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 Rising electricity demand, fossil fuel depletion, and environmental concerns 

highlight the need for sustainable rural electrification. The Elenjere 

community in Kwara State, Nigeria, depends on costly diesel generation and 

limited grid access, creating an urgent demand for reliable and affordable 

alternatives. This study designs and optimizes a hybrid renewable energy 

system (HRES) for the community using hybrid optimization model for 

electric renewables (HOMER) Pro simulation. The proposed system 

combines photovoltaic (PV), wind turbines (WT), battery storage (BAT), 

inverter (INV), and a diesel generator (DG) as backup. Field data on load 

demand, solar radiation, and wind speed were used for realistic modeling. 

System performance was evaluated using levelized cost of energy (LCOE), 

net present cost (NPC), and system capital cost (SCC). Results show the 

PV/WT/BAT/INV/GEN configuration achieved the lowest LCOE of USD 

0.455/kWh, an NPC of USD 2.98 million, and 86.2% renewable penetration, 

significantly reducing diesel use. Sensitivity analysis revealed that reducing 

battery costs and increasing PV capacity could lower the LCOE to USD 

0.227–0.325/kWh. The study demonstrates how modest wind resources (4.19 

m/s at 10 m) complement PV in low-wind regions while addressing inflation 

realism (25.5% discount rate, foreign exchange (FX) volatility). Future work 

will include dynamic control simulation and lifecycle analysis to enhance 

scalability and sustainability. 
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1. INTRODUCTION 

Access to reliable and sustainable electricity remains a major barrier to socioeconomic development, 

particularly in rural Sub-Saharan Africa (SSA), where electrification rates significantly lag behind urban areas 

[1]–[4]. Nigeria exemplifies this challenge, with only about 45% of the population having grid access in 2025. 

Even where grid connections exist, supply is notoriously unreliable, often limited to a few hours per day [5]–[7]. 

As a result, rural communities increasingly depend on diesel generator (DG), which are expensive, 

environmentally harmful, and detrimental to public health [8]–[10]. 

Hybrid renewable energy systems (HRES) that integrate renewable resources such as solar 

photovoltaic (PV), wind, and battery storage (BAT) with conventional DG are emerging as a sustainable 

https://creativecommons.org/licenses/by-sa/4.0/
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solution to rural energy poverty [11]–[13]. These systems offer improved reliability, reduced emissions, and 

long-term cost savings compared to diesel-only options. Evidence across SSA, from countries such as Ghana, 

Kenya, Nigeria, Cameroon, Chad, and Mauritania, demonstrates the viability of hybrid configurations, with 

levelized cost of energy (LCOE) reductions to as low as USD 0.20–0.25 /kWh alongside significant emission 

cuts [14]–[17]. 

Despite these successes, most studies remain region-specific and fail to account for local climatic, 

economic, and social dynamics, limiting their real-world applicability. Many models also rely on generalized 

load assumptions and rarely address macroeconomic realities, such as high inflation and foreign exchange (FX) 

volatility, that strongly influence project economics in Nigeria and other SSA countries. This study addresses 

these gaps by developing a context-specific hybrid energy optimization model tailored for Elenjere, a rural 

community in Kwara State, Nigeria, providing both local insights and a replicable framework for similar rural 

settings. 

Elenjere faces persistent energy poverty marked by unreliable grid supply, over-reliance on costly 

DGs, and the resulting environmental and health impacts. While Nigeria possesses abundant solar resources 

(average irradiance of ~7 kWh/m²/day), renewable adoption remains minimal due to infrastructural constraints, 

limited financing, and policy barriers [18], [19]. Therefore, a robust, hybridized energy system is urgently 

needed to balance cost, reliability, and environmental sustainability for rural electrification. This study aims to 

design and optimize a HRES for Elenjere, with the objectives of enhancing energy reliability, minimizing costs, 

and integrating local socioeconomic realities into system planning 

Previous studies across SSA highlight the potential of hybrid systems but also reveal important 

limitations. For instance, studies in Mauritania demonstrated that optimized diesel-PV-battery configurations 

could halve electricity costs to USD 0.30/kWh [20]. Similar efforts in Nigeria’s Jos and Benin regions achieved 

up to 90% carbon emission reductions compared to diesel-only systems, though outcomes were highly sensitive 

to inflation and financing structures [21], [22]. Research in Cameroon examined PV–wind–battery systems 

with electrochemical storage for reliability optimization [23], while broader reviews stressed the difficulty of 

balancing cost, emissions, and reliability in off-grid contexts [24], [25]. 

However, many of these studies lack localized data, particularly accurate rural load profiles, and do 

not sufficiently explore how macroeconomic instability affects system sustainability. To address these research 

gaps, this study introduces several novel contributions, including: 

− Localized modeling – incorporates actual field-measured data for load, solar irradiance, and wind profiles, 

resulting in more realistic designs than those using generalized datasets. 

− Inflation-aware simulations – integrates Nigeria’s high inflation and FX volatility into HOMER Pro 

analysis, a rare feature in rural electrification research. 

− Synergistic wind integration – demonstrates how modest wind speeds (4.19 m/s at 10 m hub height) can 

cost-effectively complement solar PV to enhance reliability in low-wind regimes. 

− Policy-driven design – links engineering optimization with regulatory strategies, bridging the gap 

between technical performance and practical policy implementation for rural electrification. 

By combining context-specific data, advanced simulation, and sensitivity analysis, this study creates 

a replicable methodological framework for SSA rural planners. It provides actionable insights into reducing 

energy costs, improving system reliability, and supporting decarbonization goals. Furthermore, the inclusion 

of policy-relevant outputs, such as loss of load probability (LOLP) metrics, cost-reflective tariffs, and grid-

arrival compensation frameworks, makes the findings directly relevant to decision-makers. 

The remainder of this paper is organized as follows: section 2 presents the methodology, including 

data collection, system modeling, hybrid optimization model for electric renewables (HOMER) Pro simulation 

setup, and sensitivity analysis. Section 3 discusses the results, covering configuration performance, economic 

outcomes, sensitivity scenarios, and policy implications. Section 4 concludes with a summary of key findings, 

limitations, and recommendations for future research. 

 

 

2. METHOD 

2.1.  Case study description: Elenjere community 

The Elenjere community, located in Asa Local Government Area of Kwara State, Nigeria (latitude 

8°20′ N and longitude 4°54′ E), serves as the case study for this research. The community comprises 

approximately 125 buildings, including residential and small commercial structures with moderate daily load 

demands. Its semi-rural setting lacks grid connectivity, making it suitable for off-grid renewable hybrid energy 

system development. The local population depends on DGs and kerosene lamps for electricity, which are 

unsustainable and costly. This situation underscores the need for an optimal HRES to ensure reliable, clean, 

and cost-effective power supply. 
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To evaluate electricity consumption, a three-phase Fluke 432-II power quality and energy data logger 

Figure 1 was connected to the community’s feeder pillar. Daily load demand was recorded over 30 consecutive 

days, including weekends. The collected data were transferred to a laptop via secure digital (SD) card for 

further analysis. 

 

 

 
 

Figure 1. Three-phase data logger 

 

 

The daily load profile Figure 2 shows three distinct patterns: 

− Off-peak periods (00:00–08:00, 11:00–15:00): 8.5–9.5 kW 

− Evening peak (16:00–21:00): Maximum ~15 kW at 19:00–20:00 

− Average daily consumption: ~11.2 kW 

These patterns reflect typical residential behavior and guide the optimal sizing of renewable 

generation and storage systems. Solar PV can meet daytime loads, while batteries and supplementary sources 

ensure evening peak supply. 

 

 

 
 

Figure 2. Case study daily load consumption profile 

 

 

2.2.  Renewable resource assessment 

Renewable resource assessment was carried out using field measurements and secondary data sources 

to characterize the solar and wind energy potential of Elenjere. Solar irradiance data were collected through 

ground-based monitoring and validated against National Aeronautics and Space Administration – Surface 

Meteorology and Solar Energy (NASA-SSE) datasets, yielding an average global horizontal irradiance (GHI) 

between 3.95 kWh/m²/day (August) and 6.02 kWh/m²/day (March), indicating strong solar potential for HRES 

Figure 3.  

Similarly, wind resource assessment using measured data and meteorological records revealed an 

average wind speed of 4.19 m/s at a 10-meter hub height Figure 4. Though moderate, this wind potential 

complements solar energy during low-sunlight or nighttime periods, making it suitable for hybrid integration. 

Together, these renewable resources form the foundation for a sustainable power generation mix for the 

community. 
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2.3.  Proposed hybrid system’s configuration 

Figure 5 presents the schematic layout of the proposed hybrid energy system. The system is designed 

to comprise two renewable energy sources, a wind energy conversion system (WECS) and a solar photovoltaic 

system, supported by a DG and a battery energy storage system as backup, if the renewable sources are 

insufficient to meet the case study’s total load demand. 

 

 

 
 

Figure 3. The case study’s average solar radiation profile 

 

 

 
 

Figure 4. The case study site’s average wind speed 

 

 

 
 

Figure 5. Schematic diagram of a renewable hybrid power system 

 

 

The PV panels convert solar energy into electricity, complemented by wind turbines (WT) that capture 

wind power. Fuel cells provide dependable backup through electrochemical conversion, while batteries store 

excess renewable energy to enhance supply reliability. A direct current (DC) bus coordinates energy exchange 

among PV, wind, storage, and DC loads, with a dump load dissipating surplus energy to prevent overvoltage. 

Inverters convert DC into alternating current (AC), enabling use by household appliances, industries, and the 

grid. A power management unit supervises all operations, optimizing conversion efficiency, balancing demand 

and supply, and preserving stability. Collectively, these components ensure efficient, reliable, and sustainable 

power generation under diverse operating conditions. 
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2.4.  Mathematical modeling of system components 

Accurate modeling of HRES’s components enables simulation of energy generation, storage, and cost, 

environmental trade-offs in HOMER Pro. Detailed mathematical formulations are provided in mathematical 

modeling and component integration. 

Accurate modeling of HRES components is fundamental for evaluating system performance and 

reliability. Mathematical models describe the hybrid energy system components including solar PV, WT, BAT, 

and DG and provide the foundation for simulating energy generation, storage dynamics, and cost–

environmental trade-offs in HOMER Pro. 

 

2.4.1. Solar photovoltaic system 

The PV system output is modeled based on solar irradiance, panel efficiency, and inverter (INV) 

performance. Full equations and parameters are presented in (1) [26], [27]. The power output of the PV array 

is calculated based on solar irradiance, panel efficiency, and derating factors. The hourly energy generation is 

modeled as presented in (1).  

 

𝑃𝑃𝑉(𝑡) = 𝐺𝑃𝑂𝐴(𝑡) × 𝐴𝑃𝑉 × 𝜂𝑃𝑉 × 𝜂𝑖𝑛𝑣 (1) 

 

where: 

𝐺𝑃𝑂𝐴(𝑡) = plane-of-array irradiance at hour 𝑡 (kWh/m²/day) 

𝐴𝑃𝑉 = total PV surface area (1.08 m2 number of panels1.08m2×number of panels) 

𝜂𝑃𝑉 = panel efficiency (90%, per manufacturer specification) 

𝜂𝑖𝑛𝑣 = inverter efficiency (95%) 

 

2.4.2. Wind energy conversion system 

Wind turbine power output is determined using hub-height wind speeds, rated power, and cut-in/out 

limits. Detailed formulation, including the piecewise power equation, is in. (2) [28], [29], (3) [30], and (4) [31], 

[32]. The WECS converts wind kinetic energy into electrical power through aerodynamic, mechanical, and 

electrical processes. Hourly power output from the wind energy system is as expressed in (2). 

 

𝑃𝑊 =  {𝑃𝑅 

0 𝑉𝑊  <  𝑉𝑐𝑖  𝑜𝑟 𝑉𝑤  ≥  𝑉𝑐𝑜
𝑉𝑊 − 𝑉𝐶𝑖

𝑉𝑟− 𝑉𝑐𝑖
𝑉𝑐𝑖  ≤  𝑉𝑤  ≤  𝑉𝑟

𝑃𝑅 𝑉𝑟  ≤  𝑉𝑊  <  𝑉𝑐𝑜

}  (2) 

 

where: 

𝑃𝑊  = total power generated by the wind energy conversion systems 

𝑃𝑅  = rated power of the wind turbine 

𝑉𝑊 = wind speed of the wind turbine at hub height 

𝑉𝑐𝑖  = cut-in wind speed of the wind turbine 

𝑉𝑐𝑜 = cut-out wind speed of the wind turbine 

𝑉𝑟  = rated wind speed of the wind turbine 

The wind speed at the turbine hub height, ℎ, and reference height, ℎ𝑟, is determined using the power 

law equation as expressed in (3). 

 

𝑉𝑊 =  𝑉𝑟  (
ℎ

ℎ𝑟
)

∝

 (3) 

 

where: 

∝ = shear coefficient, ranging from 0.10 – 0.40  

The annual energy generated from the wind turbine is as expressed in (4). 

 

𝐽𝐺𝑊 =  𝑃𝑊  × 8760 (ℎ/𝑦𝑟) 𝑘𝑊ℎ (4) 

 

2.4.3. Battery storage system 

Battery dynamics, including state-of-charge evolution, charge/discharge efficiencies, and self-

discharge, are modeled as described in (5) [33], [34]. The battery energy storage system stores electrical energy 

for later use, enhances HRES’s stability, manages load fluctuations, and improves renewable energy integration 

efficiency. The state of charge (SOC) of the nickel-cadmium battery bank considered in this work’s HOMER 

Pro simulation is governed by (5). 
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) × (1 − 𝜎) + (𝑃𝑐ℎ(𝑡) × 𝜂𝑐ℎ −
𝑃𝑑𝑖𝑠𝑐ℎ(𝑡)

𝜂𝑑𝑖𝑠𝑐ℎ
) × ∆𝑡  (5) 

 

where: 

𝜎 = daily self-discharge rate (0.2%) 

(𝑃𝑐ℎ(𝑡), 𝑃𝑑𝑖𝑠𝑐ℎ(𝑡) = charging / discharging power at hour 𝑡 (kW) 

𝜂𝑐ℎ, 𝜂𝑑𝑖𝑠𝑐ℎ  = charge/discharge efficiencies (85% and 90%, respectively) 

∆𝑡 = time interval (1 hour) 

 

2.4.4. Diesel energy generator 

DG fuel consumption is modeled linearly with rated power and output. Local fuel pricing and 

availability are considered, with full equations given in (6) [35], [36]. All derivations, parameters, and 

assumptions are provided for clarity and reproducibility. 

DG provide reliable, high-availability power, ensuring continuous electricity in off-grid and hybrid 

systems, and complement intermittent renewable energy sources for a stable energy supply. The fuel 

consumption (Df) of the diesel generator is modelled using a linear fuel curve as presented in (6). 
 

𝐷𝑓(𝑡) = 𝑎 × 𝑃𝑟𝑎𝑡𝑒𝑑 + 𝑏 × 𝑃𝑜𝑢𝑡(𝑡)  (6) 

 

where: 

𝑎 = no-load fuel consumption coefficient (0.00626 L/kWh) [36] 

𝐵 = marginal fuel consumption coefficient (0.2831 L/kWh)  

𝑃𝑟𝑎𝑡𝑒𝑑  = rated capacity (100 kW) 

𝑃𝑜𝑢𝑡(𝑡) = generator output at hour 𝑡 

Local diesel prices averaged ₦ 889 /L (≈ USD 0.52/L). Diesel supply reliability and price volatility justify its 

role as a backup power source rather than primary generation. 

 

2.5.  HOMER pro simulation setup 

The PV–WT–diesel generator (GEN)–(BAT) hybrid configuration was modeled and optimized using 

the HOMER Pro interface Figure 6. The simulation incorporated site-specific inputs, including measured load 

profiles, solar irradiance, and wind speed data, along with the technical and cost parameters summarized in 

Tables 1 and 2. To ensure operational realism, optimization constraints such as the load-following strategy, 

battery priority rule, renewable energy fraction, LOLP, and battery depth of discharge (DoD) were applied. 

The DoD was restricted to 80% to extend battery lifespan, while the simulation time step was set to 10 minutes. 

A project lifespan of 25 years and an interest rate of 25.5% were adopted to reflect Nigeria’s prevailing 

economic and inflation conditions. System performance was evaluated based on LCOE, NPC, and overall 

reliability, resulting in optimal component sizes and cost distributions for sustainable electrification in the 

Elenjere community. 
 

 

 
 

Figure 6. Proposed hybrid system configuration for simulation in HOMER Pro 
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Table 1. HOMER Pro’s simulation parameters 
Simulation constraints Specification 

Simulation time step  10 minutes 
Project lifespan 25 years 

Interest rate  25.50% 

Maximum renewable fraction  95% 
Wind speed hub height 10 m/s 

Maximum annual capacity shortage  5% 

Dollar exchange rate  N 1,700 / $ 
Simulation time step  10 minutes 

Project lifespan 25 years 

 
 

Table 2. System component parameter and cost 
Component Capital cost ($) Replacement cost ($) Operation and maintenance cost ($) Lifespan (yr) 

Wind turbine (100 kW) 2500 1500 150 20 

Solar PV System (100 kW) 3000 300 10 25 

Inverter (150 kW) 2000 250 20 10 

Diesel generator (100 kW) 1000 800 200 15 

Battery (192 V, 600 Ah) 3500 3500 10 10 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Result: 

3.1.1. Optimal system selection and economic assessment 

The HOMER Pro simulations assessed hybrid renewable energy configurations based on LCOE, net 

present cost (NPC), and system capital cost (SCC) Figures 7–9. Among the configurations, the 

PV/WT/BAT/INV/GEN system performed best (LCOE = USD 0.455/kWh; Capital Cost = USD 706,836; NPC 

= USD 2.98M). A lower capital requirement not only eases the initial financial burden but also improves project 

feasibility for stakeholders operating under budgetary limitations, thereby strengthening overall return on 

investment (ROI) [37]. 
 

 

 
 

Figure 7. System configuration versus LCOE 
 

 

 
 

Figure 8. System configuration scenario vs SCC 
 

 

Following identification of the PV/WT/BAT/INV/GEN setup as the most optimal, Scenario A’s cost 

distribution Figure 10 shows batteries dominate total investment (~82%), followed by wind (~17%), with PV 

and inverter costs below 1%. This pattern reflects prevailing market prices, system design needs, and storage 

requirements for renewable stability. 
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Figure 9. System configurations versus net present cost 
 

 

 
 

Figure 10. Optimal SCC summary 

 

 

3.1.2. Sensitivity analysis  

Sensitivity analysis Figure 11 shows LCOE is most sensitive to battery cost and PV capacity: lowering 

battery cost by 20% or increasing PV capacity by 20% substantially reduces LCOE, while higher discount rates 

raise it. Figure 11 for detailed scenario values. The renewable fraction illustrated in Figure 12 shows the optimal 

system provides 86.2% of annual energy from renewables, with the diesel generator covering 13.8%. 

Configurations without wind achieve lower renewable shares (80–82.5%) and higher diesel reliance, 

highlighting the importance of wind integration and adequate storage in enhancing renewable penetration and 

system reliability. 
 

 

  
  

Figure 11 Impact of sensitivity analysis on LCOE Figure 12. Renewable fraction vs generator 

contribution 

 

 

3.1.3. Payback period estimation for the optimal system configuration 

The payback period measures how quickly an investment recovers its capital cost through annual 

savings or revenues, such as energy sales, feed-in tariffs, or incentives [38], [39]. In renewable hybrid power 

systems optimization, it’s a vital financial metric assessing investment attractiveness, risk, and economic 

resilience. A shorter payback enhances project appeal, supports financial planning, improves bankability, and 

informs policy and investment decisions [40]. Payback period is defined as presented in (7) [41], [42]. 



TELKOMNIKA Telecommun Comput El Control   

 

 Optimization and techno-economic analysis of hybrid renewable systems … (Lambe Mutalub Adesina) 

351 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑜𝑟 𝑠𝑎𝑣𝑖𝑛𝑔
  (7) 

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 = 𝐿𝐶𝑂𝐸 ×  𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  (8) 

 

Where, data from HOMER Pro optimal system configuration gives: LCOE = USD 0.455/kWh, annual energy 

production = 442,573 kWh, and optimal system capital cost: USD 706,836.  

Therefore, using (7)–(8) and the optimal-system outputs (LCOE, annual energy production), the 

calculated payback is ≈ 3.5 years, a rapid capital recovery that indicates strong financial viability. The short 

payback period reinforces the project’s financial attractiveness and scalability in resource-constrained 

communities. 

 

3.1.4. Cash flow analysis  

The cash flow distribution of the HRES in Figure 13 shows that capital costs are dominated by BAT, 

followed by WT and PV systems, reflecting the high initial investment required for reliable off-grid operation. 

Replacement costs are also primarily driven by batteries due to their limited lifespan, while PV and wind 

components require minimal replacements. Operation and maintenance costs are moderate, with WT and 

generators contributing most. Fuel costs are negligible, indicating the generator serves mainly as backup. 

Negative salvage values occur at the project’s end, with batteries having the highest recovery value. Optimizing 

battery sizing and lifecycle management is crucial to reducing total costs and improving long-term system 

sustainability. 

 

 

 
 

Figure 13. Cash flow distribution of HRES across lifecycle cost categories 

 

 

3.2.  Discussion 

3.2.1. Interpretation of optimal system configuration results 

The analysis confirms that the PV/WT/BAT/INV/GEN configuration is both technically and 

economically optimal, effectively balancing renewable penetration, investment cost, and operational reliability. 

BTS dominates capital expenditure (~82% of Capex), highlighting the potential of technological improvements 

and financing mechanisms to further lower LCOE. This dominance reflects the large storage capacity required 

for energy buffering, load smoothing, and backup during intermittency, alongside high lifecycle and 

replacement costs inherent to system design and operation. 

Sensitivity analysis identifies battery cost and PV capacity as primary economic drivers, with discount 

rate (≈25.5%) and battery lifetime also influencing viability. A high renewable fraction (~86%) demonstrates 

that hybridization with modest wind speeds (~4.2 m/s) can substantially minimize diesel use and emissions. 

Wind energy integration is justified by its complementary synergy with solar PV, providing 

generation during low-solar and nighttime periods while enhancing overall system stability. Moderate wind 

speeds (4–5 m/s) meaningfully supplement output, reducing battery cycling and operational costs. This 

integration also lowers system cost through shared infrastructure, mitigates greenhouse gas emissions, and 

strengthens renewable utilization efficiency, reliability, and resilience against resource intermittency. 

 

3.2.2. System optimization and validation 

The section compares HOMER and MATLAB Simulink for optimizing HRES. Ishraque et al. [43] 

presented a techno-economic and power system optimization study of a renewable-rich islanded microgrid for 
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the Barishal and Chattogram regions in Bangladesh. HOMER was used to optimize component sizing and 

evaluate five dispatch strategies, generator order, cycle charging, load following, HOMER predictive dispatch, 

and combined dispatch, based on CO₂ emissions, NPC and LCOE. MATLAB Simulink was then employed to 

validate the system’s dynamic performance and overall feasibility. 

Results showed that the Load Following strategy achieved the best performance, delivering the lowest 

NPC, LCOE, operating cost, and CO₂ emissions, alongside a stable power system response. In contrast, the 

Combined Dispatch strategy performed the worst, with the highest costs and emissions. This integrated 

approach provides a comprehensive framework for designing, optimizing, and validating off-grid HRES under 

diverse operational conditions. 

 

3.2.3. Environmental and socio-economic impacts 

The optimized system reduces CO₂ emissions by ~68% (from 92,000 to 29,400 kg/year) [44] and 

particulate matter by 54% compared to diesel-only operation, aligning with SDG 7 and SDG 13. Economically, 

the high renewable fraction achieves competitive LCOE levels consistent with SSA mini-grid benchmarks. 

Mechanisms such as capital buy-downs, concessional debt, and blended financing can further improve 

affordability. Midday PV surplus can support productive-use electrification (cold chains, agro-processing, 

digital services), while tiered or seasonal tariffs enhance revenue streams and reduce reliance on diesel backup. 

 

3.2.4. Comparison and contrast with existing literature  

This section offers a comparative analysis of the present study against recent research on HRES’s to 

validate this research findings, drawing from peer-reviewed publications in IEEE Xplore, Scopus, and Web of 

Science. Articles were selected using keywords such as “HRES,” “Techno-Economic HRES,” and 

“optimization techniques,” focusing on contemporary studies from 2021–2025. Emphasis was placed on off-

grid renewable hybrid power systems, innovative optimization approaches, and practical case studies assessing 

technical and economic performance.  

Evidence across SSA and comparable low- and middle-income countries (LMIC) contexts highlight 

PV-battery hybrids as least-cost, lowest-emission solutions, with wind and limited diesel enhancing resilience. 

Table 3 presents comparative contrasts. LCOE is higher than “best-case” Gwadar, Pakistan / HOMER software, 

but sits squarely within SSA tariff bands observed for commercially viable mini-grids when FX, high discount 

rates (≈ 25.5%), and storage-heavy designs are modeled. Our renewable share (≈ 86%) exceeds many PV–DG 

systems that lack wind firming and aligns with studies that prioritize peak-shaving batteries over diesel runtime. 

 

 

Table 3. Comparative synthesis (selected 2021–2025 studies vs. this work) 

Study Context / tool Optimal mix 
LCOE 

(USD/kWh) 

NPC / Capex 

(USD) 

Ren. 

fraction 
Key notes 

[45] Gwadar, Pakistan / 
HOMER software 

PV – wind – 
grid – 

converter 

(model 2) 

0.0347 — 73.3% 
(model 

2) 

Gwadar microgrid: model 
2 optimal, reduces 

imports. 

[46] Kech village 

HOMER-Pro 
simulation 

PV – wind – 

BAT – 
converter 

0.137 127,345 100% Reliable economical 

scalable rural 
electrification is achieved 

[47] HOMER + MCDM 

(32 scenarios) 

PV – wind–

battery 

0.24 1.42 – 1.64 M 55.1% Demonstrates trade-offs 

between economics and 
sustainability 

[48] Uttarakhand, India, 

HOMER-Pro 
simulation 

PV – battery 0.143 43,738.53 Almost 

100% 

Cuts greenhouse gas 

(GHG) emissions by 
21,545 kg/year 

[49] South Africa, 

HOMER grid 

PV – wind– 

battery energy 
storage system 

(BESS) 

0.23 9.3M 95% Floating PV performance 

ratio 85.5%, with annual 
15,835 MWh 

[50] South Coast, KZN, 

HOMER Pro 3.18.1. 
Wind energy + 

converter + 

grid 

— 13,000 74% PV/grid is viable 
alternative but less cost-

effective 

[51] Improved subtraction-

average-based 

optimizer (ISABO) 

PV – wind – 

fuel cell 

— 1,357,018.15 — Reliable operation with 

only 0.8% loss of power 

supply probability (LPSP) 
decline under PV failure 

Present 

study 
(2025) 

Nigeria/HOMER Pro PV– WT – 

BAT – GEN 

0.455 NPC 2.98 M; 

Capex 706,836 

 ≈ 86% Wind improves seasonal 

adequacy; storage 
dominates Capex 
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3.2.5. Modular framework for scaling 

A modular framework is proposed to support replication across SSA, structuring the HRES into 

interchangeable PV, WT, BAT, INV, and GEN modules with standardized specifications, performance metrics 

(LCOE, NPC, SCC), and data-driven modeling procedures. Sensitivity analysis and scenario testing guide 

module sizing under varying financial and climatic conditions, enabling cost-effective deployment while 

accommodating advanced storage, demand-side management, and real-time control strategies. 

 

3.2.6. Policy and practical implications 

The study’s findings have multiple practical and policy implications: 

− Affordability and inclusive financing: competitive LCOE align with SSA mini-grid benchmarks. 

Mechanisms such as capital buy-downs, concessional debt, and blended finance can further lower tariffs 

and improve developer bankability [52], [53]. 

− Decarbonization and health co-benefits: diesel share (~14%) enables significant CO₂ and particulate 

matter reductions compared to diesel-only systems [54]–[56]. Policy frameworks that recognize carbon 

and health externalities can unlock climate financing and encourage low-carbon investments [57]–[59]. 

− Productive use and tariff design: midday PV surplus can support productive-use electrification (PUE) 

applications, including cold chains, agro-processing, and digital services. Tiered or seasonal tariffs 

enhance revenue streams and system utilization, reducing dependency on diesel backup. 

− Institutional and regulatory support: sustainable operation requires grid-arrival compensation 

frameworks, standardized land/easement procedures, and FX-indexed cost pass-through rules, ensuring 

long-term bankability and quality of service [60]. 

 

3.2.7. Research contribution and novelty 

The study advances HRES deployment in SSA through: 

− Context-specific hybridization: demonstrates cost-effective wind integration in low-wind regions, 

complementing PV and minimizing diesel use. 

− Financial realism: high discount rates and FX pass-through reveal battery-dominated Capex and LCOE 

sensitivity. 

− Policy-ready quality of service (QoS) and tariff design: provides actionable instruments for mini-grid 

planning. 

− Replicable workflow: combines validated local load data, site characterization, and HOMER modeling 

for other rural communities. 

− High-inflation planning realism: incorporates market and finance considerations rarely embedded in rural 

HRES optimization [61], [62]. 

 

3.2.8. Challenges and limitations 

Several factors constrain the study’s findings, particularly in terms of economic accuracy, system risk, 

and seasonal representativeness, among which are: 

− Currency and macro risk: with FX volatility and high discount rates, storage-heavy systems remain tariff-

sensitive; concessional capital and FX- indexed contracts are pivotal [63], [64]. 

− Battery cost concentration: Capex is dominated by batteries (≈82%); supply-chain shocks and 

replacement timing materially swing LCOE, consistent with SSA benchmarking. 

− Data horizons: thirty days of logging capture typical residential peaks but not agricultural/seasonal 

shocks; a full annual cycle would refine wind/solar complementarity and PUE sizing. 

− Operation and maintenance (O&M) and governance: sustained QoS depends on local O&M capability, 

parts logistics, and clear grid-arrival rules; weak tenure and opaque buyout terms can strand assets. 

− Social acceptance and demand risk: tariff shifts, metering trust, and appliance uptake shape revenue 

stability; PUE enablement (credit, devices) is necessary to realize modeled paybacks [65]. 

 

3.2.9. Future research directions 

Future work should collaborate with hardware developers for field testing, integrate IoT-enabled 

monitoring, machine learning-based forecasting, and advanced real-time optimization beyond HOMER. This 

will enhance adaptive energy management, demand prediction, and scalable rural electrification with improved 

resilience and sustainability. 

 

 

4. CONCLUSION  

This study developed and optimized a HRES for rural electrification in Elenjere, Kwara State, Nigeria, 

using HOMER Pro. The PV–wind–battery–inverter–diesel configuration proved most technically and 
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economically viable, achieving the lowest LCOE (USD 0.455 /kWh), NPC (USD 2.98 M), and capital cost 

(USD 706,836). With a renewable penetration of 86.2%, diesel use was minimized, operating mainly as backup 

during intermittency. 

Sensitivity analysis indicated that lower battery costs and expanded PV capacity could further reduce 

LCOE to USD 0.227–0.325 /kWh. These findings align with SSA studies, underscoring the potential of 

renewable-dominated HRESs to deliver reliable, low-cost electrification while reducing emissions and 

enhancing energy security. The estimated 3.5-year payback period highlights strong investment appeal. 

From a socio-economic perspective, the optimized system promotes inclusive rural development 

through affordable electricity that enhances livelihoods, supports productive-use enterprises, and reduces fuel 

costs and pollution-related health burdens, aligning with national electrification and sustainability goals. 

While offering a replicable framework for similar regions, limitations include simulation assumptions 

and simplified intermittency representation. Future research should integrate demand-side management, 

advanced storage, and real-time control strategies to strengthen system resilience, scalability, and long-term 

sustainability. 
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