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ABSTRACT

This manuscript introduces a novel chaotic discrete function, formulated through
the composition of the dyadic transformation map (DTM) and the Gauss iterated
map (GIM), and designated as DTGIM. The National Institute of Science and
Technology (NIST) randomness test suite, bifurcation diagrams, and Lyapunov
exponents are used to examine the chaotic characteristics of DTGIM. With ini-
tial condition x0 = 0.12345 and parameters α = −15 and β = 0.3, the func-
tion shows chaotic behavior in the bifurcation diagram and produces a positive
Lyapunov exponent. Strong randomness is further confirmed by NIST tests,
which achieve 100% for 32-bit binary sequences and 63.75% for 8-bit binary
sequences. Additionally, we compare a number other chaotic discrete functions
that also employ the composition method. These findings show that DTGIM is
a viable option for applications involving chaos-based cryptography.
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1. INTRODUCTION
This age can be seen as the age of information exchange. The utilization of information technology

makes the trade of data easier. Information can be formed as text, images, audio, or video, which are commonly
used today. Yet, the dawn of technological information is also followed by security issues. As a precaution
to it, application of cryptography is needed to ensure confidentiality, data integrity, entity authentication, or
originating data authentication [1]-[3].

Cryptography itself is generally acknowledged as the best method of data protection against passive
and active fraud [4]. At least there are two divided camps of cryptography: classical cryptography and modern
cryptography [1]. Classical cryptography focuses on the confidentiality of the algorithm that is being used,
while modern cryptography concentrates on the secrecy of the encryption key [1]. Currently, the demand for
having faster digital data and information encryption methods with uncompromising security is rising [5]. One
of the solutions to answer the problem is a chaos function-based encryption method. This article also wants to
contribute to the development of chaos-function-based.

There are various implementations of the chaos function-based encryption method [6]-[12]. Also,
there are various functions that have chaotic properties, such as circle maps, logistic maps, modified sine (MS)
maps, tent maps, Gauss maps, dyadic transformation maps (DTM), Henon maps, Nahrain maps, sine–iterative
Yu (SIYu), and others [7]-[14]. Also, various methods are used to improve the effectiveness and chaotic behav-
ior of chaotic function such as sequential method [6], modification [8], composition [15], or multi-dimensional

Journal homepage: https://telkomnika.uad.ac.id/index.php/TELKOMNIKA



TELKOMNIKA Telecommun Comput El Control ❒ 229

method [16]. As an illustration (the idea is from [13]), see the Figure 1. Before continuing this article into
our main purpose, as an addition, the implementation of chaos-based function encryption itself can be used in
engineering [17], [18], medical field [19]-[24], IOT [25]-[31], or satellite image encryption [32]-[34].

Figures 1(a) to (c) serve as an illustration on the method’s diversity. Our aim is to define the new
chaos function using composition (see Figure 1(c)). Regarding the research gap for our work, there are several
papers that discuss on creating a new chaos functions using composition method especially for DTM and Gauss
iterated map (GIM). Until today, the work that has done is the composition of MS map and DTM [1], GIM
and dyadic transformation [13]. In this paper, we will explore the composition from DTM and GIM. Also, as
a comparison, we will also find the same route for DTM and GIM. As an addition, we will compare our work
with other work that using composition method.

(a)

(b)

(c)

Figure 1. The method for making a new chaos function, we using Lena.jpeg (512× 512); (a) improving chaos
function through sequential method [15], (b) improving chaos function through multidimensional map [16],

and (c) improving chaos function through composition [13]

2. METHOD
In this section, we will discuss on how we deal with four things in this article: the chaos functions, the

bifurcation diagram, the Lyapunov exponent, and also the National Institute of Science and Technology (NIST)
test.
- The composition of two chaos function

The method that we will use to improve the chaos function is composition of two chaos function [1], [6],
[13]. The first function is the dyadic transformation function or Bernoulli function [35] that can be defined
as:

f(x) = 2xmod 1 (1)

=

{
2x, 0 ≤ x < 0.5

2x− 1, 0.5 ≤ x < 1
(2)

Meanwhile, the Gauss iterated function [2], [13] is defined as:

g(x) = exp(−αx2) + β (3)

where α, β ∈ R. Then, using the composition of two functions method between (2) and (3), the new function
is, as we called it, the dyadic transformation-Bernoulli function, which can be seen (4):

f ◦ g (x) =

{[
2 exp(−αx2) + 2β

]
mod 1 , 0 ≤ x < 5[

2 exp(−αx2) + (2β − 1)
]
mod 1 , 0.5 ≤ x < 1.

(4)
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Now, transforming the function into the discrete map function [3], where f ◦ g (xn) = xn+1, the (4)
can be transformed as (5):

xn+1 =

{[
2 exp(−αx2

n) + 2β
]
mod 1 , 0 ≤ xn < 0.5,[

2 exp(−αx2
n) + (2β − 1)

]
mod 1 , 0.5 ≤ xn < 1,

(5)

for n ∈ Z+. We will call the (5) DTGIM. As a brief note here, the addition mod 1 is to make sure that
0 ≤ xn ≤ 1.
- Bifurcation diagram

The bifurcation diagram is a graphical tool that describes stability and nonlinear behavior from the chaos
function based on the changing of parameters [36]-[38]. Then, the chaotic behavior can be described from
the bifurcation diagram [39]. We use this Algorithm 1 below for finding the bifurcation diagram.

- Lyapunov exponent
The Lyapunov exponent is a value that can trace the chaos from the system [37]. In our article, following [8],
we will find the best Lyapunov exponent for a certain parameter. First, the Lyapunov exponent can be found
by using this calculation:

Lyapunov exponent (LE) = lim
n→∞

1

n

n−1∑
i=0

ln |h′(xi)| (6)

when LE < 0, the system tends to be stable, while LE > 0, it has chaotic behavior [38]. As a brief note,
the function h′(xi) is the derivation from a chaos function h(x). In this paper, the chaos function h(x) is
the function DTGIM on (5), also GIM and DTM. In this article, we will find the best Lyapunov exponent
by using the algorithm from [8]. We use Algorithms 2 and 3 for finding the best Lyapunov. Both of the
algorithms will be used in one picture for the sake of effectiveness.

- NIST test result
We will use the NIST testing suite [40] to examine the randomness of the DTGIM function. The NIST testing
suite consists of 15 statistical tests (with 16 results) for displaying the randomness of a chaos function. We
will use the Python implementation from Steven Ang for our testing [41]. Also, for testing the file, we will
generate 8-bit and 32-bit for testing the binary data (follow the idea from [8], [42]). In addition, we will
observe the calculation of entropy and autocorrelation to strengthen our result [38], [43], [44].

Algorithm 1. Bifurcation diagram

Input : x0, α, and β

Output : Plot of xn values

1. Input initial values and parameter

and number of iterations (i)

2. For n = 1 to i:

3. Calculate xn based on

the chaos function.

4. Plot the value of xn

5. Next n

6. Stop

Algorithm 2. Lyapunov exponent graphic:

Input : x0, α, and β

Output : Plot the value of h(x)

1. Input initial values and parameter

and number of iterations (j)

2. For n = 1 to j:

3. Calculate h(xj) based on

the chaos function

4. Plot the value of h(x)

5. Next j

6. Stop

Algorithm 3. Highest Lyapunov exponent:

Input : x0, α, and β

Output : Highest Lyapunov Exponent

1. Input initial values and parameter

and number of iterations (i), parend

2. While parameter < parend:

2.1. If h′(x) < 10−15,

Lyapunov Exponent = −∞
end if

else

2.1.1. sum = 0

2.1.2. for i = 0 to n− 1

2.1.2.1. sum = sum + h′(x)

2.1.2.2. sum = sum/n

2.2. parameter = parameter +stepsize

3. Find the Highest Lyapunov Exponent

4. Stop
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3. RESULTS AND DISCUSSION
We will start the discussion from the Lyapunov surface plot (heatmap; see Figure 2) from parameter α,

β, and Lyapunov exponent (see (6)) from the chaos map at (5) and also the GIM. Since dyadic transformation
has no parameter, then there is no Lyapunov surface plot from it. From Figure 2(a), regarding DT-GIM, the
value of LE is dominantly positive when α < −10, whenever β ∈ (0, 1]. Then, the great candidate of α and β
can be seen when α < −10. We will choose α = −15 and β = 0.3 as the parameter for DTGIM. Next, Figure
2(b) shows that the value of LE is dominantly positive when α < −10, whenever β ∈ (−1, 1). Then, we will
use α = 7.3 and β = −0.6 for GIM (see also [45]). The picture was created by us using Python. The brighter
the color, the higher the probability that the system will become chaotic.

(a)

(b)

Figure 2. Lyapunov surface from DT-GIM and GIM; (a) Lyapunov surface plot from DT-GIM for β ∈ [0, 1]
and seed x0 = 0.12345 and (b) Lyapunov surface plot from GIM for α ∈ [−15, 15], β ∈ [0, 1] and seed

x0 = 0.12345

3.1. Bifurcation diagram
Now, following our finding from Figure 2, we will find the bifurcation diagram of DTGIM for α =

−15, β = 0.3 and seed x0 = 0.12345 (see [6]) and the results are in Figure 3. From Figure 3, we can see
that the DTGIM is dense when α = −15 (Figure 3(a)) and β = 0.3 (Figure 3(b)). Hence, it shows a great
result for the parameter. For GIM, following the recommendation from Figure 2, we will show the Bifurcation
diagram of GIM for α = 7.3 and β = −0.6 for seed x0 = 0.12345. The result is in Figure 4. From Figure 4,

New chaos function from the composition of DTM and Gauss iterated map for ... (Adrianus Yosia)



232 ❒ ISSN: 1693-6930

we will use parameter α = 10 (Figure 4(a)) and β = −0.6 (Figure 4(b)) because it gives a great result for the
parameter. Since the DTM in our case does not have parameters, then we will not show the result here.

(a)

(b)
Figure 3. Bifurcation diagram for DT-GIM function; (a) the diagram for fixed α = 15 for β ∈ [−1, 1] and

(b) the diagram for fixed β = 0.3 for α ∈ [−20, 20]. The pictures were created by us using Python

(a)

(b)
Figure 4. Bifurcation diagram for GIM; (a) the diagram for fixed β = −0.6 and (b) the diagram for fixed

α = 7.3

3.2. Lyapunov exponent
Once more, following our finding from Figure 2, we will explore the value of the Lyapunov exponent

for α = −15 and β = 0.3 for x0 = 0.12345 using Algorithms 2 and 3 [6], [26]. Then, the plot of the Lyapunov
exponent and the best value of it will be shown by Figure 5. From the calculation that has been shown in
Figure 5, the Lyapunov exponent is positive for α < −1 on the function DTGIM. Also, following Algorithm
3, it shows that α = −15 is the highest (best) parameter for β = 0.3 (Figure 5(a)). From the same picture,
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the best Lyapunov exponent of GIM is achieved for β = −0.6 is when α = 7.3 (Figure 5(b)). Since dyadic
transformation gives a constant in its derivative, the Lyapunov exponent gives the constant result and a positive
one (ln 2) for every seed.

(a)

(b)
Figure 5. The Best Lyapunov exponent; (a) the diagram for DTGIM with fixed β = 0.3 and (b) the diagram

for GIM with fixed β = −0.6

3.3. NIST test result
In this section, we will show the NIST test results for three chaos functions, that is DT, GIM, and

DTGIM. After we show the result. Now, for the binary file (8-bit and 32-bit), we use this step to create the
binary file (see [45]):
- Choose parameter values, in our case α = −15 and β = 0.3.
- Take an initial value for our case x0 = 0.12345 and record all the map’s values for 127000 iterations (for

8-bit) and 33250 (for 32-bit) and remove the first 2000 iterations.
- Transform the value into integers that range from 0 to 255 (for 8-bit) and 0 to 232 − 1 (for 32-bit).
- Transform all of the integers into 8-bit (or 32-bit) binary strings
- Concatenate all the strings to form a 1000000-bit file and input it into the NIST test.
- The test will decide the randomness.

We show the NIST result test for 8-bit and 32-bit binary that can be seen in Table 1 (in Appendix). As
a brief description, Table 1 will show the randomness of the chaos function either for DTGIM, DTM, or GIM
for a certain parameter. We will add the randomness percentage to show the randomness. Also, as an addition,
we will also show the entropy per word and bit to show the utilization of randomness from the data. Also, the
autocorrelation plot is shown to support the description of randomness of our problem. The three additions will
be a support to strengthen the NIST test result.
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3.4. Comparison with other chaos function with composition
Lastly, our interest goes into comparison with other functions that use the composition method. As

for comparison with other data, we can see from the results of other researchers that utilize either GIM or DTM
that composition is a method for creating a new chaos function. From the latest research, at least there are four
other candidates besides our work [1], [6], [13], [45]. Table 2 shows the comparison between our work and
theirs.

Table 2. The comparison between chaos functions that use composition as a method
DTGIM MS-CM [1] GIM-DT [13] GM-CM [45] MS-DT [6]

Lyapunov exponent mean 8.2334 13.7329 8.0308 8.2 3.069

NIST pass percentage
100% (32 bit)

100% 100% 25% (8-bit) 82.4%
62.5% (8 bit)

Number of pixels change rate (NPCR) (%) 99.622 99.5984 99.5514 99.4214 99.6521
Unified average changing intensity (UACI) (%) 33.1144 33.5008 33.7116 27.2815 33.6363

Mean entropy (bits) 7.968 7.9868 7.9458 7.7544 7.9874

3.5. Discussion
Our first finding, the result from Lyapunov Surface (Figure 2), Bifurcation diagram (Figures 3 and 4),

Lyapunov exponent (Figure 5) and NIST result (Table 1) shows a consistent result. In the case of DTGIM, the
parameter α = −15 and β = 0.3 gives the best result for 62.5% randomness (8-bit data) and 100% (32-bit
data). For the 8-bit data, the entropy per word shows that almost all of the possible numbers from 1-255 has
been explored by DTGIM, yet the result is 62.5% at best. Regarding the test itself, the NIST test proceeded
smoothly. This fact is shown by the autocorrelation picture from the 8-bit and 32-bit. We also try different
seeds (not shown here), and for 32-bit data, DTGIM still gives 100% randomness, and the same for 8-bit. The
entropy per bit and per word shows that there is so much room to explore since DTGIM has a high randomness.
Therefore, DTGIM shows a strong candidate for a chaos function.

Next, Table 1 shows the comparison between DTGIM and two other functions prior to composition.
For GIM and DTM, the result also shows that both of the functions still lack randomness, comparing them with
DTGIM. Of course, the problem with GIM is that the parameter that we have chosen still does not utilize the
full potential of GIM. Yet, at least for our research, we conclude that DTGIM is far superior with our parameter.
We also try different seeds, and it still gives the same result (not shown here). For DTM, the result is the same
for both 8-bit and 32-bit, since the nature of the function is “only shifting” the number. Hence, the results show
a very weak randomness from our research. The result, in line with the observation regarding chaotic function,
has a low entropy [46]. Therefore, comparing DTGIM, GIM, and DTM, our research shows that the new chaos
function surpasses its functions prior to composition.

From Table 2, we conclude that in general, the image encription from the four functions gives a great
result since the Lyapunov exponent mean is positive. It means that all four functions show a highly chaotic
behavior. Also, high rating of NPCR and UACI shows that all of the function is a great chaos functions. In
terms of rating, our research is second after the composition of MS-map and circle map. Therefore, we can say
that DTGIM is one of the good chaos function candidates.

4. CONCLUSION
We have explored the possibility of a new chaos function that we construct from the composition

of dyadic transformation and GIM. From the result, we show that DTGIM has a chaotic behavior from the
Lyapunov exponent, bifurcation diagram, and also NIST test result for α = −15 and β = 0.3. We also compare
DTGIM with GIM and DTM. The result is satisfying and shows that DTGIM is superior to its predecessor prior
to composition. Therefore, as the purpose of this article, we conclude that DTGIM is one of the good chaos
functions. For the future trajectories of this research, improving the randomness for the NIST test on 8-bit
binary data by using another technique for generating random numbers is a viable one. Also, for the DTGIM
itself, room for improvement can still be made since the entropy report shows that we only cover at least 40%
random numbers at 32-bit data. Similar to this issue, GIM has great randomness also. We suggest that one can
use negative α. One can also move to apply the chaos function to encrypting and decrypting the image for the
next project. Lastly, another route can be taken for comparing the result with other methods of chaotic function
and analyzing the difference.
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APPENDIX

Table 1. The comparison between the NIST result for 8-bit and 32-bit binary data for the function DT-GIM.
The seed that has been used for the test is x0 = 0.12345

Test name
DTGIM (8-bit, α =
−15, β = 0.3)

DTGIM (32-bit, α =
−15, β = 0.3)

GIM (8-bit, α = 7.3,
β = −0.6)

GIM (32-bit, α =
7.3, β = −0.6)

p-value (conclusion) p-value (conclusion) p-value (conclusion) p-value (conclusion)

The frequency (monobit) test
1.77 × 10−14 (non-
random)

0.990 (random)
83 × 10−5 (non-
random)

0 (non-random)

Frequency test within a block 0.9775 (random) 0.942 (random) 1 (random) 0 (non-random)
The runs test 0 (non-random) 0.2661 (random) 0 (non-random) 0 (non-random)
Test for the longest-run-of-
ones in a block

0.16157 (random) 0.730 (random)
4.4 × 10−220 (non-
random)

7.5 × 10−95 (non-
random)

The binary matrix rank test 0.29361 (random) 0.111 (random) 0 (non-random) 0 (non-random)
The discrete fourier transform
(spectral) test

0.0444 (random) 0.039 (random) 0 (non random) 0 (non-random)

The non-overlapping template
matching test

0.54874 (random) 0.614 (random) 0 (non-random)
1.884×10−214 (non-
random)

The overlapping template
matching test

0.12514 (random) 0.131 (random) 0 (non-random)
6.94 × 10−168 (non-
random)

Maurer’s “universal statisti-
cal” test

0.37994 (random) 0.102 (random) 0 (non-random) 0 (non-random)

The linear complexity test 0.64399 (random) 0.651 (random) 0 (non-random) 0 (non-random)
The serial test 0 (non-random) 0.250 (random) 0 (non-random) 0 (non-random)

0 (non-random) 0.660 (random) 0 (non-random) 0 (non-random)
The approximate entropy test 0 (non-random) 0.033 (random) 0 (non-random) 0 (non-random)
The cumulative sums
(cusums) test (forward)

3.15403 × 10−14

(non-random)
0.498 (random) 0 (non-random) 0 (non-random)

The cumulative sums
(cusums) test (backward)

1.781 × 10−14 (non-
random)

0.508 (random) 0.0165 (non-random) 0 (non-random)

The random excursions test 0.54972∗ (random) 0.452∗ (random)
1.4 × 10−6∗ (non-
random)

0.982∗ (random)

The random excursions vari-
ant test

0.6250∗ (random) 0.496∗ (random) 0.903∗ (random) 0.0601∗ (random)

Randomness percentage 10

16
×100% = 62.5%

16

16
× 100% = 100%

2

16
×100% = 12.5%

2

16
×100% = 12.5%

Entropy per word 7.977 (out of 8) 14.931 (out of 32) 0.0816 (out of 8) 13.114 (out of 32)
Entropy per bit 0.997064 0.4666 0.0102 0.409

Autocorrelation

∗ Accumulation of several
values
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Table 1. The comparison between the NIST result for 8-bit and 32-bit binary data for the function DT-GIM.
The seed that has been used for the test is x0 = 0.12345 (continued)

Test name
DTM (8-bit) DTM (32-bit)

p-value (conclusion) p-value (conclusion)

The frequency (monobit) test 0 (non-random) 0 (non-random)

Frequency test within a block 0 (non-random) 0 (non-random)

The runs test 0 (non-random) 0 (non-random)

Test for the longest-run-of-ones in a block 4.4× 10−220 (non-random) 4.4× 10−220 (non-random)

The binary matrix rank test 0 (non-random) 0 (non-random)

The discrete fourier transform (spectral) test 0 (non-random) 0 (non-random)

The non-overlapping template matching test 0 (non-random) 0 (non-random)

The overlapping template matching test 0 (non-random) 0 (non-random)

Maurer’s “universal statistical” test 0 (non-random) 0 (non-random)

The linear complexity test 0 (non-random) 0 (non-random)

The serial test
0 (non-random) 0 (non-random)

0 (non-random) 0 (non-random)

The approximate entropy test 0 (non-random) 0 (non-random)

The cumulative sums (cusums) test (forward) 0 (non-random) 0 (non-random)

The cumulative sums (cusums) test (backward) 0 (non-random) 0 (non-random)

The random excursions test 2.9× 10−12∗ (non-random) 2.9× 10−12∗ (non-random)

The random excursions variant test 1∗ (random) 1∗ (random)

Randomness percentage
1

16
× 100% = 6.25%

1

16
× 100% = 6.25%

Entropy per word 0 (out of 8) 0 (out of 32)

Entropy per bit 0 0

Autocorrelation
∗ Accumulation of several values
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