability in both structure and radar signature, limiting cross-case model performance. The LOCO
evaluation highlights the need for future research on incorporating domain adaptation, temporal ensemble
methods, or additional atmospheric predictors to boost generalization across operationally diverse conditions.

The LOCO evaluation results further highlight the challenges in building generalizable machine
learning models for tornadoes in tropical environments like Indonesia. Unlike the within-case evaluation,
where the models performed well on data drawn from the same event, LOCO results revealed performance
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degradation when tested on unseen cases, particularly regarding F1-score and POD. This suggests that radar-
derived feature patterns associated with tornadoes vary significantly from case to case, possibly due to
differences in storm morphology, terrain influences, or local mesoscale dynamics. Compared to prior studies
such as Zeng et al. [26] which reported stable cross-case performance using dual-polarization radar data for
significant tornadoes, the findings here underscore the difficulty of applying similar methods to weak, short-
lived vortices with limited spatial extent and single-polarization input. These discrepancies emphasize the need
for further research on transfer learning, regional tuning, or the integration of environmental parameters (e.g.,
CAPE, shear) to support operational nowcasting of tornadoes in data-sparse tropical regions.

4. CONCLUSION

This study assessed the feasibility of detecting non-supercell tornadoes in Indonesia using single-
polarization weather radar and machine learning. Analysis of four cases near Surabaya demonstrated that RF
and XGBoost can achieve strong within-case performance (AUC > 0.94), though XGBoost produced more
false alarms while RF provided more balanced results. Feature analysis highlighted the dominance of
reflectivity-based predictors, with rotational features contributing less consistently across cases. The LOCO
evaluation revealed major challenges in generalization, underscoring the event-specific nature of tropical
tornado signatures. These results emphasize both the potential and the limitations of machine learning for radar-
based tornado detection in Indonesia. To enhance operational viability as automated tornado warning triggers,
future work must integrate multi-source data such as Himawari-8 satellite imagery and surface observations.
Additionally, exploring hybrid spatiotemporal deep learning models (e.g., CNN-long short-term memory
(LSTM)) and transfer learning from global polarimetric datasets will be essential to overcome generalization
hurdles. Future progress will require larger and more diverse datasets, integration of environmental predictors,
and adoption of deep learning architectures. By establishing a first baseline for radar-based ML detection in
the tropics, this study contributes to advancing BMKG’s early warning capabilities for localized hazardous
weather in Indonesia and similar regions.
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