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This paper presents the anchovy-inspired filter algorithm (AFA), a novel
bio-inspired metaheuristic optimization method motivated by the filter-
feeding behavior of anchovies. Unlike conventional swarm intelligence
algorithms, AFA employs a filtering mechanism in which each agent
generates multiple candidate solutions within a local sampling radius and
selects the best, mimicking how anchovies filter microscopic prey from
seawater. To evaluate its performance, AFA was benchmarked against
particle swarm optimization (PSO) and genetic algorithm (GA) using six
standard test functions: Sphere, Rosenbrock, Schwefel 1.2, Rastrigin,
Griewank, and Ackley in 30-dimensional search spaces. Simulation results
demonstrate that AFA consistently outperforms PSO and GA across
unimodal and multimodal functions. For unimodal problems such as Sphere,
Rosenbrock, and Schwefel 1.2, AFA achieved significantly lower best and
mean fitness values, reflecting strong exploitation capability. For
multimodal functions including Rastrigin, Griewank, and Ackley, AFA
effectively avoided local minima, maintained robustness, and achieved
stable convergence with lower variance. Convergence analysis further
indicates that AFA steadily approaches near-global optima without
premature stagnation. Overall, the results highlight the effectiveness of the
filter-based exploitation mechanism in balancing exploration and
exploitation. Future research will focus on adaptive filtering strategies,
hybrid integration with other metaheuristics, and applications to real-world
optimization problems.
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1. INTRODUCTION

Metaheuristic optimization algorithms have gained increasing attention due to their ability to
effectively handle complex, nonlinear, and multimodal optimization problems that are often intractable using
conventional mathematical programming methods. Inspired by natural and biological processes, well-
established approaches such as particle swarm optimization (PSO) [1], genetic algorithm (GA) [2], and ant
colony optimization (ACO) [3] have been successfully employed in diverse domains including machine
learning, engineering design, and scheduling tasks. Despite their success, these algorithms still face
challenges in maintaining the balance between exploration and exploitation. Excessive exploration tends to
delay convergence, whereas overly strong exploitation often results in premature convergence toward local
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optima [4]. This fundamental trade-off has motivated the search for novel bio-inspired paradigms that can
provide alternative mechanisms for navigating the solution space more effectively.

Recent advances highlight the role of fish-inspired and filtering-based heuristics in addressing this
issue. For instance, jellyfish search optimizer (JSO) [5] and simplified fish school search (SFSS) [6] employ
unique movement operators to sustain population diversity and prevent stagnation. Similarly, filtering-based
feature selection methods selectively retain the most informative candidates to reduce search complexity [7],
[8]. Moreover, new fish-inspired designs such as the cuckoo catfish optimizer (CCO) [9] reflect the growing
interest in marine-based behaviors for metaheuristic development. Metaheuristics continue to evolve with
newer paradigms that address scalability, robustness, and convergence properties [10]. Recent advances
highlight the adaptability of swarm-based methods across optimization domains, with novel variants
designed to enhance convergence speed and maintain diversity [11].

In marine ecosystems, small pelagic fish such as anchovies and sardines feed by schooling in large
groups while filtering plankton from surrounding water as demonstrated in Figure. 1. Unlike predators that
chase individual prey, filter feeders continuously sample multiple particles and selectively retain only the
beneficial fraction. Motivated by this unique strategy, we propose a new algorithm called the anchovy-
inspired filter algorithm (AFA), which introduces filtering as a novel exploitation mechanism to improve
convergence performance while preserving sufficient exploration.

Figure 1. A school of anchovies swims collectively

2. LITERATURE REVIEW

Swarm intelligence (SI) algorithms form an important class of metaheuristics inspired by collective
behaviors observed in nature. Among them, PSO, GA, artificial fish swarm algorithm (AFSA), and fish
school search (FSS) have received significant attention due to their ability to deal with high-dimensional and
nonlinear problems. This section briefly reviews these approaches, emphasizing their underlying
mechanisms, strengths, and limitations, while identifying the research gap that motivates the development of
the AFA.

2.1. Particle swarm optimization

Introduced by Kennedy and Eberhart [1], PSO models the social dynamics of bird flocking and fish
schooling. Each particle represents a solution that adjusts its trajectory based on its personal best and the
global best. The algorithm is computationally efficient and easy to implement, but it is prone to premature
convergence in multimodal search spaces [12].

2.2. Genetic algorithm

GA, proposed by Holland [2], applies principles of natural selection, crossover, and mutation to
evolve a population of candidate solutions. It is versatile and has been applied in numerous optimization
contexts. However, GA often demands careful parameter tuning and can become computationally expensive,
particularly for large-scale problems [13].

2.3. Artificial fish swarm algorithm

The AFSA, originally proposed by Gao and Wen [14], imitates fish behaviors such as preying,
swarming, and following, which enhances exploration in the solution space. Nevertheless, AFSA may suffer
from slow convergence and the risk of stagnation if the balance between exploration and exploitation is not
effectively managed [15], [16].
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2.4. Fish school search

FSS, proposed by Filho et al. [17], draws from the collective behavior of fish schools. By
incorporating feeding and coordinated swimming, FSS introduces mechanisms for balancing exploration and
exploitation. Despite its potential, FSS can be highly sensitive to parameter selection and may underperform
in complex multimodal landscapes [18], [19].

2.5. Research gap: filter-feeding mechanism

Although AFSA and FSS are both inspired by fish, they primarily model movement and foraging
strategies rather than selective feeding. In contrast, anchovies and sardines employ a filter-feeding process,
whereby each fish continuously samples plankton and selectively retains high value particles while
discarding the rest [20], [21]. This mechanism represents an efficient natural filtering process that maximizes
energy gain while minimizing cost. To the best of our knowledge, no existing metaheuristic explicitly
incorporates filter feeding as an optimization operator. Fish-inspired algorithms such as AFSA and FSS
capture aspects of group dynamics, but they lack the selective filtering mechanism. This gap highlights the
potential of a new paradigm where filtering acts as a novel exploitation strategy such sampling widely
(exploration) but only retaining promising candidates (exploitation). The proposed AFA addresses this gap,
extending swarm intelligence with a biologically grounded filtering principle.

2.6. Anchovy-inspired filter algorithm

Motivated by the natural feeding behavior of anchovies, we propose an improved bio-inspired
optimization method. Anchovies feed by filtering plankton suspended in the water. A school of anchovies
swims collectively while each fish continuously filters water, retaining only edible particles and discarding
the rest. This efficient filtering mechanism ensures survival while balancing focused exploitation (capturing
plankton) and diverse exploration (school movement to new feeding grounds).
In optimization, this biological process is modeled:
a. Candidate generation (filtering intake): each anchovy samples multiple candidate solutions around its

position, analogous to filtering water for plankton.

b. Filtering operator (selective feeding): only the best candidate is retained, mimicking the retention of
nutritious plankton.

¢. Schooling movement (collective exploration): anchovies adjust their positions collectively towards the
global best, ensuring population-level search.

d. Dynamic filtering size: the filter step shrinks over time, promoting exploration in early stages and
exploitation in later stages.

e. Elitism and local refinement: the best solutions are preserved each iteration, while the global best
undergoes Gaussian-based local search for further refinement.

2.6.1. Initialization (school formation)
Each anchovy represents a solution vector. The initial school is randomly distributed in the search space:

x°~U (lb,ub),i=1.2,..,N (1)

where N is the school size (population), and [lb, ub] defines the ocean boundaries (search space). This
corresponds to a school of anchovies initially scattered across the sea.

2.6.2. Fitness evaluation (plankton quality)
The nutritional value of plankton is represented by the fitness function:

f(x;) = objective function ( x;) (2
where better fitness values correspond to more nutritious plankton captured by an anchovy.

2.6.3. Dynamic filter size (mouth aperture)
Anchovies regulate their mouth aperture dynamically. At the start, the filter is wide (exploration),
but gradually narrows (exploitation) over time:

t

0(t) = Omax — T (6max — Omin ) 3)

where t is the iteration index and T is the maximum number of iterations.
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2.6.4. Candidate generation (plankton intake)
Each anchovy generates M candidate solutions within its filter radius as demonstrated in Figure 2.

Candidate Generation
(Filtering Plankton)

x,‘;’] =xO+6(t)-rij
rij > UC-11)

Position Update
(Schooling & Random Drift)

L(t+ .
).‘," 1) _ J,‘,ln\l

+a(gbest(t)+ pr
a=U-L1) b
« controls exploitation

Elitism
(Preserving Strongest Anchovies)
) ={xe X (t)uX(+1)|fx)
flx) <fx

Figure 2. Anchovies filtering plankton as an analogy to candidate generation and selective filtering in AFA

xi‘f?nd =x; )+ 6(t).1,1; ~U(=11) 4)

The best candidate solution (the most nutritious plankton particle) is selected.
xPet(t) = argmin ; f( x5 (1)) (5)

2.6.5. Position update (schooling and random drift)
Anchovies synchronize with the global best while maintaining random drift.

xi(t+1) =xPs () + a. (gbest(t) - xibe“(t)) + B.r_i (6)

where gbest(t) is the best anchovy in the school, ri~U(—1,1), @ controls exploitation, and £ controls
exploration.

2.6.6. Elitism (preserving strongest anchovies)

Elitism is applied to preserve the strongest anchovies representing high-quality solutions. This
strategy ensures that the best solutions are not lost during the iterative update process. Consequently, elitism
improves convergence consistency and overall optimization performance. To retain high-quality solutions,
elitism is applied:

Xeite C+ D) ={x eX@OUXE+ DI f(x) < fii} ()
2.6.7. Local search on global best (anchovy mutation)

Anchovies refine their feeding by adjusting their filter mesh. The global best undergoes Gaussian
mutation:

gbest'(t) = gbest (t)+ € (t) .N(0,1) (8)

with a decaying perturbation factor:

€ () = €y (1 —%) )
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Finally, the global best is updated by selecting the solution with the lowest fitness value among the previous
global best and the mutated candidate:

gbest(t + 1) = argmin{f(gbest(t)), f(gbest'(t))} (10)

3. ALGORITHM TESTING AND EVALUATION

Six benchmark functions were employed for the simulations, as defined in [21]-[26]. Table 1
provides the corresponding search domain, initialization range, and global optimum meanwhile Table 2
showed parameter setting for AFA, PSO and GA. All functions were tested in a 30-dimensional space under
minimization. Among them, Sphere, Rosenbrock and Schwefel 1.2 are unimodal, whereas Rastrigin,
Griewank, and Ackley are multimodal with numerous local minima.

FSphere (x) = ?:1 xi2 (11)
FRosenbrock (X) = Z?z_ll[loo(le - xz) + (xi - 1)2 (12)
Fschwerer 1.2 (x) = X (23:1 Xj )? (13)
FRastrigin (X) =10n + Zlnzl[xiz —10cos (anl-)] (14)
1 i
FGTiewank (X) =1+ 2000 11'1:1 xi2 - ?=1COS (%) (15)
1
Fackiey 09 = ~20exp (~02 [ T1L, 7 (16)

exp (% Y, cos2mx)+20+ e

Table 1. Functions used: search space, initialization range, and optima

Function Parameters .
Search space Initialization Optima
Sphere -100< xi <100 [-50,50] 0.0°
Rosenbrock -30<xi<30 [15,30] 1.0°
Schwefel 1.2 -100< xi <100 [50,100] 0.0°
Rastrigin 5.12<xi<5.12 [-2.56,2.56] 0.0?
Griewank -600< xi <600 [-300,600] 0.0?
Ackley -32<xi <32 [-16,32] 0.0°

Table 2. Parameter setting for AFA, PSO and GA

Algorithms  Population size (N) Parameter

AFA 50 (M) Candidates 15
a (alpha) 0.6
B (beta) 0.3
5_max 0.5
&_min 0.01
Elite number 5

PSO 50 Inertia weight (w) 0.7
Cognitive factor (c1) 1.5
Social factor (c2) 15

GA 50 Crossover rate 0.8
Mutation rate 0.1

4.  SIMULATION RESULTS

The performance of the proposed AFA was compared against PSO and GA using six well-known
benchmark functions: Sphere, Rosenbrock, Schwefel 1.2, Rastrigin, Griewank, and Ackley. The comparison
was made based on best fitness mean, standard deviation, minimum, and maximum fitness values. For the
Sphere function, AFA demonstrated superior convergence capability with the lowest mean fitness and
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standard deviation compared to PSO and GA (Table 3). The convergence behavior is further illustrated in
Figure 3, where AFA rapidly reached near-optimal values while PSO and GA lagged significantly.

In the Rosenbrock function, which is a unimodal problem with a narrow valley, AFA again
outperformed the other algorithms, yielding substantially lower best and mean fitness values (Table 4). The
convergence plot in Figure 4 confirms AFA’s ability to effectively navigate the challenging optimization

landscape.

Table 3. Simulation results for sphere function

Algorithm  Best fitness mean  Standard deviation (std)  Minimum fitness Maximum fitness
AFA 1.2340e-04 2.4167e-05 7.5755e-05 1.6364e-04
PSO 7.0828e-01 1.3879e+00 5.5781e-02 7.5132e+00
GA 9.8794e+04 1.1676e+04 7.9693e+04 1.2742e+05

Average Convergence on Sphere Function (30D, 30 runs)
105 -
10°
0
8
o 10! -
°
£ 107!
— AFA
10° PSO
— GA
0 25 50 75 100 125 150 175 200

Iterations

Figure 3. Convergence curve comparison for Sphere function

Table 4. Simulation results for Rosenbrock function

Algorithm

Best fitness mean  Standard deviation (std)  Minimum fitness Maximum fitness

AFA
PSO
GA

6.1512e+01 5.1125e+01 1.7130e-01 1.5687e+02
2.2489e+04 3.0820e+04 1.8793e+01 1.1116e+05
3.4710e+06 1.0934e+06 1.7858e+06 5.5084e+06

Fitness (log scale)

Average Convergence on Rosenbrock Function (30D, 30 runs)

10° 4

105 4

10% 4

10° 4

— AFA
102 4 PSO
— GA

75 100 125 150 175 200
Iterations

[=]
N
%]
w
=]

Figure 4. Convergence curve comparison for Rosenbrock function

TELKOMNIKA Telecommun Comput El Control, Vol. 24, No. 1, February 2026: 271-281



TELKOMNIKA Telecommun Comput EI Control a 277

For the Schwefel 1.2 function, AFA achieved a more stable performance with much smaller mean
and variance than PSO and GA (Table 5). As shown in Figure 5, AFA consistently converged to lower fitness
values, while PSO and GA fluctuated widely across iterations. The Rastrigin function, known for its
multimodal landscape, further highlighted AFA’s robustness. AFA attained the lowest mean fitness among
all algorithms (Table 6). Figure 6 shows that AFA avoided local minima more effectively than PSO and GA,
demonstrating strong exploration-exploitation balance.

Table 5. Simulation results for Schwefel 1.2 function
Algorithm  Best fitness mean  Standard deviation (std)  Minimum fitness Maximum fitness

AFA 78.578 29.800 20.389 151.59
PSO 11155 4976.2 1.648.7 25819
GA 853620 8.22080 1.25450 3614400

Average Convergence on Schwefel 1.2 Function (30D, 30 runs)
1004

AFA
PSO
— GA

105 4

Fitness (log scale)}
=
=)
=
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[=)
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75 100 125 150 175 200
Iterations
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w
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Figure 5. Convergence curve comparison for Schwefel 1.2 function

Table 6. Simulation results for Rastrigin function
Algorithm  Best fitness mean  Standard deviation (std)  Minimum fitness Maximum fitness

AFA 1.7965e+01 4.7167¢+00 8.2019e+00 2.7114e+01
PSO 1.0208e+02 3.2535e+01 4.8681e+01 1.8028e+02
GA 5.0714e+02 5.8857e+01 3.6608e+02 6.6018e+02

Average Convergence on Rastrigin Function (30D, 30 runs)

Fitness (log scale)
=
o
=

— AFA
PSO
— GA
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v
v
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75 100 125 150 175 200
Iterations

Figure 6. Convergence curve comparison for Rastrigin function

In the Griewank function, AFA once again obtained significantly lower mean and variance
compared to PSO and GA (Table 7). The convergence curves in Figure 7 reinforce AFA’s superior stability
and accuracy in achieving near-global optima.
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Finally, for the Ackley function, both AFA and PSO recorded competitive results, while GA
produced substantially poorer outcomes (Table 8). As illustrated in Figure 8, AFA maintained consistent
convergence with relatively low variance across runs. Overall, the simulation results across all six benchmark
functions clearly indicate that AFA consistently outperforms PSO and GA in terms of convergence speed,
accuracy, and stability.

Table 7. Simulation results for Griewank function
Algorithm  Best fitness mean  Standard deviation (std)  Minimum fitness Maximum fitness

AFA 0.10265 0.076206 0.00078990 0.30514
PSO 3.3499 16.129 0.042825 90.191
GA 867.88 119.20 634.79 1071.3

Average Convergence on Griewank Function (30D, 30 runs)

10°
102 4
)
3
]
8 104
n
v
a
5
i
109 4
— AFA
PSO
10-14 — GA
0 25 50 75 100 125 150 175 200

Iterations

Figure 7. Convergence curve comparison for Griewank function

Table 8. Simulation results for Ackley function
Algorithm  Best fitness mean  Standard deviation (std) Minimum fitness Maximum fitness

AFA 2.8883 1.0182 0.00.67092 5.3508
PSO 2.1637 1.0197 0.63893 5.2479
GA 2.1.036 0.24934 20.521 21.546

Average Convergence on Ackley Function (30D, 30 runs)

10!

Fitness (log scale)

T T T

75 100 125 150 175 200
Iterations

o
N
w
w
o

Figure 8. Convergence curve comparison for Ackley function
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5. DISCUSSION

The comparative analysis of AFA, PSO, and GA across six benchmark functions highlights the
distinct advantages of the proposed AFA approach. For unimodal functions such as Sphere, Rosenbrock, and
Schwefel 1.2, AFA consistently achieved lower best and mean fitness values with smaller standard
deviations. This indicates that AFA is highly effective in refining solutions towards the global optimum and
demonstrates strong exploitation capability. In contrast, PSO exhibited slower convergence and larger
variance, while GA struggled significantly in these problems due to premature convergence and weaker local
search ability. For multimodal functions such as Rastrigin, Griewank, and Ackley, AFA again showed
superior robustness. The ability of AFA to balance exploration and exploitation allowed it to escape local
minima and converge closer to the global optimum. The convergence curves (Figures 6 to 8) confirm that
AFA maintained stable progress across iterations, whereas PSO and GA often became trapped in suboptimal
regions or displayed high fluctuations. Notably, in the Ackley function, PSO produced results relatively close
to AFA, but GA remained significantly inferior in performance.

These findings demonstrate that the unique filter-based mechanism in AFA provides both diversity
preservation and directional guidance, which improves global search capacity. The adaptive movement of
candidate solutions in AFA prevents stagnation, ensuring a higher probability of reaching the global optimum
compared to conventional PSO and GA.

6. CONCLUSION

The simulation results on six benchmark functions demonstrate that the proposed AFA significantly
outperforms conventional PSO and GA in terms of convergence speed, accuracy, and stability. AFA
consistently produced lower best and mean fitness values with reduced variance across unimodal and
multimodal functions.

In unimodal problems, AFA exhibited strong exploitation ability by rapidly converging to the global
optimum. For multimodal problems, AFA maintained robustness by effectively avoiding local minima and
achieving better global search performance. Overall, these results confirm that AFA provides a competitive
and reliable optimization tool, capable of addressing complex optimization landscapes more efficiently than
traditional metaheuristic algorithms. Future work will focus on extending the application of AFA to real-
world optimization problems and exploring hybrid variants that may further enhance its performance.
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