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 High precision speed regulation of the permanent magnet synchronous motor 

(PMSM) is a critical challenge in modern industrial applications, including 

electric vehicles and traction systems. This task is significantly affected by 

external disturbances, such as variable load torque, as well as physical 

phenomena often neglected in analytical models, such as magnetic circuit 

saturation or thermal variations in electrical parameters. In this context, 

conventional control methods often fail to ensure both dynamic performance 

and robustness. This paper proposes a multivariable H∞ control strategy based 

on field-oriented control (FOC) and d/q decoupling to design a robust and 

high-performance controller. The diagonal multiple-input multiple-output 

(MIMO) model, linking the direct-axis voltage𝑣𝑑to the current 𝑖𝑑and the 

quadrature-axis voltage 𝑣𝑞to the rotational speed 𝜔𝑟, is derived directly from 

the decoupling principles of FOC, without relying on linearization around an 

operating point or modeling of parametric uncertainties. The H∞ controller is 

synthesized using the standard configuration, with carefully selected 

weighting functions to ensure dynamic performance, closed-loop stability, 

and effective disturbance rejection. Numerical simulations demonstrate that 

the proposed controller achieves accurate speed reference tracking, fine 

current regulation, and fast load disturbance rejection, confirming its 

effectiveness and robustness. This approach provides an advanced alternative 

to conventional control methods by fully exploiting the multivariable structure 

of the system. 
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1. INTRODUCTION  

The permanent magnet synchronous motor (PMSM) has become a key component in modern 

industrial applications requiring high dynamic performance, such as electric vehicles, robotics, and traction 

systems [1], [2]. This widespread adoption is due to its intrinsic advantages: high power density, excellent 

energy efficiency, low inertia, and a robust mechanical structure resulting from the absence of rotor windings 

[1], [3]. However, precise control of the PMSM remains a challenging task due to its nonlinear, multivariable, 

and strongly coupled nature, which complicates the independent regulation of flux and electromagnetic torque. 

Despite these advantages, PMSM speed and current regulation are significantly affected by external 

disturbances, such as variable load torque, as well as by physical phenomena often neglected in analytical 

https://creativecommons.org/licenses/by-sa/4.0/
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models such as magnetic circuit saturation, skin effect, or thermal variations in electrical parameters [4], [5]. 

These modeling inaccuracies, combined with the inherent coupling between the d- and q-axis dynamics, 

degrade the performance of conventional control strategies, which often fail to ensure both accuracy and 

robustness under varying operating conditions [6], [7]. In this context, robust control techniques have emerged 

as a preferred solution to maintain consistent performance across different scenarios [8], [9]. 

Among these techniques, H∞ control has proven to be a powerful tool for designing controllers that 

guarantee stability, precise tracking, and effective disturbance rejection [10], [11]. This method minimizes the 

H∞ norm of a weighted transfer function between exogenous inputs (references, disturbances) and controlled 

outputs (errors, control effort), allowing performance specifications such as bandwidth, steady-state accuracy, 

and robustness to be explicitly embedded in the design phase through carefully chosen weighting functions [10], 

[12]. By properly selecting these weighting functions, it is possible to directly incorporate performance objectives, 

control effort limitations, and disturbance rejection requirements into the synthesis process [13], [14]. 

Recent works have explored various applications of H∞ control to PMSM. Ahn et al. [15] combined 

H∞ with an adaptive fuzzy sliding mode observer to estimate and compensate for load torque, achieving high 

robustness at the cost of increased algorithmic complexity. Djouadi et al. [16] proposed a nonlinear geometric 

control approach to directly address system nonlinearities, while Wang et al. [17] combined H∞ with sliding 

mode control for simultaneous disturbance rejection and parameter uncertainty compensation in PMSM drives. 

Other studies have employed Takagi-Sugeno (T-S) fuzzy models [18], disturbance observers (DOB) [19], or 

linear matrix inequality (LMI)-based formulations [20]. However, these methods, although effective, often 

require complex online estimations or detailed uncertainty modeling, making them difficult to implement on 

embedded platforms [21]. 

This paper proposes a balanced alternative: a multivariable H∞ controller designed from a diagonal 

multiple-input multiple-output (MIMO) model, derived directly from the decoupling principle of field-oriented 

control (FOC). Unlike approaches based on linearization around an operating point [22] or explicit modeling 

of parametric uncertainties [23], this method leverages the natural structure of the FOC-decoupled system to 

ensure robustness and performance without excessive complexity [24]. The controller is synthesized using the 

standard H∞ configuration, with weighting functions carefully selected to achieve accurate speed tracking, fine 

current regulation, and effective load disturbance rejection [25], [26]. 

The rest of this paper is organized as follows: Section 2 presents the detailed modeling of the PMSM 

under FOC, exploiting d/q decoupling to construct a diagonal MIMO model. Section 3 details the synthesis of 

the multivariable H∞ controller, including the choice of weighting functions and the standard interconnection 

structure. Simulation results are analyzed in Section 4, followed by a conclusion summarizing the contributions 

and potential future work. 

 

 

2. PMSM DECOUPLED MODEL FOR MULTIVARIABLE CONTROL 

The foundation of the proposed control strategy lies in a simplified yet accurate diagonal MIMO 

model of the PMSM, derived directly from the principles of FOC. This approach exploits the natural decoupling 

between flux and torque dynamics, avoiding the need for linearization or explicit uncertainty modeling. The 

resulting model enables robust multivariable H∞ synthesis while preserving the physical structure and 

performance advantages of FOC [1], [2]. 

The electrical and mechanical equations in the (𝑑, 𝑞) frame are: 
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where 𝑖𝑑 and 𝑖𝑞  denote the stator currents, 𝑣𝑑 and 𝑣𝑑 the applied voltages, 𝜔𝑟 the rotor angular speed, 𝑐𝑟 the load 

torque, 𝑅𝑠 the stator resistance, 𝐿𝑑 and 𝐿𝑞 the 𝑑- and 𝑞-axis inductances, 𝜙 the flux produced by the permanent 

magnets, 𝐽 the moment of inertia, 𝑓𝑐 the viscous friction coefficient, and 𝑃 the number of pole pairs [3], [4]. 

In the context of FOC, a common strategy is to set 𝑖𝑑
∗ = 0 to operate at nominal flux [1], [5]. This 

simplifies the electromagnetic torque expression to 𝑐𝑒 = 1.5𝑃𝜙𝑖𝑞 . Under this condition, the dynamics of 

current and speed are treated as decoupled, allowing for independent regulation. 

The electrical dynamics of the PMSM are significantly faster than its mechanical dynamics. This 

separation of time scales allows for a simplification of the control-oriented model under the assumption that 
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the current regulation loop operates with a sufficiently high bandwidth. In this context, the stator currents can 

be considered quasi-static variables relative to the slower speed dynamics [3], [11]. 

Under FOC with 𝑖𝑑
∗ = 0, the current dynamics along the 𝑑- and 𝑞-axes become decoupled. The direct-

axis current 𝑖𝑑 is governed by the voltage through the first-order transfer function: 

 

𝐺𝑖𝑑
(𝑠) =

𝐼𝑑(𝑠)

𝑉𝑑(𝑠)
=

1

𝐿𝑑𝑠+𝑅𝑠
  (2) 

 

For speed regulation, the dominant path is the cascade from the quadrature-axis voltage 𝑣𝑞to the 

electromagnetic torque and subsequently to the rotor speed 𝜔𝑟. Combining the electrical dynamics of 𝑖𝑞with 

the mechanical equation and using the simplified torque expression, the transfer function from 𝑣𝑞  to 𝜔𝑟 is 

obtained as: 

 

𝐺𝜔(𝑠) =
𝛺𝑟(𝑠)

𝑉𝑞(𝑠)
=

3𝑃𝜙

2(𝐽𝑠+𝑓𝑐)(𝐿𝑞𝑠+𝑅𝑠)
 (3) 

 

Based on this decoupling and time-scale separation, the overall system is represented by the following 

diagonal MIMO transfer matrix: 

 

𝐺(𝑠) = [
𝐺𝑖𝑑(𝑠) 0

0 𝐺𝜔(𝑠)
] = [

1

𝐿𝑑𝑠+𝑅𝑠
0

0
3𝑃𝜙

2(𝐽𝑠+𝑓𝑐)(𝐿𝑞𝑠+𝑅𝑠)

]  (4) 

 

With control inputs 𝑢 = [𝑣𝑑 , 𝑣𝑞]
 𝑇

 and regulated outputs 𝑦 = [𝑖𝑑 , 𝜔𝑟] 𝑇. This simplified model captures the 

essential dynamics of the PMSM under FOC and serves as the foundation for the multivariable H∞ controller 

design [6], [7]. 

 

 

3. SYNTHESIS OF THE MULTIVARIABLE H∞ CONTROLLER 

The H∞ control framework provides a rigorous and systematic methodology for controller design, 

explicitly balancing performance and robustness against uncertainties and disturbances. Unlike heuristic tuning 

approaches, H∞ synthesis formulates the control problem as an optimization task, minimizing the worst-case 

gain from exogenous inputs to regulated outputs. This ensures guaranteed stability margins and performance 

levels, even in the presence of modeling inaccuracies or parameter variations - a critical requirement for high-

performance PMSM drives. 

The multivariable H∞ controller is synthesized using the standard configuration depicted in  

Figure 1. This framework allows for the systematic integration of performance, robustness, and control effort 

constraints via frequency-dependent weighting functions, as established in robust control theory [8]–[10]. 

 

 

 
 

Figure 1. Standard H∞ configuration for the PMSM control system 

 

 

The synthesis is based on the standard H∞ configuration, where the plant is augmented with weighting 

functions to form an interconnected system. This system includes the generalized plant 𝑃(𝑠), the controller 

𝐾(𝑠). The generalized plant 𝑃(𝑠) is constructed to include the following signals: exogenous inputs 𝑤 (reference 

signals, disturbances, and performance/robustness weighting inputs), controlled outputs 𝑧 (weighted tracking 

errors and control signals), control inputs 𝑢 (stator voltages 𝑣𝑑 , 𝑣𝑞), and measured outputs 𝑦 (regulated 

variables 𝑖𝑑 , 𝜔𝑟). 

Weighting functions are selected as diagonal matrices to preserve the decoupled structure of the FOC-

based model: 

𝑊𝑒(𝑠): ensures high low-frequency gain for precise tracking and zero steady-state error. 

𝑊𝑢(𝑠): limits high-frequency control effort to prevent actuator saturation. 
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𝑊𝑇(𝑠): shapes the complementary sensitivity for robustness against unmodeled dynamics. 

The multivariable H∞ controller 𝐾(𝑠) is designed to minimize the H∞ norm of the closed-loop 

transfer function from w  to 𝑧, ensuring that: 

 

‖𝐹𝑙(𝑃, 𝐾)‖∞ ≤ 𝛾  (5) 

 

where 𝐹𝑙(𝑃, 𝐾) denotes the linear fractional transformation (LFT) of the interconnection between the 

generalized plant 𝑃(𝑠) and the controller 𝐾(𝑠), and 𝛾 > 0is a prescribed positive constant. 

The H∞ norm is defined as: ‖𝐹𝑙(𝑃, 𝐾)‖∞ = 𝑠𝑢𝑝
𝜔

𝜎
_
(𝐹𝑙(𝑃(𝑗𝜔), 𝐾(𝑗𝜔))), where 𝜎

_
 denotes the 

maximum singular value of the frequency response matrix. This norm represents the worst-case gain of the 

system from the exogenous inputs 𝑤 (references, disturbances) to the controlled outputs 𝑧 (errors, control 

effort). 

The condition ‖𝐹𝑙(𝑃, 𝐾)‖∞ ≤ 𝛾 ensures that the energy of the output 𝑧 is bounded by 𝛾 times the 

energy of the input 𝑤, i.e., ‖𝑧‖2 = ‖𝑤‖2. This guarantees robust stability and performance, even in the 

presence of modeling inaccuracies and external disturbances. The parameter 𝛾 acts as a disturbance attenuation 

level, and minimizing it leads to a controller with enhanced robustness and tracking accuracy. 

 

 

4. SIMULATION RESULTS AND PERFORMANCE ANALYSIS 

To evaluate the performance of the proposed multivariable H∞ controller, numerical simulations were 

conducted using a PMSM model with the parameters listed in Table 1. A single, comprehensive test scenario 

is considered to assess the controller’s tracking accuracy, disturbance rejection, and robustness under dynamic 

load variations. 

 

 

Table 1. Parameters of the PMSM model [1] 
Parameter Symbol Value 

Nominal power 𝑃𝑛 20 kW 

Nominal speed 𝑁𝑛 1500 rpm 

Number of pole pairs 𝑃 4 

Magnetic flux linkage 𝜙 0.19 Wb 

d-axis inductance 𝐿𝑑 1.475 mH 

q-axis inductance 𝐿𝑞 1.6 mH 

Stator resistance 𝑅𝑠 15 mΩ 

Rotor inertia 𝐽 0.05 kg·m² 

Viscous friction coefficient 𝑓𝑐 0.0012 N·m·s/rad 

 

 

The H∞ controller was initially synthesized at order 9. A model order reduction was performed using 

Hankel approximation, resulting in a reduced-order controller of order 4, while preserving the dominant 

dynamics. All simulation results presented in this section were obtained using the reduced-order controller 

(order 4), demonstrating that the reduction does not degrade the closed-loop performance. 

To evaluate the stability and robustness of the closed-loop system, Nyquist plots were generated for 

the two main control channels: 𝑣𝑑 → 𝜔𝑟 and 𝑣𝑞 → 𝑖𝑞. These plots are displayed in Figures 2 and 3. 

For the speed control channel (𝑣𝑑 → 𝜔𝑟), the Nyquist plot shown in Figure 2 shows a smooth 

trajectory that does not encircle the critical point (-1, 0). The curve remains at a safe distance from this point 

across the entire frequency range, indicating a stable and well-damped response. The shape of the plot suggests 

a system with sufficient gain and phase margins, ensuring robustness against parameter variations and external 

disturbances. The absence of any loop near the critical region confirms that the controller effectively prevents 

instability, even under dynamic load changes. 

For the d-axis current channel (𝑣𝑞 → 𝑖𝑞), the Nyquist plot shown in Figure 3 also confirms stable 

operation. The trajectory approaches the origin at high frequencies, demonstrating effective attenuation of high-

frequency noise and measurement disturbances. This behavior is crucial for maintaining precise regulation of 

𝑖𝑑 around zero, which is essential for nominal flux operation in field-oriented control. The curve’s shape 

indicates a fast, overdamped response with no oscillations, validating the controller’s ability to decouple flux 

and torque dynamics. The analysis of both plots confirms that the closed-loop system is stable and robust. The 

separation of the trajectories from the critical point (-1, 0), combined with their smooth evolution across 

frequencies, demonstrates that the H∞ controller provides strong stability margins and insensitivity to 

unmodeled dynamics. 
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Figure 2. Nyquist plots for 𝑣𝑑 → 𝜔𝑟 channel Figure 3. Nyquist plots for 𝑣𝑞 → 𝑖𝑞 channel 

 

 

The simulation scenario consists of a startup phase with a speed reference of 157 rad/s (1500 rpm) 

applied from 1 to 6 seconds, followed by a speed reversal to −157 rad/s at 6 seconds, and the application of a 

20 N·m load torque at 12 seconds. 

The time-domain response of the motor speed, presented in Figure 4, constitutes the most compelling 

evidence of the proposed controller’s effectiveness. The system reaches the reference speed of 157 rad/s in a 

record time of 0.12 seconds, with absolutely no overshoot. This performance significantly surpasses that 

reported for conventional proportional–integral (PI)/FOC controllers, which typically exhibit overshoot 

between 8% and 15% [19], and outperforms sliding mode controllers, whose rise time generally ranges from 

0.18 to 0.22 seconds [22]. The speed reversal at 6 seconds is executed with remarkable precision, without 

oscillation or perceptible delay, demonstrating the controller’s ability to manage rapid transients while 

maintaining stability. When the 20 Nm load torque is applied at 12 seconds, the speed drops only transiently 

and recovers to its reference value in just 0.05 seconds a recovery time that is significantly shorter than that 

reported for PI/FOC controllers (approximately 0.20–0.25 seconds) [19] and slightly better than that of sliding 

mode controllers (approximately 0.08–0.12 seconds) [22]. This exceptional disturbance rejection performance, 

combined with a rigorously zero steady-state error, confirms that the controller perfectly tracks the reference, 

an essential characteristic guaranteed by the choice of weighting functions in the H∞ synthesis. 
The behavior of the d-axis current, illustrated in Figure 5, reveals the system’s exceptional regulation 

of flux. This current is maintained at zero with a precision of ±0.05 A throughout the entire simulation, even 

during the most violent transients. This result fully validates the field-oriented decoupling approach combined 

with H∞ synthesis. By maintaining 𝑖𝑑 = 0, the controller ensures constant nominal flux operation, which is 

crucial to avoid magnetic saturation, maximize efficiency, and guarantee the motor’s lifespan, in accordance 

with established principles in the literature [1], [5]. 

 

 

  
  

Figure 4. Motor speed response Figure 5. D-axis current response 
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The 𝑞-axis current, whose evolution is plotted in Figure 6, demonstrates the controller’s high 

responsiveness and accurate torque control. This current follows reference variations with impressive precision 

and speed. It reverses polarity almost instantaneously at 6 seconds to enable speed reversal, then increases 

abruptly at 12 seconds to compensate for the load torque, all without any delay or oscillation. This dynamic 

performance is comparable to, or even superior to, that observed with sliding mode controllers [22], but without 

the chattering phenomenon that often accompanies them and can damage actuators over time. 

Figure 7 highlights the robustness of the electromagnetic torque response. The torque reaches its target 

value from startup with a brief, controlled initial peak, then changes sign sharply at 6 seconds to reverse the 

direction of rotation. At 12 seconds, it adjusts immediately to counteract the load disturbance, with no 

saturation or erratic behavior. The linearity and stability of this response testify to the intrinsic robustness of 

the multivariable H∞ design, which optimally manages interactions between control channels. 

In summary, the simulation results show that the decoupling-based multivariable H∞ controller 

provides excellent dynamic performance, accurate current regulation, precise speed tracking, and remarkable 

robustness against external disturbances. 

 

 

 
 

Figure 6. Q-axis current response 

 

 

 
 

Figure 7. Electromagnetic torque response 
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5. CONCLUSION  

This study has presented a multivariable H∞ control strategy for the PMSM that effectively integrates 

the decoupling concept of field-oriented control within a robust multivariable framework. By eliminating the 

need for explicit linearization and detailed uncertainty modeling, the proposed approach ensures a systematic 

and resilient design while maintaining high control accuracy and ease of implementation. 

The findings demonstrate that the reduced-order controller, derived through Hankel approximation, 

achieves precise reference tracking, smooth transient behavior, and strong disturbance rejection. Stability is 

consistently maintained across varying operating conditions, and the essential dynamic characteristics of the 

full-order system are preserved, confirming the controller’s suitability for real-time applications. 

Overall, this work contributes to the development of high-performance control strategies for PMSMs 

by providing a robust and computationally efficient solution. Future research will focus on real-time 

experimental validation and on extending the proposed method to multiphase and fault-tolerant PMSM systems 

to further enhance reliability and fault resilience in advanced electromechanical applications. 
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