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High precision speed regulation of the permanent magnet synchronous motor
(PMSM) is a critical challenge in modern industrial applications, including
electric vehicles and traction systems. This task is significantly affected by
external disturbances, such as variable load torque, as well as physical
phenomena often neglected in analytical models, such as magnetic circuit
saturation or thermal variations in electrical parameters. In this context,
conventional control methods often fail to ensure both dynamic performance
and robustness. This paper proposes a multivariable Hoo control strategy based
on field-oriented control (FOC) and d/q decoupling to design a robust and
high-performance controller. The diagonal multiple-input multiple-output
(MIMO) model, linking the direct-axis voltagev,to the current izand the
quadrature-axis voltage v,to the rotational speed w;., is derived directly from
the decoupling principles of FOC, without relying on linearization around an
operating point or modeling of parametric uncertainties. The Hoo controller is
synthesized using the standard configuration, with carefully selected
weighting functions to ensure dynamic performance, closed-loop stability,
and effective disturbance rejection. Numerical simulations demonstrate that
the proposed controller achieves accurate speed reference tracking, fine
current regulation, and fast load disturbance rejection, confirming its
effectiveness and robustness. This approach provides an advanced alternative
to conventional control methods by fully exploiting the multivariable structure
of the system.
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1. INTRODUCTION

The permanent magnet synchronous motor (PMSM) has become a key component in modern
industrial applications requiring high dynamic performance, such as electric vehicles, robotics, and traction
systems [1], [2]. This widespread adoption is due to its intrinsic advantages: high power density, excellent
energy efficiency, low inertia, and a robust mechanical structure resulting from the absence of rotor windings
[1], [3]. However, precise control of the PMSM remains a challenging task due to its nonlinear, multivariable,
and strongly coupled nature, which complicates the independent regulation of flux and electromagnetic torque.

Despite these advantages, PMSM speed and current regulation are significantly affected by external
disturbances, such as variable load torque, as well as by physical phenomena often neglected in analytical
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models such as magnetic circuit saturation, skin effect, or thermal variations in electrical parameters [4], [5].
These modeling inaccuracies, combined with the inherent coupling between the d- and g-axis dynamics,
degrade the performance of conventional control strategies, which often fail to ensure both accuracy and
robustness under varying operating conditions [6], [7]. In this context, robust control techniques have emerged
as a preferred solution to maintain consistent performance across different scenarios [8], [9].

Among these techniques, Hoo control has proven to be a powerful tool for designing controllers that
guarantee stability, precise tracking, and effective disturbance rejection [10], [11]. This method minimizes the
Hoo norm of a weighted transfer function between exogenous inputs (references, disturbances) and controlled
outputs (errors, control effort), allowing performance specifications such as bandwidth, steady-state accuracy,
and robustness to be explicitly embedded in the design phase through carefully chosen weighting functions [10],
[12]. By properly selecting these weighting functions, it is possible to directly incorporate performance objectives,
control effort limitations, and disturbance rejection requirements into the synthesis process [13], [14].

Recent works have explored various applications of Hoo control to PMSM. Ahn et al. [15] combined
Hoo with an adaptive fuzzy sliding mode observer to estimate and compensate for load torque, achieving high
robustness at the cost of increased algorithmic complexity. Djouadi et al. [16] proposed a nonlinear geometric
control approach to directly address system nonlinearities, while Wang et al. [17] combined Hoo with sliding
mode control for simultaneous disturbance rejection and parameter uncertainty compensation in PMSM drives.
Other studies have employed Takagi-Sugeno (T-S) fuzzy models [18], disturbance observers (DOB) [19], or
linear matrix inequality (LMI)-based formulations [20]. However, these methods, although effective, often
require complex online estimations or detailed uncertainty modeling, making them difficult to implement on
embedded platforms [21].

This paper proposes a balanced alternative: a multivariable Hoo controller designed from a diagonal
multiple-input multiple-output (MIMO) model, derived directly from the decoupling principle of field-oriented
control (FOC). Unlike approaches based on linearization around an operating point [22] or explicit modeling
of parametric uncertainties [23], this method leverages the natural structure of the FOC-decoupled system to
ensure robustness and performance without excessive complexity [24]. The controller is synthesized using the
standard Hoo configuration, with weighting functions carefully selected to achieve accurate speed tracking, fine
current regulation, and effective load disturbance rejection [25], [26].

The rest of this paper is organized as follows: Section 2 presents the detailed modeling of the PMSM
under FOC, exploiting d/q decoupling to construct a diagonal MIMO model. Section 3 details the synthesis of
the multivariable Hoo controller, including the choice of weighting functions and the standard interconnection
structure. Simulation results are analyzed in Section 4, followed by a conclusion summarizing the contributions
and potential future work.

2. PMSM DECOUPLED MODEL FOR MULTIVARIABLE CONTROL

The foundation of the proposed control strategy lies in a simplified yet accurate diagonal MIMO
model of the PMSM, derived directly from the principles of FOC. This approach exploits the natural decoupling
between flux and torque dynamics, avoiding the need for linearization or explicit uncertainty modeling. The
resulting model enables robust multivariable Hoo synthesis while preserving the physical structure and
performance advantages of FOC [1], [2].

The electrical and mechanical equations in the (d, q) frame are:

ai Ry. ,Llg . , 1
==+ e, +—y
dt Lg Lqg Lg
dig _ R,
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= Lq——dwrld—gwr+—vq
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where i, and i, denote the stator currents, v, and v, the applied voltages, w,. the rotor angular speed, c, the load
torque, R the stator resistance, L, and L, the d- and g-axis inductances, ¢ the flux produced by the permanent
magnets, J the moment of inertia, f, the viscous friction coefficient, and P the number of pole pairs [3], [4].

In the context of FOC, a common strategy is to set i; = 0 to operate at nominal flux [1], [5]. This
simplifies the electromagnetic torque expression to c, = 1.5P¢i,. Under this condition, the dynamics of
current and speed are treated as decoupled, allowing for independent regulation.

The electrical dynamics of the PMSM are significantly faster than its mechanical dynamics. This
separation of time scales allows for a simplification of the control-oriented model under the assumption that
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the current regulation loop operates with a sufficiently high bandwidth. In this context, the stator currents can
be considered quasi-static variables relative to the slower speed dynamics [3], [11].

Under FOC with i; = 0, the current dynamics along the d- and g-axes become decoupled. The direct-
axis current i, is governed by the voltage through the first-order transfer function:

G (s) =4O - _1 )

T Va(s) | Lgs+Rs

For speed regulation, the dominant path is the cascade from the quadrature-axis voltage v,to the
electromagnetic torque and subsequently to the rotor speed w,.. Combining the electrical dynamics of i,with
the mechanical equation and using the simplified torque expression, the transfer function from v, to w, is
obtained as:

_0:(s) 3P¢
Go(s) = Vg(s)  2Us+f:)(Lqs+Rs) 3)

Based on this decoupling and time-scale separation, the overall system is represented by the following
diagonal MIMO transfer matrix:

1
—_— 0
_ Gid(s) 0 ]_ Lgs+Rg
G(S) - 0 Gw(S) - 0 3Pp (4)
2(Js+f¢)(Lgs+Rs)

With control inputs u = [vd,vq] " and regulated outputs y = [iy4, w,]T. This simplified model captures the

essential dynamics of the PMSM under FOC and serves as the foundation for the multivariable Hoo controller
design [6], [7].

3. SYNTHESIS OF THE MULTIVARIABLE Hoo CONTROLLER

The Hoo control framework provides a rigorous and systematic methodology for controller design,
explicitly balancing performance and robustness against uncertainties and disturbances. Unlike heuristic tuning
approaches, Hoo synthesis formulates the control problem as an optimization task, minimizing the worst-case
gain from exogenous inputs to regulated outputs. This ensures guaranteed stability margins and performance
levels, even in the presence of modeling inaccuracies or parameter variations - a critical requirement for high-
performance PMSM drives.

The multivariable Hoo controller is synthesized using the standard configuration depicted in
Figure 1. This framework allows for the systematic integration of performance, robustness, and control effort
constraints via frequency-dependent weighting functions, as established in robust control theory [8]-[10].

P(s)

K(s)

Figure 1. Standard Hoo configuration for the PMSM control system

The synthesis is based on the standard Hoo configuration, where the plant is augmented with weighting
functions to form an interconnected system. This system includes the generalized plant P(s), the controller
K (s). The generalized plant P(s) is constructed to include the following signals: exogenous inputs w (reference
signals, disturbances, and performance/robustness weighting inputs), controlled outputs z (weighted tracking
errors and control signals), control inputs u (stator voltages v,,v,), and measured outputs y (regulated
variables iy, w,.).

Weighting functions are selected as diagonal matrices to preserve the decoupled structure of the FOC-
based model:

W, (s): ensures high low-frequency gain for precise tracking and zero steady-state error.
W, (s): limits high-frequency control effort to prevent actuator saturation.
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Wr(s): shapes the complementary sensitivity for robustness against unmodeled dynamics.
The multivariable Hoo controller K(s) is designed to minimize the Hoo norm of the closed-loop
transfer function from w to z, ensuring that:

IE.(P, Kl < v ()

where F,(P,K) denotes the linear fractional transformation (LFT) of the interconnection between the
generalized plant P(s) and the controller K(s), and y > 0is a prescribed positive constant.
The Hoo norm is defined as: ||F;(P, K)||, = supo(F;(P(jw), K(jw))), where ¢ denotes the
w

maximum singular value of the frequency response matrix. This norm represents the worst-case gain of the
system from the exogenous inputs w (references, disturbances) to the controlled outputs z (errors, control
effort).

The condition ||F;(P, K)||,, <y ensures that the energy of the output z is bounded by y times the
energy of the input w, i.e., ||z||, = llwll,. This guarantees robust stability and performance, even in the
presence of modeling inaccuracies and external disturbances. The parameter y acts as a disturbance attenuation
level, and minimizing it leads to a controller with enhanced robustness and tracking accuracy.

4.  SIMULATION RESULTS AND PERFORMANCE ANALYSIS

To evaluate the performance of the proposed multivariable Hoo controller, numerical simulations were
conducted using a PMSM model with the parameters listed in Table 1. A single, comprehensive test scenario
is considered to assess the controller’s tracking accuracy, disturbance rejection, and robustness under dynamic
load variations.

Table 1. Parameters of the PMSM model [1]
Parameter Symbol Value

Nominal power P, 20 kw
Nominal speed N, 1500 rpm
Number of pole pairs P 4
Magnetic flux linkage ¢ 0.19 Wb
d-axis inductance Ly 1.475 mH
g-axis inductance L, 1.6 mH
Stator resistance Ry 15 mQ
Rotor inertia J 0.05 kg-m?
Viscous friction coefficient fe 0.0012 N-m-s/rad

The Hoo controller was initially synthesized at order 9. A model order reduction was performed using
Hankel approximation, resulting in a reduced-order controller of order 4, while preserving the dominant
dynamics. All simulation results presented in this section were obtained using the reduced-order controller
(order 4), demonstrating that the reduction does not degrade the closed-loop performance.

To evaluate the stability and robustness of the closed-loop system, Nyquist plots were generated for
the two main control channels: v, — w, and v, — i,. These plots are displayed in Figures 2 and 3.

For the speed control channel (v; - w,), the Nyquist plot shown in Figure 2 shows a smooth
trajectory that does not encircle the critical point (-1, 0). The curve remains at a safe distance from this point
across the entire frequency range, indicating a stable and well-damped response. The shape of the plot suggests
a system with sufficient gain and phase margins, ensuring robustness against parameter variations and external
disturbances. The absence of any loop near the critical region confirms that the controller effectively prevents
instability, even under dynamic load changes.

For the d-axis current channel (vq - iq), the Nyquist plot shown in Figure 3 also confirms stable
operation. The trajectory approaches the origin at high frequencies, demonstrating effective attenuation of high-
frequency noise and measurement disturbances. This behavior is crucial for maintaining precise regulation of
iy around zero, which is essential for nominal flux operation in field-oriented control. The curve’s shape
indicates a fast, overdamped response with no oscillations, validating the controller’s ability to decouple flux
and torque dynamics. The analysis of both plots confirms that the closed-loop system is stable and robust. The
separation of the trajectories from the critical point (-1, 0), combined with their smooth evolution across
frequencies, demonstrates that the Hoo controller provides strong stability margins and insensitivity to
unmodeled dynamics.
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Figure 2. Nyquist plots for v; — w, channel Figure 3. Nyquist plots for v, — i, channel

The simulation scenario consists of a startup phase with a speed reference of 157 rad/s (1500 rpm)
applied from 1 to 6 seconds, followed by a speed reversal to —157 rad/s at 6 seconds, and the application of a
20 N-m load torque at 12 seconds.

The time-domain response of the motor speed, presented in Figure 4, constitutes the most compelling
evidence of the proposed controller’s effectiveness. The system reaches the reference speed of 157 rad/s in a
record time of 0.12 seconds, with absolutely no overshoot. This performance significantly surpasses that
reported for conventional proportional-integral (P1)/FOC controllers, which typically exhibit overshoot
between 8% and 15% [19], and outperforms sliding mode controllers, whose rise time generally ranges from
0.18 to 0.22 seconds [22]. The speed reversal at 6 seconds is executed with remarkable precision, without
oscillation or perceptible delay, demonstrating the controller’s ability to manage rapid transients while
maintaining stability. When the 20 Nm load torque is applied at 12 seconds, the speed drops only transiently
and recovers to its reference value in just 0.05 seconds a recovery time that is significantly shorter than that
reported for PI/FOC controllers (approximately 0.20-0.25 seconds) [19] and slightly better than that of sliding
mode controllers (approximately 0.08-0.12 seconds) [22]. This exceptional disturbance rejection performance,
combined with a rigorously zero steady-state error, confirms that the controller perfectly tracks the reference,
an essential characteristic guaranteed by the choice of weighting functions in the Hoo synthesis.

The behavior of the d-axis current, illustrated in Figure 5, reveals the system’s exceptional regulation
of flux. This current is maintained at zero with a precision of £0.05 A throughout the entire simulation, even
during the most violent transients. This result fully validates the field-oriented decoupling approach combined
with Hoo synthesis. By maintaining i; = 0, the controller ensures constant nominal flux operation, which is
crucial to avoid magnetic saturation, maximize efficiency, and guarantee the motor’s lifespan, in accordance
with established principles in the literature [1], [5].
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Figure 4. Motor speed response Figure 5. D-axis current response
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The g-axis current, whose evolution is plotted in Figure 6, demonstrates the controller’s high
responsiveness and accurate torque control. This current follows reference variations with impressive precision
and speed. It reverses polarity almost instantaneously at 6 seconds to enable speed reversal, then increases
abruptly at 12 seconds to compensate for the load torque, all without any delay or oscillation. This dynamic
performance is comparable to, or even superior to, that observed with sliding mode controllers [22], but without
the chattering phenomenon that often accompanies them and can damage actuators over time.

Figure 7 highlights the robustness of the electromagnetic torque response. The torque reaches its target
value from startup with a brief, controlled initial peak, then changes sign sharply at 6 seconds to reverse the
direction of rotation. At 12 seconds, it adjusts immediately to counteract the load disturbance, with no
saturation or erratic behavior. The linearity and stability of this response testify to the intrinsic robustness of
the multivariable Hoo design, which optimally manages interactions between control channels.

In summary, the simulation results show that the decoupling-based multivariable Hoo controller
provides excellent dynamic performance, accurate current regulation, precise speed tracking, and remarkable
robustness against external disturbances.
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Figure 7. Electromagnetic torque response
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5. CONCLUSION

This study has presented a multivariable Heo control strategy for the PMSM that effectively integrates
the decoupling concept of field-oriented control within a robust multivariable framework. By eliminating the
need for explicit linearization and detailed uncertainty modeling, the proposed approach ensures a systematic
and resilient design while maintaining high control accuracy and ease of implementation.

The findings demonstrate that the reduced-order controller, derived through Hankel approximation,
achieves precise reference tracking, smooth transient behavior, and strong disturbance rejection. Stability is
consistently maintained across varying operating conditions, and the essential dynamic characteristics of the
full-order system are preserved, confirming the controller’s suitability for real-time applications.

Overall, this work contributes to the development of high-performance control strategies for PMSMs
by providing a robust and computationally efficient solution. Future research will focus on real-time
experimental validation and on extending the proposed method to multiphase and fault-tolerant PMSM systems
to further enhance reliability and fault resilience in advanced electromechanical applications.
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