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Dental caries is one of the most prevalent oral diseases, progressively
damaging tooth structure and often leading to significant treatment costs.
Variations in dental service fees across clinics can become a financial barrier,
discouraging timely and appropriate care. This study introduces an artificial
intelligence (Al)-based framework that utilises smartphone camera images to
detect dental caries and predict treatment costs. A total of 1,200 images of
carious and normal teeth were collected from dental clinics in Denpasar, Bali,
Indonesia, and classified by three dental experts. Data augmentation expanded
the dataset twentyfold to 23,060 images to address variation and class
imbalance. The you only look once version 11 (YOLOv11) deep learning
algorithm was employed for caries detection, and its performance was
evaluated using mean average precision (mAP), precision, and recall metrics.
The model demonstrated high accuracy, achieving an mAP of 96.1%, a
precision of 95.5%, and a recall of 93.0%. This study provides the first

integration of YOLOv11 with RGB-intensity-based cost prediction in digital
dentistry. The proposed system offers a fast, accessible, and cost-efficient
approach for early caries detection and treatment cost estimation. These
findings highlight its potential to support real-time, Al-assisted preventive
dentistry and contribute to more equitable access to oral healthcare.
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1. INTRODUCTION

Dental caries is a major global health problem and one of the most prevalent oral diseases,
progressively damaging tooth structure and leading to significant treatment needs [1], [2]. It develops through
multifactorial interaction among carbohydrate intake, microorganisms, susceptible tooth surfaces, and saliva
composition [3]. According to the World Dental Federation (FDI), modern dental care emphasizes minimal
intervention dentistry (MID), which focuses on preventing disease, preserving healthy tooth structure, and
providing cost-effective treatment [4].

Socioeconomic status, gender, environmental factors and individual behaviours significantly
influence the need and demand for dental treatment [5], [6]. High treatment costs, time constraints, and varying
clinical fees often discourage individuals from seeking timely care, leading to delayed intervention and greater
financial burden [7], [8].
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Recent technological development in dentistry have enable automated oral examination that provide
real-time feedback for clinicians and patients. Using a simple smartphone-based imaging system, users can
now identify possible dental problems and estimate treatment costs at minimal expense [9]-[11]. Artificial
intelligence (Al) and internet of things (IoT) technologies have accelerated this transformation, providing real-
time image analysis, remote diagnosis, and data-driven decision-making in healthcare [12]-[15].

The use of Al in the health sector is widely discussed by several researchers, such as Zhou et al. [16],
using deep learning algorithms to detect ulceration using intra-oral images. Makarim et al. [17] used deep
learning methods to detect and classify carious teeth on the tooth surface. Welikala er al. [18]. Use deep
learning and IoT methods to detect and classify oral cancer. However, research focusing on Al-based caries
detection combined with cost estimation remains limited. Most prior works only addressed detection accuracy,
without linking diagnostic outcome to clinical treatment costs, which could support patients in financial
planning and decision-making.

Therefore, this study aims to develop an Ai-based dental caries detection system using you only look
once version 11 (YOLOvV11,) integrated with red-green-blue (RGB)-based cost estimation. This approach not
severity with predicted treatment costs, promoting accessibility, transparency, and affordability in dental
healthcare services.

2. METHOD

This study is quantitative experimental research aimed at developing and evaluating an Al-based
dental caries detection system. A total of 1,200 intraoral images were collected through purposive sampling
from several dental clinics in Denpasar, Indonesia. Only permanent teeth were included in the dataset. Teeth
showing carious lesions were categorised as cases, while non-carious teeth were used as controls. Images with
poor quality (blurred, too dark, or overexposed), incomplete crown visibility, or extrinsic stains that could
interfere with caries detection were excluded from analysis.

As illustrated in Figure 1, the research workflow began with data preprocessing to filter images based
on clarity and a 1:1 aspect ratio. Images that met the criteria were then labelled by dental experts using the
Greene Vardiman (GV) Black classification. The dataset was expanded through augmentation techniques to
increase image variability, and subsequently divided into training, validation, and testing subsets. Model
training was conducted using the YOLOv11 architecture. In addition to the detection process, the mean RGB
pixel values of the detected caries region were extracted to estimate treatment costs based on the severity of
the lesions. This methodological framework was designed to produce a clinically relevant and accurate Al
model capable of early caries detection and reliable cost prediction.

Data Collection Pre-processing Data
_— Data is trained using
l Predictive Model H Evaluate the Model ]1——' YOLOVI

Labelling

Augmentation

Generate Model

(RGE Mean)

nterpretation of caries
Severity and
Modification of End
Treamtent costs

Figure 1. Development framework of Al system for dental caries detection

2.1. Data collection

This study collected a total of 1,200 intraoral dental images obtained through purposive sampling. The
images were taken by dentists using smartphone cameras with a 1:1 aspect ratio to ensure consistency in image
quality. The dataset included both caries and non-caries teeth and was gathered from five different dental clinics
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to ensure sufficient variation in dental conditions and visual characteristics. To maintain the quality and
diagnostic relevance of the dataset, exclusion criteria were applied to eliminate images with visual obstructions
such as stains, dental calculus, and anatomical anomalies. Specifically, images of teeth with developmental
disorders such as dentinogenesis imperfecta and amelogenesis imperfecta, as well as teeth with malformed
shapes, were excluded to avoid bias and ensure model generalizability

2.2. Image pre-processing and data augmentation

To enrich the variety of datasets without reducing the validity of the original condition of the teeth,
an augmentation method was used to increase the volume of training data [19]. In this case, all images were
flipped vertically and horizontally, rotated 90 °, and cropped 1:1. In the current study, data augmentation
increased the number of images by about 20 times. This resulted in a dataset of 23,060. This is done to help
overcome the problem of a lack of data variation or class imbalance in the dataset, as well as to enable the
model to better recognise common patterns in the data. In addition, augmentation can help reduce overfitting,
which is a condition where the model is too specific to certain training data and cannot generalise well to new
data [20]-[22]. Although qualitative balance was maintained during augmentation, no quantitative analysis
was conducted to measure class distribution after augmentation. Future research could further investigate how
augmentation techniques, such as rotation or flipping, may influence model bias or impact the clinical
interpretation of caries features.

2.3. Image annotation

Annotation of the dataset was conducted with the assistance of dental professionals using the GV
Black classification system, which categorizes dental caries based on the location and type of lesion on the
tooth surface. Class I includes caries in pits and fissures on the occlusal surfaces of molars and premolars and
the lingual surfaces of anterior teeth. Class II involves caries on the proximal (mesial or distal) surface of
premolars and molars. Class III refers to caries affecting the proximal surfaces of anterior teeth without
involving the incisal edge. Class IV includes caries on the proximal surfaces of the anterior teeth, involving
the incisal angle. Class V comprises caries on the cervical third of the facial or lingual surfaces of anterior or
posterior teeth, usually near the gum line [23].

Labelling was performed using the Roboflow platform, where each image was segmented polygonally
to delineate the area affected by caries according to its class Figure 2. After annotation and segmentation, the
complete dataset was divided into three subsets: training data (21,240 images), validation data (1,217 images),
and testing data (603 images), representing 92%, 5%, and 3% of the dataset, respectively.

Class | l Class Il ‘ Class Il '

ecinDgo

Figure 2. Image annotation

2.4. YOLOvV11 and network setting

YOLOVI11 is the latest release of the YOLO series. YOLOvVI11 is designed to be fast, accurate and
easy to use for object detection, image segmentation, image classification, and real-time object tracking.
YOLOv11 further develops the framework by introducing the cross-stage partial with spatial attention
(C2PSA) block, which significantly improves spatial awareness by allowing the model to more effectively
focus on critical regions in images. This innovation proved to be very beneficial in complex scenarios, such as
healthcare applications, where precision and accuracy are crucial [24].
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The model achieved a final mAP50 of 0.958 in several rejects. In particular, YOLO11m, with an
average speed of 2% faster than YOLOv10. YOLOv11 is optimized for real-time applications, which require
fast processing even in demanding environments [25], [26]. Model performance was evaluated using the mean
average precision (mAP) metric to assess tooth detection accuracy. The applied network tuning included
several important parameters, such as learning rate, batch size, and number of epochs. The learning rate was
adjusted incrementally to ensure the model could converge well without getting stuck in a local minimum. The
batch size was set to maximize memory usage, while the number of epochs was chosen based on the result of
evaluating the model’s performance on validation data. In addition, data augmentation such as rotation,
flipping, and cropping was used to improve the generalization ability of the model to variations in the position
and size of dental caries in the image [27].

The model was trained on a system equipped with an Intel Core i7 processor, 16 GB RAM, and
integrated Intel Iris Xe graphics. A total of 150 epochs were completed in approximately six hours using the
YOLOV11 architecture initialised from the Microsoft common objects in context (MSCOCO)-seg checkpoint.
The YOLOv11 model was trained using default hyperparameter settings provided by the ultralytics framework,
as this study primarily focused on evaluating model applicability for dental caries detection and subsequent
cost estimation rather than hyperparameter optimization. The default configuration included a batch size of 16,
a learning rate of 0.001, and the Adam optimizer. The training process was conducted for 150 epochs with
early stopping enabled to prevent overfitting. Data augmentation, such as rotation, brightness, adjustment, and
horizontal flipping, was applied automatically by the framework to enhance generalization.

2.5. RGB-based cost mapping

The RGB-based cost estimation method was chosen because variation in mean RGB intensity is
correlated with enamel translucency and lesion severity, where darker regions (lower RGB values) typically
indicate deeper or more extensive carious lesions. Mean RGB values were grouped into three severity levels:
Mild (RGB>170), moderate (150-170), and severe (< 150), and mapped to corresponding estimated treatment
costs. The mapping was derived from average clinical tariffs in Denpasar, Indonesia, with cost ranges of IDR
150,000-300,000 for mild, IDR 300,000-600,000 for moderate, and above IDR 600,000 for severe lesions. This
approach provides a quantifiable and practical framework linking image-based intensity data with clinical cost
estimation.

In this study, mean RGB intensity values were used to represent colour variations on tooth surfaces,
offering a simple yet effective approach to assess enamel translucency and lesion severity. Unlike texture-
based methods such as the grey level cooccurrence matrix (GLCM), which analyse pixel spatial relationship
and require complex feature extraction, mean RGB provides a more direct correlation with optical changes in
enamel brightness and translucency. Since demineralisation primarily alters light transmission rather than
surface texture, intensity-based analysis is considered more support that enamel translucency and light
transmission can be represented through colour intensity variation [28]. Thus, darker or lower-intensity RGB
regions were interpreted as areas of more severe caries, which also informed the estimation of treatment costs.

3. RESULTS AND DISCUSSION
3.1. Training and performance validation

The dental caries detection using the YOLOv11 architecture was trained with the instance segmentation
technique based on the MSCOCO-seg checkpoint. The model achieved strong and reliable performance,
evaluated using mAP and loss metrics (box loss, class loss, and object loss) as shown in Figure 3.

As illustrated in Figure 3(a), the model achieved an mAP of 0.961 and an mAP@50-95 of 0.964 for
both training and validation datasets. These high values indicate that the detection results closely match the
ground truth, reflecting a well-balanced trade-off between precision and recall [29]. Figure 3(b) shows a
substantial reduction in Box Loss during the early training epochs, followed by convergence after
approximately 50 epochs, implying improved bounding-box localisation accuracy. Similarly, Class and Object
Losses decreased consistently, signifying enhanced classification and object detection performance throughout
training.

During the training process, the box loss, class loss, and object loss graphs steadily decrease,
indicating that the model continues to learn well as the training progresses. The decreasing box loss reflects
the model’s ability to detect the location and size of caries with high accuracy, while the class loss shows that
the model can distinguish caries in other areas of the tooth well. Object loss that drops to a stable value indicates
reliability in detecting the presence of caries without much error. A graph that shows a consistent decrease in
all three graphs Figure 3(a) shows that the model has reached convergence, where the learning process is
optimised. Other studies have also found that the stability of the loss function value is critical to avoid
overfitting and allow generalisation of results [30].
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Figure 3. Model performance curves showing: (a) mAP, precision, and recall metrics and (b) box loss, class
loss, and object loss trends

To ensure result consistency, the training runs were performed under identical hyperparameter

settings. The mean mAP variance across runs was +0.8%, indicating stable learning behaviour and minimal
fluctuation. This suggests that the model’s performance is reproducible and not significantly affected by

random initialization or dataset shuffling.

YOLOVI11 introduces innovative features and improves performance in various optimized computer
vision tasks. The YOLOv11 model uses enhanced training techniques that have produced better results on data
sets [25], [26], [31]. The research results confirm that the developed Al and IoT-based dental caries detection
model shows excellent performance. Although no direct experimental comparison was conducted with
alternative models on the same dataset, performance benchmarks from previous studies indicate that YOLOv11
outperforms earlier YOLO versions in the dental imaging task Table 1, outperforming YOLOvVS (mAP 90%,
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F1=0.87) and Detection transformer (DETR) (mAp 85%, F1 = 0.82) reported in Ying et al. [32], the review
by Radha et al. [33], highlights that most machine learning-based studies rely on radiographic images for
detecting periodontitis and dental caries, whereas studies focusing on smartphone-based caries detection are
still limited. The improvement of approximately 10-15% in mAP highlights YOLOvV11’s enhanced backbone,
decoupled head architecture, and optimized training strategy, which collectively enhance feature extraction and
inference speed.

Table 1. Performance comparison between YOLOv11 and previous deep learning models for dental caries

detection
Model Dataset type mAP (%)  Precision (%)  Recall (%) Source
DETR Radiographic caries images 82.0 - - [32]
YOLOVS Radiographic caries images 87.0 - - [32]
YOLOVI1 (this study)  Smartphone clinical images 96.1 95.5 93.0 Present Study

These findings reinforce that YOLOvV11 provides strong and consistent performance for dental caries
detection, particularly on smartphone-acquired images where illumination, reflection, and positional variations
are more challenging than radiographic data.

Data augmentation expanded the dataset from 1,200 to 23,060 images, effectively reducing overfitting
during training. However, the class distribution after augmentation was not quantitatively verified. Although
the balance between carious and non-carious images was maintained qualitatively, the statistical proportions
were not calculated. Geometric transformations such as rotation and flipping may introduce slight
interpretational bias, particularly when lesions appear in uncommon orientations. Nevertheless, these
augmentations were intended to enhance model generalization and replicate natural variations in patient
imaging. Future research should include a quantitative assessment of class balance and evaluate how
augmentation strategies influence diagnostic robustness.

This study primarily focused on developing and validating a single optimized YOLOv11 model to
evaluate its technical feasibility and diagnostic potential rather than performing comparative statistical testing.
Hence, statistical variance measures such as confidence intervals or standard deviations were not applied to all
metrics. Furthermore, specificity is less relevant in object detection frameworks like YOLO, which emphasize
localization accuracy rather than binary classification outcomes. Qualitative visual inspection of misclassified
samples revealed that errors primarily occurred in images with uneven lighting or overlapping restorations.
These insights provide a useful foundation for future refinement of the model through improved preprocessing
and image normalization techniques. Overall, the model achieved an average mAP of 96.1%, precision of
95.5%, and recall of 93.0% Table 2, demonstrating that YOLOv11 can accurately localize, classify, and detect
dental caries with high consistency and reliability.

The findings are consistent with previous studies reporting strong and reliable YOLO-based
performance in medical and dental imaging applications [34]-[37]. This study focused on developing and
validating a single optimized YOLOv11 model to evaluate its technical feasibility and diagnostic potential
rather than performing comparative statistical testing. Therefore, statistical variance measures such as
confidence intervals or standard deviations were not applied. In addition, specificity is less relevant in object
detection frameworks like YOLO, which emphasize localization accuracy rather than binary classification
outcomes. Quantitative error analysis was not performed since the individual prediction logs were not stored
during training; however, qualitative visual inspection of misclassified samples provided valuable insights into
common error patterns and areas for future model refinement.

Table 2. The value of precision, recall, and accuracy obtained
Model type Checkpoint  mAP Precision  Recall
YOLOvI11 instance segmentation (accurate) COCOs-seg  96.1%  95.5% 93.0%

3.2. Performance test

Model testing was conducted to evaluate the actual performance of the test dataset. The test results
show that the model achieved an overall mAP of 96.1%, which reflects a good ability to detect and classify
dental caries with high accuracy on a dataset that has never been seen before. With a precision of 95.5%, the
model demonstrated an excellent level of accuracy in detecting caries, while a recall of 93% demonstrated the
model’s ability to capture as many caries as possible without missing too many relevant instances Table 3.
With these results, the model is proven ready to be used for a better [oT-based dental caries detection system
based on the caries classification generated by the AI model.
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Table 3. Precision average each class (mAP50)
Average precision by class mAP50  Validation set  Test set

Class I 98 99
Class 1T 97 98
Class III 94 95
Class IV 97 96
Class V 95 98
Normal 95 96

3.3. Visual test

The automatic detection and localization of dental caries were conducted based on the predefined
classification scheme, as illustrated in Figure 4. The YOLOv11 model successfully identifies and segments
carious lesions with high accuracy. Each labelled region (a-¢) corresponds to caries categories from Class I to
Class V, as determined by standard clinical classification. The model demonstrates strong capability in
distinguishing caries type across various tooth surfaces and, notably, can detect more than one caries class
within a single tooth through separate bounding boxes. This finding highlights the model’s robustness in
recognising distinct lesion patterns that differ in depth and severity within the same tooth structure.

A few instances of misdetection were observed in regions affected by saliva reflection, food debris,
or discolouration, which may visually resemble carious areas. Nevertheless, the overall segmentation results
indicate that YOLOvV11 can accurately localise, classify, and delineate caries lesions under realistic intraoral
imaging conditions, supporting its potential for clinical diagnostic assistance.

Figure 4. Detection and segmentation of dental caries using the YOLOv11 model

3.4. RGB-based validation and cost estimation integration

To validate the detection model, a quantitative analysis was conducted using the mean pixel intensity
(RGB Mean) from carious and non-carious regions. The analysis demonstrated that healthy teeth generally
exhibited higher average pixel values (+184.31) compared to carious teeth (+153.44), indicating greater light
reflection due to intact enamel surfaces. Conversely, carious lesions appeared darker and less uniform,
reflecting enamel demineralization and tissue loss. RGB intensity values were further analyzed across severity
levels (mild, moderate, severe), with lighter areas corresponding to milder lesions and darker areas indicating
more extensive damage. Standard deviation values supported intra-class variation, particularly within moderate
and severe categories.

This RGB-based approach was selected because pixel-intensity variations demonstrate a direct
correlation with both the degree of enamel demineralization and the surface area of the lesion, allowing for an
objective quantification of caries severity. This severity index was then integrated with treatment cost
estimation. Detected caries were automatically classified I-V, with severity determined based on the proportion
of affected surface area relative to healthy enamel. A smaller ratio represents more extensive demineralization,
indicating higher severity Table 4.

Treatment cost estimation was derived by mapping each class and severity level to a modified cost
range based on average restorative treatment tariffs in Denpasar, Indonesia, adapted from the “Persatuan
Dokter Gigi Indonesia (PDGI)” standards. This integration demonstrates the model’s potential to provide not
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only accurate early diagnosis but also predictive treatment cost estimation, thereby enhancing clinical decision
support and promoting more transparent, patient-centred dental care.

Validation using 100 images excluded from the training process showed consistently high confidence
levels (>90%). These findings confirm that the system can accurately detect and classify carious lesions even
on previously unseen data, demonstrating the model’s stability and reliability under internal testing conditions.

Table 4. Dental treatment cost estimate based on caries severity

Caries class Caries severity Affected area (%)  Estimated treatment cost (IDR)
I Mild (86-99)% 300.000 - 350.000
I (90-82)% 350.000 — 400.000
111 (95-80)% 400.000 —450.000

v (99-76)% 400.000 —450.000
\Y% (89-76)% 450.000 — 500.000
I Moderate (85-76)% 350.000 — 400.000
I (81-69)% 400.000 —450.000
11 (79-68)% 450.000 — 500.000
v (75-62)% 500.000 — 550.000
\% (75-63)% 500.000 — 550.000
I Severe <75% 450.000 — 500.000
I <68% 500.000 — 550.000
11 <67% 500.000 — 550.000
v <61% 600.000 — 650.000
\% <61% 600.000 — 650.000
I Severe with symptoms <75% 500.000 — 2.500.000
)l <68% 550.000 —2.500.000
I <67% 550.000 — 1.500.000
v <61% 650.000 — 1.500.000
\% <61% 650.000 — 1.500.000

3.5. Ethical and regulatory considerations

This study obtained ethical approval and was submitted to the Ethics Committee of the Faculty of
Dentistry, University of Jember, under approval No.3036/ un25.8/ KEPK/DL/2025. All participants or their
legal guardians provided written informed consent before image collection. All patient images were securely
stored on encrypted, password-protected servers, and fully anonymized to remove any identifiable information
and stored on secure, password-protected servers to ensure privacy and compliance with applicable health data
regulations. The research followed the principles of the Declaration of Helsinki and adhered to Indonesian
health-research guidelines. Although this investigation was conducted in a controlled research setting, future
implementation of the Al-based caries detection system in routine dental practice will require continued
oversight, compliance with national health authority regulations, and transparent patient communication to
maintain safety, privacy, and public trust.

4. CONCLUSION

This study demonstrates that the YOLOv11-based deep learning model can accurately detect and
classify dental caries from smartphone images while also estimating potential treatment costs through RGB-
based pixel intensity mapping. The model achieved a mAP of 96.1%, supporting its potential as an accessible
and low-cost tool for early caries detection and clinical decision support in dentistry.

Compared with models reported in previous studies, such as convolutional neural network (CNN) -
and YOLOv5-based frameworks, YOLOv11 achieved higher detection accuracy and faster inference speed, as
documented in recent literature. These advantages reinforce the suitability of YOLOv11 for real-time mobile
and point-of-care dental screening applications. The key contribution of this work lies in integrating a state-of-
the-art object detection model (YOLOv11) with an RGB-based cost estimation approach, providing both
diagnostic and economic insight from a single image-processing pipeline.

However, several limitations should be acknowledged. The dataset was collected exclusively from
dental clinics in Denpasar, which may limit generalizability to other populations. All images were captured
using smartphone cameras, potentially introducing bias due to lighting and device variability. Moreover, real-
world clinical validation has not yet been conducted to assess usability in daily practice.

Future work will involve multi-centre data collection, inclusion of larger and more diverse datasets,
and prospective validation in clinical environments. Additionally, expanding the cost estimation model to
include region-specific tariffs and economic variables will further enhance generalizability and practical utility.
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