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Abstract 
In this paper, an inventory model for deteriorating items under two levels of trade credit will be 

established. The trade credit policy depends on the retailer’s order quantity. When the retailer’s order 
quantity is greater than or equal to a predetermined quantity, both of the supplier and the retailer are taking 
trade credit policy; otherwise, the delay in payments is not permitted. Since the same cash amount has 
different values at different points of time, the discount cash-flow (DCF) is used to analysis the inventory 
model. The purpose of this paper is to find an optimal ordering policy to minimizing the present value of all 
future cash-flows cost by using DCF approach. The method to determine the optimal ordering policy 
efficiently is presented. Some numerical examples are provided to demonstrate the model and sensitivity 
of some important parameters are illustrated the optimal solutions. 
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1. Introduction 

In the traditional economic order quantity models assumed the purchaser must pay for 
the items as soon as the items received. However, in real markets, to stimulate retailer’s 
ordering qualities the supplier allows a certain fixed permissible delay in payment to settle the 
amount. Similarly, a retailer may offer his/her customers a permissible delay period to settle the 
outstanding balance when he/she received a trade credit by the supplier, which is a two-level 
trade credit. Huang [1] was the first to explore an EOQ model under the two-level trade credit. 
Kreng and Tan [2] and Ouyang et al [3] proposed to determine the optimal replenishment 
decisions if the purchasers order quantity is greater than or equal to a predetermined quantity. 
Teng et al [4] extended the constant demand to a linear non-decreasing demand function of 
time and incorporate supplier offers a permissible delay linked to order quantity under two levels 
of trade credit. Teng et al [5] established an EOQ with trade credit financing for a linear non-
decreasing demand function of time. Paulus [6] shed light on how search strategy can be used 
to gain the maximum benefit of information search activities. Feng et al [7] investigated the 
retailer’s optimal cycle time and optimal payment time under the supplier’s cash discount and 
trade credit policy within the EPQ framework. Wang et al [8] established an economic order 
quantity model for deteriorating items with maximum lifetime and credit period increasing 
demand and default risk. Liao [9] developed an inventory model by considering two levels of 
trade credit, limited storage capacity. Wu et al [10] discussed an economic order quantity model 
under two levels trade credit, and assumed deteriorating items have their expiration dates. Enda 
et al [11] presented a generic solution to the sensitive issue of PCI Compliance. Teng et al [12] 
proposed an EPQ model from the seller's prospective to determine his/her optimal trade credit 
period, and in his paper production cost declined and obeyed a learning curve phenomenon.  

However, the above inventory models did not consider the effects of the time value of 
money. In fact, as the value of money changes with time, it is necessary to take the effect of the 
time value of money on the inventory policy into consideration. Chang et al [13] investigated the 
DCF approach to establish an inventory model for deteriorating items with trade credit based on 
the order quantity. Chung and Liao [14] adopted the DCF approach to discuss the effect of trade 
credit depending on the ordering quantity. Liao and Huang [15] extended the inventory model to 
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consider the factors of two levels of trade credit, deterioration and time discounting.  
In this paper, we develop an inventory system for deteriorating items. Firstly, the items 

start deteriorating from the moment they are put into inventory. Secondly, if the retailer’s order 
quantity is greater than or equal to a predetermined quantity, both of the supplier and the retailer 
are taking trade credit policy; otherwise, the delay in payments is not permitted. Thirdly, the 
present value of all future cash-flows cost instead of the average cost. The theorems are 
developed to efficiently determine the optimal cycle time and the present value of the total cost 
for the retailer. Finally, numerical examples and sensitive analysis of major parameters are 
given to illustrate the theoretical result obtain some managerial insight. 
 
 
2. Notations and Assumption 

 
2.1. Notations  

The following notations are used throughout this paper.  
A  the ordering cost one order;  c unit purchasing cost per item;  
p  unit selling price per item p c ;  h  holding cost per unit time excluding 

interest charges;  
D  demand rate per year;  r  the continuous rate of discount;  
W  quantity at which the delay in 

payments is permitted; 
dT  the time interval thatW units are depleted 

to zero; 
T  the cycle time; Q the retailer’ order quantity per cycle;  

( )I t

 
the inventory level at the time of t ; ( )PV T

 

the present value of all future cash-flow 
cost. 

 
2.2. Assumptions 

The assumptions in this paper are as follows:  
(1) Time horizon is infinite, and the lead time is negligible; replenishment are instantaneous, 

and shortage is not allowed;  
(2) A constant  ( 0 1  ) fraction of the on-hand inventory deteriorates per unit of time and 

there is no repair or replacement of the deteriorated inventory;  
(3) If Q W , both the fixed trade credit period M offered by the supplier and the trade credit N

offered by the retailer are permitted. Otherwise, the delay in payments is not permitted. The 
retailer can accumulate revenue and earn interest after his/her customer pays for the 
amount of purchasing cost until the end of the trade credit period offered by the supplier. 
That is to say, the retailer can accumulate revenue and earn interest during the period N  to 
M  with rate eI  under the condition of trade credit; When T M , the account is settled at 

T M  and the retailer would pay for the interest charges on items in stock with rate pI
 
over 

the interval  ,M T ; whenT M , the account is also settled at T M  and the retailer does 

not need to pay any interest charge of items in stock during the whole cycle; The fixed credit 
period offered by the supplier to the retailer is no less to his/her customers, i.e. 0 N M  .  

 
 
3. Mathematical Model 

Based on above assumptions, depletion due to demand and deterioration will occur 
simultaneously. The inventory level of the system can be described by the following differential 
equation ' ( ) ( )I t I t D   , 0 t T  , ( ) 0I T  .  

The solution to the above equation is     1T tI t D e     , 0 t T  .  

So the retailer’s order size per cycle is  (0) 1TQ I D e    , 0 t T  .  

If Q W , we get dT : 
1

ln 1d

W
T

D




   
 

. 

The present value of all future cash-flow cost  PV T consists of the following elements:  

(1) The present value of order cost:  1 rT
OV A e  ;  
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(2) The present value of holding cost excluding interest charges:  

 
1

1

T rT rT

H rT

hD e e e
V

r re





 



  
    

 

(3) The present value of purchasing cost:  

when Q W ( dT T ), 
 
 

1

1

T

C rT

cD e
V

e



 





;  

when Q W ( dT T ),    1
1

rM
T

C rT

cDe
V e

e







 


;  

(4) The present values of interest charged and earned are addressed as follows:  
when 0 dT T   Q W , there is no interest earned, that is 0IEV  . The present value of 

interest charged is  

 
1

1

T rT rT
p

IP rT

cI D e e e
V

r re





 



  
    

 

when 0 T N  and dT T  W Q , there is no interest charged, that is 0IPV  . The present 

value of interest earned is   

   
1

rN rMe
IE rT

pI DT
V e e

r e
 


 


. 

when N T M  and dT T  W Q , there is no interest charged, that is 0IPV  , and the 

present value of interest earned is  

   
2

1
1

rN rM rTe
IE rT

pI D
V rN e rTe e

r e
  


     

. 

when M T  and dT T  W Q , the present value of interest charged is given by  

 
 

;
1

T r M rT rT rM
p

IP rT

cI D e e e e
V

r re

 



    



  
  

   
 

The present value of interest earned is  

     
2

1 1
1

rN rMe
IE rT

pI D
V rN e rM e

r e
 


     

. 

Therefore, the present value of all future cash-flow cost, ( )PV T , can be expressed as 

  O H C IP IEPV T V V V V V      .  

Consequently, based on the values of dT , N , M ,three possible cases: (1) 0 dT N  , (2) 

dN T M  , and (3) dM T  will be occur. 

Case 1 0 dT N   

 

 
 
 
 

1

2

3

4

, 0 ,

, ,

, ,

, ,

d

d

PV T T T

PV T T T N
PV T

PV T N T M

PV T M T



  
     
 

 

where   

     
1

1
1 1 ;

1

T rT
pT

rT

h cI DcD re e
PV T A e

e r r


 

  





              
 

     2

1
1 1 ;

1

T rT
rM T rN rM

erT

D hD re e D
PV T A ce e pI T e e

e r r r


 

  


  



               
 

     3 2

1
1 1 1 ;

1

T rT
rM T rN rM rT

erT

c hD re e D
PV T A De e pI rN e rTe e

e r r r


 

  


   



                    
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   
 

   

4

2

1
1 1

1

1 1 .

T r MT rT rT
rM T rM

prT

rN rMe

c hD re e D re e
PV T A De e cI e

e r r r r

pI D
rN e rM e

r

 
  

    

  
 



 

                    
      

 

Case 2 dN T M  . 

 
 
 
 

1

3

4

, 0 ,

, ,

, .

d

d

PV T T T

PV T PV T T T M

PV T M T


  
  
 

 

Case 3 dM T   

   
 

1

4

, 0 ,

, .
d

d

PV T T T
PV T

PV T T T

    
 

 

 
 

4. Theoretical Results  
The objective in this paper is to find the replenishment time *T to minimize the present 

value of all future cash-flow cost of the retailer.  
To simply the proof process of this model, the following lemma is given.  

 
Lemma 1. Let *x denotes the minimum point of the function of  F x  on interval  ,a b . Suppose

 f x is continuous function and increasing on  ,a b , and      2
' 1rx rxF x f x e e   . We have the 

following results.  
(a) if   0f a  , then * =x a ; (b) if    0f a f b  , then *

0=x x , where 0x is the unique solution of 

  0f x  on  ,a b ; (c) if   0f b  , then * =x b .  

 
4.1 when   

 
Case 1  

     Taking derivative of  1PV T with respect to T , we obtain      2'
1 1 1 .rT rTPV T f T e e     

where            1 1(1 ) 1rT rT T rT T
pf T r e PV T e D h cI e e r ce           and  1 0f rA  .  

     Thus, we know that      '
1 1 0.T rT

pf T De h cI r c e           

From the above analysis and lemma 1(1-2), we have the following results.  
 
Lemma 2. Let *

1T is the minimum point of  1PV T on  0, dT .  

  If  1 0df T  , then *
1 dT T ; else, * 0

1 1T T , where 0
1T is the unique solution of  1 0f T  on  0, dT .  

 
Case 2  

     Taking derivative of  2PV T with respect toT , we obtain      2'
2 2 1 ,rT rTPV T f T e e     

where          2 2(1 ) 1 .rT rT T rT T rM rN rMeh pI
f T r e PV T e D e e ce e e

r r
 


              

 
  

Similarly, taking derivative of with respect to , we know that      '
2 1 ,rTf T e Dg T    

where      .T T rM rN rM
eg T he r ce pI e e            

 
Lemma 3. Let *

2T is the minimum point of  2PV T on  ,dT N .  

(1) when   0dg T   

(a) if  2 0df T  , then *
2 dT T ; (b) if    2 20df T f N  , * 0

2 2T T , where 0
2T is the unique solution of

 2 0f T  on  ,dT N ; (c) if  2 0f N  , then *
2T N .  

0 dT N 

0 dT T 

dT T N 

 2f T T
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(2) when    0dg T g N  , where #
2T is unique solution of   0g T  on  ,dT N .  

(i)  If  #
2 2 0f T  , then *

2 dT T .  

(ii) when  #
2 2 0f T  , (a) if  2 0f N  , then       *

2 2 2 2min ,dPV T PV T PV N
 

and 

    *
2 2 2a rg m in ,dT P V T P V N ; (b) if  2 0f N  , when  2 0df T  , * 0

2 2T T  where 0
2T is the 

unique solution of  2 0f T  on  ,dT N ; else,       * 2
2 2 2 2 2min ,dPV T PV T PV T  and 

    * 2
2 2 2 2arg min ,dT PV T PV T , where 2

2T is the largest solution of  2 0f T  on  ,dT N ;  

(3) when   0g N  , then       *
2 2 2 2min ,dPV T PV T PV N and     *

2 2 2arg min ,dT PV T PV N .  

 
Proof:  Since    ' 0T rMg T e h r ce        , we know  g T  is increasing on  ,dT N .  

(1) when   0dg T  , then   0g T  , that is  2 0f T  . From lemma 1, the results are proofed.  

(2) When    0dg T g N  , the equation of   0g T  has a unique root (say #
2T ). In this situation,

  0g T   for #
2,dT T ,   0g T  for #

2 ,T N   . Thus,  2f T is decreasing on #
2,dT T   and increasing on

 #
2 ,T N  .  

As follows, we will discuss the property of  2f T on #
2,dT T   and  #

2 ,T N  .  

(A). In this case we discuss the property of  2f T on #
2,dT T   . 

From the above analysis, we know that  2f T is decreasing on #
2,dT T   , and have the 

following results.  
If  #

2 2 0f T  , then we have  2 0f T  for #
2,dT T ; If    #

2 2 20 df T f T  , then the equation 

 2 0f T  has a unique root (say 1
2T ) on  #

2,dT T , and  2 0f T  for 1
2,dT T T    ,  2 0f T  for  1 #

2 2,T T T

; If  2 0df T  , then  2 0f T  on #
2,dT T   . 

(B) In this case we discuss the property of  2f T on  #
2 ,T N  . 

From the above analysis,  2f T is increasing on  #
2 ,T N  , and have the following results.  

If  #
2 2 0f T  , then we have  2 0f T  for  #

2 ,T N  ; If    #
2 2 20 df T f T  , then the equation 

 2 0f T  has a unique root (say 2
2T ) on  #

2 ,T N , and  2 0f T  for 2
2,dT T   ,  2 0f T  for  2

2 ,T N  ; If

 2 0f N  , then  2 0f T  on  #
2 ,T N  .  

From (A) and (B), we have the following results  
(i) if  #

2 2 0f T  , then  2 0f T  on  ,dT N . Thus,  2PV T is increasing on  ,dT N . Thus, *
2 dT T ;  

(ii) if  #
2 2 0f T  , (a) In this case, we suppose  2 0f N  .If  2 0df T  , then  2 0f T  ; else,  2 0f T 

for 1
2,dT T   and  2 0f T  for  1

2 ,T N  . therefor, we obtain that if  2 0df T  , then  2PV T is decreasing 

on  ,dT N ; else,  2PV T is increasing on 1
2,dT T   and decreasing on  1

2 ,T N  . Hence, when

 2 0f N  ,       *
2 2 2 2min ,dPV T PV T PV N  and     *

2 2 2a rg m in ,dT P V T P V N . (b) In this 

situation, we suppose  2 0f N  . If  2 0df T  , then  2 0f T  for 2
2,dT T    and  2 0f T  for  2

2 ,T N  . For 

the convenience of that problem, we denote 0
2T is the unique solution of  2 0f T  on  ,dT N . In this 

case, 0 2
2 2=T T . Thus, we obtain that  2PV T is decreasing on 0

2,dT T   and increasing on  0
2 ,T N  . 

Thus,    * 0
2 2 2 2PV T PV T and * 0

2 2T T . If  2 0df T  , then  2 0f T  for 1
2,dT T   and  2

2 ,T N  ,  2 0f T  for

 1 2
2 2,T T  . Thus,   2PV T is increasing on 1

2,dT T    and  2
2 ,T N  , and decreasing on  1 2

2 2,T T  . Hence, 

      * 2
2 2 2 2 2min ,dPV T PV T PV T and     * 2

2 2 2 2arg min ,dT PV T PV T , where 2
2T is the largest solution 

of  2 0f T  on  ,dT N . 

(3) when   0g N  , we have   0g T  . Thus,  2f T is decreasing on  ,dT N . 
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(a) if  2 0f N  , then  2 0f T  . Therefor,  2PV T is increasing on  ,dT N . Thus, *
2 dT T ;  

(b) if    2 20 df N f T  , there exists a unique solution 3
2T on  3

2 2 0f T  , and  2 0f T 
 
for 3

2,dT T   , 

 2 0f T  for  3
2 ,T N  .  2PV T is increasing on 3

2,dT T    
and decreasing on  3

2 ,T N  . Hence, 

      *
2 2 2 2min ,dPV T PV T PV N and     *

2 2 2arg min ,dT PV T PV N ;  

(c) if  2 0df T  , then  2 0f T  .  2PV T is decreasing on  ,dT N . Hence, *
2T N . From the above 

analysis, we know that when   0g N  ,       *
2 2 2 2min ,dPV T PV T PV N  and 

    *
2 2 2arg min ,dT PV T PV N .  

 
Case 3       

Taking derivative of  3PV T with respect to T , we obtain      2'
3 3 1 .rT rTPV T f T e e     

where          3 3

1
(1 ) 1 .rT rT T rT T rM rT rM

e

h
f T r e PV T e D e e ce pI e e

r r
 


              

 
  

Thus, we know that       '
3 1 0.rT T T rM rM

ef T e D he r ce pI e               

From the above analysis and lemma 1, we obtain the lemma 4. 
 
Lemma 4.  Let *

3T is the minimum point of  3PV T on  ,N M .  

(a) if  3 0f N  , then *
3T N ; (b) if    3 30f N f M  ,then * 0

3 3T T , where 0
3T is the unique solution of 

 3 0f T  on  ,N M ; (c) if  3 0f M  , then *
3T M .  

 
Case 4  

Taking derivative of  4PV T with respect toT , we obtain      2'
4 4 1 ,rT rTPV T f T e e     

where           4 4(1 ) 1 ,T r MprT rT T rT T rM rTcIh
f T r e PV T e D e e ce e e

r r
  

 
     

           
and 

 4lim
T

f T


  .  

Therefor, we know that        '
4 1 0.r MT rT rM

pf T e D e h r ce cI e              

From the above analysis and lemma 1(1-2), we obtain the lemma 5. 
 
Lemma 5. Let *

4T is the minimum point of  4PV T
 
on  ,M   

if  4 0f M  , then *
4T M ; else, * 0

4 4T T , where 0
4T  is the unique solution of  4 0f T 

 
on

 ,M  .  

From lemmas 2-5, the following theorem is obtained.  
 
Theorem 1.  The optimal cycle time *T and the present value of all future cash-flow cost *( )PV T

will be determined by the following equation 

          * * * * *
1 1 2 2 3 3 4 4min , , ,PV T PV T PV T PV T PV T  .  

 
4.2 when dN T M    

 
Case 5 , we obtain the following lemma. 

 
Lemma 6. Let *

5T is the minimum point of  3PV T on  ,dT M .  

(a) if  3 0df T  , then *
5 dT T ; (b) if    3 30df T f M  ,then * 0

5 5T T , where 0
5T is the unique solution of

 3 0f T  on  ,dT M ; (c) if  3 0f M  , then *
5T M .  

From the lemmas of 2, 3and 6, we have the follow theorem.  
 

N T M 

M T

dT T M 
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Theorem 2 when dN T M  , the optimal cycle time *T and the present value of all future cash-

flow cost *( )PV T will be determined by the following  

        * * * *
1 1 3 5 4 4min , ,PV T PV T PV T PV T  .  

 
4.3 when dM T   

 
Case 6 , we obtain the following lemma.   

 
Lemma 7.  Let *

6T  is the minimum point of  4PV T on  ,dT  .  

If  4 0df T  , then *
6 dT T  ; else, * 0

6 6T T , where 0
6T  is the unique solution of  6 0f T 

 
on  ,dT  .  

From the lemma of 2 and 7, we have the theorem 3.  
 
Theorem 3 when dM T , the optimal cycle time *T and the present value of all future cash-flow 

cost *( )PV T will be determined by the following equation       * * *
1 1 4 6min , .PV T PV T PV T 

 
 
 
5. Numerical examples  

To illustrate the results obtained in this paper, we provide the following numerical 
examples.  
 
Example 1. Let 5c  , 7p  , 0.15pI  , 0.1eI  , 0.1h  , 2500D  , 0.2r  , 0.08  , 0.3M  , 0.1N  . 

Results are summarized in Table 1. 
 
 

Table 1. The impact of change of A andW on *( )PV T and *T  

A  W  dT   *PV T  *T  

10 150 0.0599 58683 * 0
2 2 0.0666T T   

 450 0.1787 59637 *
5 0.1787dT T   

 950 0.3743 62488 *
6 0.3743dT T   

100 150 0.0599 62196 * 0
3 3 0.1855T T   

 450 0.1787 62196 * 0
5 5 0.1855T T   

 950 0.3743 63736 *
6 0.3743dT T   

350 150 0.0599 67131 * 0
4 4 0.3421T T   

 450 0.1787 67131 * 0
4 4 0.3421T T   

 950 0.3743 67202 *
6 0.3743dT T   

              
 
Example 2. Let 100A  , 5c  , 7p  , 0.15pI  , 0.1eI  , 0.1h  , 2500D  , 0.2r  , 0.08  , 450W  . 

Results are summarized in Table 2. 
 

 
The following inferences can be made based on table 1 and table2:   
(1) For fixed other parameters, the larger the value of A , the larger the values of  *PV T and *T .  

(2) For fixed other parameters, when 0 dT N  , the values of  *PV T and *T are not changed 

whatever the value of W ; when dN T M   and dM T , if *
dT T , then larger the value of W

, the larger the value of  *PV T  
but the value of *T is not changed; if *

dT T , the larger the 

value of W , the larger the values of  *PV T  
and *T .  

(3) For fixed other parameters, when Q W , the larger the value of M , the smaller the values of 

dT T
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 *PV T ; the larger the value of N , the larger the values of  *PV T ; when *
dT T , the lager 

the values of M and N , the larger the value of *T ; when *
dT T , the value of *T  is keeping 

a constant when the values of M and N . 
 
 

Table 2. The impact of change of M and N on *( )PV T and 
*T  

 dT  M  N   *PV T  *T  

0 dT N   0.0200 0.2 0.05 64083 0.1785 

   0.1 64264 0.1840 

  0.3 0.05 62016 0.1799 

   0.1 62196 0.1855 

dN T M   0.1787 0.2 0.05 64083 0.1787 

   0.1 64264 0.1840 

  0.3 0.05 62016 0.1799 

   0.1 62196 0.1855 

dM T  0.3743 0.2 0.05 65785 0.3743 

   0.1 65875 0.3743 

  0.3 0.05 63646 0.3743 
0.1 63736 0.3743

       
 
Example 3. Let 100A  , 5c  , 7p  , 0.15pI  , 0.1eI  , 0.1h  , 2500D  , 0.2r  , 0.08  , 0.3M  ,

0.1N  , 450W  . Figures 1 and 2 show the change of the values of *( )PV T and *T when the 

parameter of the discount rate r is changed from (0,1).  
 
 

 
 

Figure 1. The impact of change of r on *( )PV T  

 
 

Figure 2. The impact of change of r on *T  
 
 
The following inferences can be made based on figuer1-2:  

(1) For fixed other parameters, the larger the value of r , the smaller the value of  *PV T .  

(2) For fixed other parameters, when *
dT T , the larger the value of r , the smaller the value of 

*T ; when *
dT T , the value of *T is not impact to the value of r . 

 
 
6.  Conclusions  

In this paper, we develop an inventory system for deteriorating items under permissible 
delay in payments. The primary difference of this paper as compared to previous studies is that 
we introduce a generalized inventory model by relaxing the traditional EOQ model in the 
following three ways: (1) the items deteriorate continuously; (2) if the retailer’s order quantity is 
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greater than or equal to a predetermined quantity, then both of the supplier and the retailer are 
taking trade credit police; otherwise, the delay in payments is not permitted; (3) the present 
value of all future cash-flows cost instead of the average cost. The proposed of the paper is 
minimizing the present value of all future cash-flow cost of the retailer. In addition, the optimal 
solutions to the model have been discussed in detail under all possible situations. Three easy-
to-use theorems are developed to find the optimal ordering policies for the considered problem, 
and these theoretical results are illustrated by some numerical examples.  

In regards to future research, one could consider incorporating more realistic 
assumptions into the model, such as the demand dependents the selling price, quantity 
discounts, supply chain coordination, etc. 
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