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 Accurate modelling of milk cooling dynamics is essential to maintain product 

quality and improve energy efficiency in small-scale dairy operations. This 

study aims to develop a dynamic model for a batch milk-cooling system used 

at Koperasi Unit Desa Sinau Andandani Ekonomi (KUD SAE) Pujon. 

Synthetic temperature data were generated under controlled perturbations 

reflecting actual process conditions, and the data were analysed using the 

output error (OE) identification method implemented in the MATLAB 

System Identification Toolbox. Several OE model structures were compared 

using statistical indicators, including the coefficient of determination (R²) and 

root mean square error (RMSE). The OE (2,2,1) model achieved the best 

performance with R² = 0.9923 and RMSE = 0.0600, accurately representing 

the first-order dynamics of the cooling process. The identified model provides 

a reliable foundation for process optimisation, controller design, and operator 

training in dairy systems. Although the validation is limited to simulated data, 

the proposed approach offers substantial potential for real-time 

implementation and can be extended to other temperature-sensitive food 

processes. 
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1. INTRODUCTION  

Milk is a highly perishable, nutrient-rich liquid that provides an ideal environment for microbial 

growth if not cooled immediately after milking. Effective cooling to approximately 4 °C within four hours is 

essential to inhibit pathogenic microorganisms and spoilage, maintain sensory quality, and extend shelf life. In 

Indonesia, dairy cooperatives such as Koperasi Unit Desa Sinau Andandani Ekonomi (KUD SAE) Pujon use 

batch cooling twice daily to maintain quality before shipment to processing facilities. Milk cooling requires 

significant energy, typically involving initial cooling with water followed by refrigeration. Optimising this 

process can significantly reduce operational costs and environmental impact. While studies have investigated 

cooling equipment, energy recovery, and control methods, few have focused on developing an accurate 

dynamic model of the milk-cooling process itself. 

This research aims to fill this gap by applying the output error (OE) method to model batch milk 

cooling, validating the model using simulated data, and demonstrating its application in process optimisation, 

control system design, and operator training. 

The primary reason for cooling milk is to prevent the growth of pathogenic and spoilage 

microorganisms, which can rapidly multiply in warm milk. The cooling process ensures that the milk reaches 
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a safe temperature (typically around 4 °C), slowing microbial activity and preserving its quality of the milk. 

Failure to cool milk efficiently can lead to: 

− Increased bacterial counts, which can cause spoilage, unpleasant odours, and taste. 

− Compromised safety by allowing harmful pathogens to multiply, potentially leading to foodborne 

illnesses. 

− Deterioration of milk’s nutritional and sensory qualities, such as protein breakdown, which affects texture 

and shelf life. 

In Indonesia, KUDs (cooperatives) provide facilities to maintain quality by ensuring hygienic storage 

and cooling of milk before it is transported to milk factories [1]. This is necessary because cattle farms are 

sometimes far from processing factories and markets. 

Cooling raw milk soon after milking – within a maximum of four hours (maximal) - is known as the 

most cost-effective and best method to avoid spoilage and maintain quality [2], [3]. Therefore, it is typically 

carried out in KUDs as a batch cooling process twice a day, usually in the morning and evening. However, 

more advanced treatments are available, such as high temperature short time (HTST) / thermosonication, low 

temperature long time (LTLT), and ultra high temperature (UHT) [4]. 

The use of electricity for the milk refrigeration process is quite extensive [5], hence dairy product 

processes are energy-intensive [6]. Milk may be cooled in two stages: first, initial cooling, then cooling with 

refrigerant to approximately 4 °C. The cost associated with cooling in dairy cooling centres can be reduced by 

cooling raw milk using water at room temperature. Precooling decreases the cooling burden, thereby reducing 

energy and cost requirements. A discernible temperature differential between fresh raw milk and the water can 

save cooling costs by up to 64% [1]. The chilling system’s efficiency and the temperature difference between 

the initial and final states significantly affect the total energy required for cooling [7]. 

The milk within the tank can be gradually cooled using chilled water. A water chiller (or an ice bank) 

can be used to cool this water, typically consisting of an evaporator, a condenser, a refrigerant unit, and a water 

tank insulated with a storage unit. The water is then cooled to around 1 °C, which subsequently lowers the 

milk’s temperature to approximately 4 °C [8]. Water can also be cooled by passing it through an ice bank 

system. In a closed-loop cycle, water circulates through the storage tank and returns to the ice bank as ice forms 

around the copper elements [8]. 

Feedback control and feedforward control for a milk chilling system, involving precooling and 

refrigerant cooling, were studied, and the controllers were tuned using Ziegler Nichols ultimate gain method 

has also been studied [7]. However, no information for the plant model is given. A basic method for obtaining 

a mathematical model for a mercury thermometer was presented [9] and adopted here because of its similarity 

in nature [10]. 

A study on recovering waste heat from a large-scale milk cooling system has also been conducted 

[11]. To increase the facility’s energy efficiency, the heat released into the environment by the condenser was 

recaptured. The water heated by this waste heat can then be used to clean the milk-processing machinery. 

Another study was focused on ice banks for milk cooling after milking [8]. However, few models were found 

that specifically discussed the milk cooling process itself. A different method of system identification using 

auto regressive exogenous (ARX) has also been reported [12]. 

The primary objectives of this research are to develop an OE model that accurately represents the milk 

cooling process, validate the model using simulated experimental data, and demonstrate its practical 

applications in process design, operator training, safety system analysis, and control system design. By 

addressing these objectives, the study aims to provide a comprehensive framework for improving milk-cooling 

operations in dairy facilities [9]. The research was conducted at the KUD SAE Pujon milk cooling facility, 

where significant variations in cooling efficiency were observed. The findings of this research are expected to 

contribute to the broader field of dairy process engineering, offering insights applicable to similar processes in 

other food industries. 

 

 

2. METHOD  

This study analyses a batch milk cooling system at the KUD SAE Pujon, consisting of a half-cylindrical 

milk container immersed in a rectangular cold-water tank. The governing equations were derived from heat-

balance principles, and the system parameters were measured on-site. Simulation data were generated using 

MATLAB/Simulink. The OE method was employed for system identification using the MATLAB System 

Identification Toolbox. Input–output datasets were obtained by introducing controlled perturbations to the cold-

water temperature (input) and recording the resulting milk temperature (output). Several OE model structures 

were estimated and compared based on goodness-of-fit criteria. Validation was performed through visual 

inspection, statistical analysis (mean squared error (MSE), root mean square error (RMSE), and coefficient of 

determination (R²)), cross-validation, and robustness tests under varying disturbances. 
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2.1.  Materials and governing equation 

The study focused on a milk cooling apparatus used by KUD SAE Pujon [10] as illustrated in Figure 1. 

This system comprised a rectangular cooling tank that housed a semi-cylindrical milk container. Specifically, 

the semi-cylindrical container held the milk, while the rectangular tank served as a reservoir for the chilling 

water. A schematic of this milk chilling setup is shown in Figure 2. 

 

 

  
  

Figure 1. Milk cooling equipment at Pujon-Malang Figure 2. Side view of milk cooling system 

 

 

The transfer function model for batch milk chilling process had been obtained based on energy 

conservation law and [10] resulting the (1). 

 

𝐺(𝑠) =
𝑇𝑜(𝑠)

𝑇1(𝑠)
=

1
𝑚.𝐶𝑝

𝑈.𝐴
𝑠+1

 (1) 

 

𝐺(𝑠) in 𝑠 domain is a transfer function (1st order in Laplace transformation) with: 

 

𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝑚.𝐶𝑝

𝑈.𝐴
 (2) 

 

and 

 

𝐺𝑎𝑖𝑛 = 1 (3) 

 

The data used for this simulation (batch condition and parameter) is shown in Table 1. 

 

 

Table 1. Parameter data 
Symbol Parameters Values Units 

𝑉 Tank volume 2,5 m3 

𝑟 Radius of a semicircular cylinder 0.3845 m 

𝑡 Length of a semicircular cylinder 1.238 m 

𝑇𝑖 Inlet milk temperature 36.00 °C 

𝑇𝑜 Milk temperature inside the tank 4.00 °C 

𝑇1 Chilled water temperature 2.00 °C 

𝐶𝑝 Milk heat capacity 3.93 KJ/Kg.K 

𝜌 Milk density 1,027.00 Kg/m3 

𝑚 Mass of milk in the tank 2,567.50 Kg 

𝑈 Overall heat transfer coefficient 274.461 KJ / (m2 °C mins) 

𝐴 Surface area 0.8680 m2 

𝑄 Energy transmitted to chilled water 2,690.74 kJ/min 

 

 

The semicircular cylinder’s area is represented by the surface area ( A ) which can be computed 

using the values of 𝑟 and 𝑡: 

 

𝐴 =
1

2
𝜋. 𝑟(𝑟 + 𝑡) = 0.8680 m2 (4) 

 

Given its 2.5 m3 volume, and the knowledge of the milk’s density (𝜌), the mass of the milk within the tank 

(m) could be determined. 
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𝛥𝑇𝐿𝑀𝑇𝐷 (Log mean temperature difference) for milk cooling process [13]-[15] is: 

 

𝛥𝑇𝐿𝑀𝑇𝐷 =
𝛥𝑇2−𝛥𝑇1

𝑙𝑛(
𝛥𝑇2
𝛥𝑇1

)
= 11.2946 °C (5) 

 

Given the condition that 𝑄 = 𝑈 × 𝐴 × 𝛥𝑇𝐿𝑀𝑇𝐷; therefore: 

 

𝑈 = 274.461 KJ / (m2 °C mins) (6) 

 

For 2 hours cooling time then the energy that should be transmitted to chilled water could be calculated as (7). 

 

𝑄 = 𝑚 × 𝐶𝑝 × 𝛥𝑇 = 2,690.74 KJ/min (7) 

 

2.2.  OE method 

Process modelling approaches can be broadly classified into two main categories: model-driven methods 

and data-driven method [16]. System identification is widely used across engineering disciplines to develop 

models from empirical data [17]-[19]. Many empirical techniques necessitate the initial selection of a model 

structure, after which model parameters are identified using appropriate methods. The least squares method is a 

commonly used approach for this purpose [20], [21]. Suppose a process with output subject to an input where 𝑘 

represents a discrete time value. Suppose that the signal can be associated with a linear process, the following 

equation can be written [22]: 

 

𝐴(𝑧−1) × 𝑦(𝑘) =
𝐵(𝑧−1)

𝐹(𝑧−1)
× 𝑢(𝑘 − 𝑝) +

𝐶(𝑧−1)

𝐷(𝑧−1)
× 𝑒(𝑘) (8) 

 

Here 𝑧−1 represents the shift operator and is defined as (9): 

 

𝑦(𝑘 − 1) = 𝑧−1 × 𝑦(𝑘) (9) 

 

The polynomials (A to D and F) are provided as (10)-(14) [23]: 

 

𝐴(𝑧−1) = 1 + 𝑎1 × 𝑧−1+. . . +𝑎𝑛𝑎 × 𝑧−𝑛𝑎  (10) 

 

𝐵(𝑧−1) = 𝑏0 + 𝑏1 × 𝑧−1+. . . +𝑏𝑛𝑏 × 𝑧−𝑛𝑏 (11) 

 

𝐶(𝑧−1) = 𝑐0 + 𝑐1 × 𝑧−1+. . . +𝑐𝑛𝑐 × 𝑧−𝑛𝑐 (12) 

 

𝐷(𝑧−1) = 𝑑0 + 𝑑1 × 𝑧−1+. . . +𝑑𝑛𝑑 × 𝑧−𝑛𝑑 (13) 

 

𝐹(𝑧−1) = 𝑓0 + 𝑓1 × 𝑧−1+. . . +𝑓𝑛𝑓 × 𝑧−𝑛𝑓 (14) 

 

At the same time, p denotes the sampling interval for both the input and output of the process while 𝑒 represents 

the modeling error [24]. 

In the literature [25], the layout of the OE model depicted in Figure 3 can be expressed as (15): 

 

𝑦(𝑘) =
𝐵(𝑧−1)

𝐹(𝑧−1)
× 𝑢(𝑘 − 𝑝) + 𝑒(𝑘) (15) 

 

This implies that 𝑛𝑎 = 0, 𝑛𝑐 = 0, and 𝑛𝑑 = 0. 
 

 

 
 

Figure 3. Output error model structure 
 
 

The approach of process identification through input-output measurement is commonly applied in 

scenarios where an in-depth mathematical understanding of the system under study is not essential. Instead, it 
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suffices to analyse the system’s dynamics [26]-[28]. Black-box modelling can additionally capture the 

nonlinear dynamics of the plant, facilitating process monitoring and control, albeit without elucidating the 

physical mechanisms underlying the process behaviour [29]. 

The research method employed involves several key steps: 

a. Data collection: data were collected by introducing controlled perturbations into the input (chilled water 

temperature) and recording the output (milk temperature). 

b. Model selection: various OE models were selected to capture the system’s dynamics. The selection of 

these models was based on their ability to fit the experimental data accurately. 

c. Model validation: the models were validated by comparing their predictions against actual system responses 

to different perturbations. The validation process included visual inspection of the fit and numerical 

assessment of the model parameters. 

By carefully explaining the data collection, model selection, and validation processes, the research 

provided a clear and thorough understanding of the system’s dynamics and the effectiveness of the OE models 

in predicting milk cooling behaviour. Future research should integrate the OE model with advanced control 

strategies, such as model predictive control (MPC) [30]-[33] or adaptive control [34]-[37], to enable real-time 

optimisation of milk refrigeration. Extending this modelling approach to other temperature-sensitive food 

processes could further enhance its industrial relevance. 

 

 

3. RESULTS AND DISCUSSION  

The dynamic behaviour of the batch milk cooling process was first represented using a mechanistic 

transfer function derived from energy balance. By substituting the measured parameters of milk mass (𝑚), heat 

capacity (𝐶𝑝), overall heat transfer coefficient (𝑈), and surface area (𝐴) into the governing equations, the 

following first-order transfer function was obtained: 

 

𝐺(𝑠) =  
1

𝜏𝑠+1
 =  

1

42.3548𝑠+1
 (16) 

 

This equation represents the temperature dynamics of milk approaching equilibrium with the cooling 

medium, where 𝜏 denotes the system time constant. Simulation using MATLAB/Simulink confirmed that the 

milk temperature asymptotically reaches 4 °C within approximately two hours, consistent with typical field 

operation at the KUD SAE Pujon [10], [12].  

To assess the dynamic response to perturbations, controlled variations in chilled water temperature 

were applied Figure 4, and the resulting milk temperature profile was recorded Figure 5. These data formed 

the basis for system identification using several OE model structures. The identified OE models displayed in 

Table 2: OE111, OE121, and OE221 were then validated using separate perturbation datasets Figures 6 to 8. 

The results demonstrated that all three OE models were capable of capturing the dynamic behaviour of 

the cooling process; however, their accuracy varied depending on model order and complexity. Quantitative 

validation metrics are summarised in Table 3. The OE221 model achieved the highest accuracy with R² = 0.9923 

and RMSE = 0.0600, followed by OE121 and OE111, confirming that a higher-order model structure yields a 

more precise dynamic representation. 

 

 

 
 

Figure 4. Perturbation of the chilled water temperature 
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Figure 5. Milk temperature 

 

 

Table 2. OE models 
Model Discrete transfer function Continuous transfer function 

OE221 0.02249𝑧−1 − 0.01344𝑧−2

1 − 1.159𝑧−1 − 0.5989𝑧−2
 

0.02252𝑠 + 0.01158

𝑠2 + 0.5127𝑠 + 0.01158
 

OE111 0.01992𝑧−1

1 − 0.9809𝑧−1
 

0.02011

𝑠 + 0.0193
 

OE121 0.01007𝑧−1

1 − 1.544𝑧−1 + 0.5545𝑧−2
 

0.006025𝑠 + 0.01334

𝑠2 + 0.5897𝑠 + 0.01339
 

 

 

  
  

Figure 6. Perturbation of the chilled water 

temperature for model testing 

Figure 7. Milk temperature profile due to 

perturbation in Figure 6 

 

 

 
 

Figure 8. Milk temperature profile due to perturbation in Figure 4 
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Table 3. Results of statistical analysis 
Model MSE RMSE R2 

OE221 0.003600 0.0600 0.9923 
OE121 0.007566 0.0870 0.9888 

OE111 0.526100 0.7253 0.9068 

 

 

The comparison highlights that OE221 (second order) had the closest fit to the actual system 

behaviour, suggesting its robustness in predicting the milk cooling process. However, the mechanical model 

derived from (16) shows that it must be first order. 

To confirm that the optimal models OE221, OE121, and OE111 are accurate and can be used, the 

following steps were taken: 

1) Validation against experimental data: the models were validated using experimental data obtained from 

perturbation tests. By comparing the predicted temperature profiles with the actual measurements, the 

accuracy of each model was assessed. 

2) Goodness of fit metrics: quantitative metrics such as MSE, RMSE, and R2 values were calculated to 

evaluate the goodness of fit. OE221 showed the lowest MSE and RMSE, and the highest R2, indicating 

the best fit among the models. 

3) Cross-validation: the models were subjected to cross-validation by splitting the data into training and 

testing sets. This ensured that the models were balanced with the initial dataset and generalised well to 

new data. 

4) Robustness checks: the robustness of the models was tested by introducing different types of perturbations 

and observing the consistency of the model predictions. OE221 consistently provided accurate predictions 

across various scenarios, confirming its robustness. 

The OE model was specifically selected for this study due to its strong performance in accurately 

identifying system dynamics, even in complex, nonlinear processes. While other system identification 

methods, such as the ARX model [12], have been applied to similar processes, the OE model offers greater 

accuracy in predicting system behaviour when handling measurement errors or perturbations. This is 

particularly important for processes such as milk cooling, where precise control is required to maintain product 

quality and optimise energy consumption. Additionally, the OE model has proven robust in dynamic 

environments where rapid and accurate adjustments to system inputs (e.g., temperature changes) are critical. 

This flexibility, combined with the strong validation metrics such as low RMSE and high R² values Table 3, 

made it the ideal choice over other alternatives. 

The numbers in the OE model’s name represent the structure of the polynomials used in the transfer 

function that defines the system’s dynamics. Here’s how they differ: 

a. OE221 model 

Structure: the OE221 model has two poles, two zeros, and one delay (hence the “2-2-1” designation). 

Features: 

− Two poles: the system’s response is more flexible, allowing for a more complex dynamic behaviour. It 

can model processes with two dominant time constants, thereby representing systems with both fast and 

slow dynamics. 

− Two zeros: the inclusion of two zeros provides additional flexibility in shaping the system’s transient 

response. 

− One delay: the model assumes there is a delay between the input and the output, which is common in 

physical systems where it takes time for changes in input (e.g., cooling water temperature) to affect the 

output (e.g., milk temperature). 

− Applications: OE221 is suitable for systems with complex dynamics and where precise control of both 

fast and slow response times is essential. It provided the best fit for the milk cooling system, as shown by 

its lowest RMSE and highest R² values. 

b. OE121 model 

Structure: the OE121 model has one pole, two zeros, and one delay. Features: 

− One pole: the OE121 model includes one pole, meaning the system has a single dominant time constant. 

This makes it suitable for systems that exhibit a single exponential response, such as those with uniform 

cooling or heating rates. 

− Two zeros: the model includes two zeros, providing additional flexibility in shaping the system’s transient 

response. 

− One delay: like OE221, it accounts for a delay between the input and output. 
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− Applications: OE121 may be used in systems where the dynamics are less complex but where two 

transient response characteristics (due to two zeros) still need to be modelled. It is less accurate than 

OE221, but it may still offer a reasonable balance between accuracy and complexity. 

c. OE111 model 

Structure: the OE111 model has one pole, one zero, and one delay. Features: 

− One pole: this represents the simplest form of the OE model, with only one time constant, making it 

suitable for systems where a single dynamic behaviour dominates. 

− One zero: it provides limited flexibility in shaping the transient response, so it may not capture all the 

nuances of more complex systems. 

− One delay: similar to the other models, it assumes a delay between input and output. 

− Applications: OE111 is helpful for straightforward systems where a first-order dynamic (single time 

constant) with a delay is sufficient. However, for the milk cooling process, this model performed the 

worst in terms of fit, with a much higher RMSE (0.7253) and lower R² (0.9068). 

By employing these validation techniques and statistical analyses, we can confidently state that the 

OE221, OE121, and OE111 models are accurate and reliable for predicting the milk cooling process under 

varying conditions. In summary: 

− OE221 is the most complex and flexible model, capturing more dynamic behaviour with two time 

constants, making it highly accurate for processes like milk cooling. 

− OE121 offers a balance between simplicity and flexibility, with one dominant time constant but still 

accounting for two transient characteristics. 

− OE111 is the simplest model, capturing fundamental system dynamics with a single time constant, and is 

less suitable for complex systems like milk cooling. 

The OE221 model was ultimately chosen for this study because it provided the most accurate representation 

of the milk cooling process, ensuring efficiency and consistency. 

Physical Interpretation 

The inherent multi-time-constant nature of milk cooling can explain the superior performance of the 

OE221 model. The process involves two dominant dynamic phenomena: (i) fast dynamics associated with 

external heat transfer between the milk surface and chilled water, governed by convection; and (ii) slow 

dynamics associated with internal heat conduction within the milk bulk. 

The two poles in the OE221 model effectively capture these parallel mechanisms. At the same time, 

the inclusion of two zeros provides flexibility to represent transient nonlinearities such as boundary-layer 

resistance and changing temperature gradients. In contrast, simpler models (OE111 and OE121) cannot fully 

capture the delayed, nonuniform temperature response, resulting in higher residual errors. 

Practical Implications 

The identified OE221 model provides an accurate and computationally efficient basis for several 

practical applications: 

− Control system design: the model can be directly integrated into the development of predictive or adaptive 

controllers, improving cooling rate precision and minimising compressor energy use. 

− Process optimisation: the model enables energy-efficiency assessment by quantifying the dynamic 

response to varying cooling-water temperatures, aiding in determining optimal operating conditions. 

− Operator training and fault detection: the dynamic behaviour captured by the model allows operators to 

anticipate deviations in process temperature, enhancing safety and product quality. 

Summary of Validation 

The comparison between the mechanistic and OE-based models confirmed that while the mechanistic 

transfer function adequately describes general trends, data-driven models such as OE221 provide higher 

fidelity when transient variations and nonlinear heat transfer effects are significant. The excellent agreement 

between simulated and predicted temperature profiles Figures 6–8 validates the robustness of the OE221 model 

in representing batch milk-cooling dynamics under varying disturbances. 

 

 

4. CONCLUSION  

This study developed and validated a data-driven OE model for the batch milk cooling process at the 

SAE Pujon Cooperative. The OE-based modelling framework provides a reliable and interpretable foundation 

for optimising cooling system performance, energy use, and product quality in dairy process engineering. 

Compared to previous ARX input models, the OE model demonstrated superior accuracy and robustness, 

capturing both fast and slow thermal dynamics inherent in the cooling process. Among the tested structures, 

the OE (2,2,1) model achieved the best performance, with R² = 0.9923 and RMSE = 0.0600, indicating an 

excellent fit between predicted and simulated temperature profiles. 
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The originality of this work lies in applying a higher-order OE model to represent the transient 

characteristics of milk cooling and linking the model structure to physical heat-transfer behaviour. This 

contributes to improved system identification for process control and energy optimisation in small-scale dairy 

operations. Nevertheless, the study has several limitations: validation was performed using simulated data from 

a single facility under controlled conditions, and the model’s sensitivity to measurement noise and broader 

operational variability was not yet explored. 

Future research should integrate the OE model with advanced control strategies, such as MPC, or 

adaptive control, to enable real-time optimisation of milk refrigeration. Extending this modelling approach to 

other temperature-sensitive food processes could further enhance its industrial relevance. 
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