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Abstract

The purpose of this research is to generate a robust agent by combining bee colony optimization
(BCO) and ELU-Ants for solving traveling salesman problem (TSP), called HABCO. The robust agents,
called ant-bees, firstly are grouped into three types scout, follower, recruiter at each stages. Then, the bad
agents are high probably discarded, while the good agents are high probably duplicated in earlier steps. This
first two steps mimic BCO algorithm. However, constructing tours such as choosing nodes, and updating
pheromone are built by ELU-Ants method. To evaluate the performance of the proposed algorithm, HABCO is
performed on several benchmark datasets and compared to ACS and BCO. The experimental results show
that HABCO achieves the better solution, either with or without 20pt.
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1. Introduction

Intelligent algorithm is popular to solve several optimization problems because if its per-
formance [1-11].Some intelligent algorithms such as ant colony optimization [1-2], genetic algo-
rithm [3], particle swarm optimization [4-5], simulated annealing [6], cat swarm optimization [7],
bee colony optimization [8-10], and so forth were proposed to solve travelling salesman problem
(TSP).

In ant colony optimization (ACO), ants lay a pheromone trail in their paths while travel-
ing from their nest to food source [1] to find the shortest tour for the food. Since then, many
researchers also continued this approach for better results on various optimization problems [11-
13]. In [12] proposed an adaptive parameter control scheme for developing an adaptive ACS
namely AACS. The parameters value in AACS are adaptively controlled based on information of
pheromone trails distribution in each iteration that is utilized to estimate the optimization state.

Naimi and Taherinejad proposed ELU-Ants and KCC-Ants to modify ACS by introduce
new local update [13]. This research emphasized that the update pheromone on earlier step
is more than the later step. The other researchers presented a combining ACO with the other
methods [14-15]. Lucic et al [16-17] then proposed another intelligent algorithm bee colony opti-
mization (BCO),which is designed to create the multi-agent system (colony of artificial bees) for
solving the combinatorial optimization problems [17-24].

This research is tried to adopt ELU-Ants algorithm which considers the beginning step
as the more important step to construct the tour. Logically, an agent with bad choice of traveling
some cities (part of tour) should be discarded but an agent with good choice should be duplicated
at the beginning step. The discarded and duplicated agent in earlier step guarantees the agent will
be more competitive. Therefore the update pheromone on earlier step is more than the later step.
In spite of starting with good or bad choice, ants must continue selecting a path for completing
their tour.
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Figure 1. lllustration agent M travels cities with two step constructions.

Fig. 1 describes the agents M constructs the tour which is split into two important step
constructing. Suppose in beginning step, agents M construct the part tour which consists i cities.
Each agents travels cities Cy, Cs, Cs,...,C; at beginning step. While constructing the tour, the ant
is possible to get bad choice at first stage and leads trapped on bad constructing as well. At last
it probably brings to the bad-tour.

In BCO, after traveling some nectars or stage, each bees backs to the hive to commu-
nicate their way. In the hive, they group into three type and perform waggle dance to identify
their quality of food source. The longer dance indicates the better quality of nectars found. Bees
exchange information to each other for their next stage-tour. Bees finding bad-source food tend
to follow the others with good-source food at next stage. This step shows that BCO discards bee

with bad stage-tour in order to get the better tour for the next stage, and in other side automatically
the bee with good stage-tour is duplicated.

So based on discussion above, the proposed algorithm, HABCO, is generated by con-
structing the robust agent as BCO algorithm, however the process of selecting nodes (cities) is
done by ELU-Ants. HABCO was first presented by Abba et al in a proceeding of a conference

[25]. However this paper presented more detail of the related work and processing of judgment
agent.

2. Related Work
2.1. Ant Colony System

Ant colony system (ACS) is one of the most widely used and best-performing ACO. While
ants search food, they will deposit the pheromone on the path where they passed. The ants will
tend to choose the path whose the highest amount pheromone on it, and avoid the low pheromone
path. There are some substantial parts to describe ACS briefly [1].

Construction Tour : While the kth ant is in city i, the next city j is selected from the unvisited city
set Jy (i) according to the two possibilities, P (i,j), in Eq. (1) and in Eq. (2) :
a. if g<qo (exploitation)

Jj=arg max\_T(i?u)'n(ivu)ﬂL:u € Jk(i)ﬂ (1)
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b. if g>qo (bias exploration)

[7(i,4)]-[n(i, 4)]°
EuEJ;Q(i) [T(Z’j>][77<laj)]6 ’

Pk(iaj): @)

where g is a random number ; qq is a parameter; 7 represents pheromone value. Local pheromone
updating : Ants visit edge i, j and change the pheromone 7 (i,j) edge level by local updating rule in
Eq. (3):

(i, 4) = (L= p)7(i, j) + pAT(i, ), 3)

Global pheromone updating: The pheromone of edges on the globally best tour is updated by
global updating rules Eq. (4) and Eq. (5).

(i, ) = (L = a)7(i, j) + @A7(i, j), (4)
(Lgp)~tif (4, j) €global best tour
A7(i,j) = ()
0 Otherwise
0 < a < 1 is the pheromone decay parameter, and L, is the length of the globally best
tour.
2.2. ELU-Ants

ELU-Ants [4] is a modified of the original ACS. Hosein in his research offered two equation
to implement the algorithm, one is named Kcc-Ants and the another one is ELU-Ants. Al though
both of them used the similar approach, they represented their proposed on different equation.
The results of both equation are almost similar. This research uses the ELU-Ants approach. The
main idea of this research is the ants have more ability to add more the pheromone of the primary
links than the last links. While in early steps, the ant has a lot of options to choose which city
traveled, because it has passed just a few cities. As a consequence, it makes just a few edge
are prohibited to be selected. Therefore, the ant can freely choose the most desirable link (with
more pheromone and less length) as its next link. Contrary on final steps of tour, the ant already
passed most of the cities, and the current selected link may not have a significant effect on the
quality of the tour, so it seems logical to reduce its ability of changing the last link pheromone.
In other words, ants have more effect on pheromone update where they are in their initial steps
and less effect when they are going to finish the tour. Based on above discussion, local update
original (Eq.(3)) is modified to be ELU-Ants (Eq. (6)) and Kcc-Ants (Eq. (7)).

5.¢c

7(i,5) = 7(i,§) + 0.6 ", (6)

K.ce.my
= 7
cle 7

where cc represents the number of cities passed till now; n is total number of cities ; K and
w denote two parameters given; C/ represents current length of passed path of each ants and
represents initial pheromone.

7(i,5) = (i, J) +

2.3. Bee Colony Optimization

Bee colony optimization (BCO) is designed to create the multi agent system to solve
the combinatorial optimization problems. Lucic et al [16-17] proposed BCO to solve TSP. On
implementation BCO on TSP, the tour consists numerous stages. A stage is a collection of a
certain amount of nectars. In TSP model, nectars can represent cities. In constructing the tour,
a bee starts as an unemployed forager without knowledge about the food (nectar). Bees start
exploring from nectar to nectars or travel. This step is called forward pass (FP). As a notion, not
all bees start foraging in the first stage. Some of them start at the second stage, third stage, etc.
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Once a bee is on, she will be active till the end of iteration. After performing one stage, a bee
returns to the hive in order to unload and store the nectar. It is called backward pass (BP). In BP,
bees will perform waggle dance to show their quality tour and start exchanging information. The
kind of communication between individual bees contributes to the formation of the bee colony.
Before communicating, BCO selects randomly with a particular probability (e.g.10 %) to be scout.
The bees which retain the previous stage and continue the next stage without interacting with the
others are named scout. The remind bees will be categorized into follower and recruiter. BCO
uses Eq. (8) for determining the probability that the bee k in next stage (u+1) with the same partial
tour at stage u in iteration z as described below :

Lk,(u,z)—m,in,,,eu,(uvz)(LT(ibwz))

Pi(u+1,z) =e uz (8)

where L (u,z) is the length stage-tour that is discovered by bee k in stage u in iteration z. As a
result of interaction, in addition of scout, the bees have the two other types, recruiter and follower.
The bees which retain their previous stage and recruit the follower bees on their way are named
recruiter. The bees which abandon the food source (previous stage) and follow the recruiter bees
on their way are named follower. Since the probability of best path bee will be 1 (P, = 1), she
will use absolutely the same partial and categorized as group of recruiter. BCO introduced the
probability of partial tour will be chosen by any bee that decided to choose the new route in one
stage. The probability is generated regarding two main attribute the total length tour and number
bee that are advertising the partial tour. The smaller the normalized value of the total length, the
better is the partial tour, while the bigger normalized value of number bees, the better is the partial
tour. Procedure BCO can be described as on Fig. 2.

Procedure BCO for solving TSP
Set parameters and number stage
For each stages
For each bees
Construct Solution
Classify bee into scout, recruiter, follower
End bee
All bees exchange information
End stage
Local Search
End

Figure 2. BCO Algorithm.

3. Proposed Algorithm
3.1. The Concept

Since there is a consideration for beginning step and last step in constructing tour, the
tour should be split into some parts of tour. This part of tour can be identified as the stage in BCO
which consists some cities. The stage-tour agent constructed is expected to judge the quality
agent. On BCO, after traveling one stage, bees back to hive and group into three types follower,
recruiter, and scout based on their quality. This algorithm uses "ant-bee” as its agent and mimics
the behavior of bee on BCO. Follower ant-bee is identified as the agent which performs bad
choice on its stage-tour. Recruit ant-bee is identified as the agent which perform good choice on
its stage-tour. Scout ant-bee is identified as the agent which always find the new alternative tour.
Further, follower will change their stage-tour and follow the stage-tour of recruiter agents. Scouts
neither follow nor recruit the other agent, yet keep their stage-tour.

Fig. 3 gives the illustration how generates the competitive agents. Suppose there are
three agents My, M, and M5 and three cities at first stage. Si1, Si2, S13 are the collection of
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Figure 3. lllustration how generates the competitive agent.

cities traveled at the first stage by agent M, My and M3 respectively. C11-Cs1-C31, C12-Co3-Csa,
C13-Co3-C33 are the sequence cities traveled at first stage by M1, My and M3 respectively. After
traveling the first stage, all agents are evaluated to conclude their type. Suppose M;, My and M;
become recruiter, follower and scout respectively. At the end of first stage, M, as recruiter keeps
its stage-tour, M, as follower changes its stage-tour and followM;’s stage-tour, M3 as scout keeps
its stage-tour. Therefore, at beginning second stage the agents M;, M, and M3 should continue
the tour from city Cs;, Cs; ,Cs3 respectively. The interesting question is how to make a good
judgment in order to classify the quality of agents on constructing stage-tour. The sub section
3.3 will explain that the total amount pheromone gathered on each stage can be used as a good
judgment.

3.2. Construct Tour

In construction tour for solving TSP, the ant-bee chooses cities with ACS algorithm (Eq.
(1) and Eq. (2)). After each ant-bees traveling one stage using the rule of ACS, it backs to hive to
interacting with each other (supposing distance from hive to each city=0), and calculating the total
amount of pheromone. HABCO also categorizes ant-bees into three types based on pheromone
gathered namely scout(S), follower(F), and recruiter(R) as BCO. Scout retains the previous stage
and continues the next stage without interacting with the others, follower abandons the previous
stage and follows the recruiter, recruiter retains her previous stage and recruits the follower to join
her previous stage tour. On HABCO, the judgment of quality of agents is based on the amount
pheromone that agent gathers in each stages. Judgment is used to classify ant-bees into Follower,
and Recruiter. Scout agent is firstly chosen 10 % from all agents. The scout agent guarantees
the alternative tour is kept on the process. The remainder agents is categorized as follower and
recruiter .The probability ant-bee into follower after traveling one stage is used by Eq. (9).

Tmax — Ti
PF - M ) (9)

Zizl(Tmar - Ti)
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where iis agent index; M is the total number agent ant-bees; r; represents pheromone gathered
at each stages by agent; 7,,.. represents pheromone maximum gathered at each stages by
agent. From Eqg. (9) shows that agent which gathers the high pheromone has low probability
to be follower. For the highest pheromone (7,,..) agent is impossible to be follower (Pr=0). In
other words, it will absolutely become a recruiter. After categorized the agents into follower and
recruiter, the follower will change her tour and follow one of the follower agent randomly. After
exchanging information on hive, the agent ant-bees continue the next stages until finish the tour.

3.3. Pheromone updating

There are 3 types pheromone updating on HABCO. They are local update, semi-global
update and global update. Local update is performed as local updating rule in ACS algorithm (Eq.
(3)). While ant-bees choosing their edge, they also modify their pheromone. After performing
one stage, HABCO updates the pheromone called semi-global update. This update is based on
modified ELU-Ants algorithm that ants have more effect on pheromone update where they are in
their earlier steps and less effect when they are going to finish the tour.

(i, §) = 7(i,5) + T0.e 5T, (10)
where S is current stage; |S| is total number stage. Obviously from Eq. (10), the pheromone after
performing the first stage (S=7) is added more than the next stage. So the ant-bees play fewer
impact in update pheromone when they are in their final part of tour. In last stage (final part), S=
total number stage, it makes the impact pheromone update toward zero. At last, the pheromone
on the edges are travelled by the best ant-bee will be updated with global updating rule as the
ACS Eq. (4) and Eq. (5).

3.4. Ruin local optima
In the observation, the best length tour is possible same in some iterations in a row
especially on the relative small benchmark. The best ant-bee probably travels on same edge
in each iterations. So, it might the process traps to be local optimal. This situation makes the
algorithm sometimes fails to get the optimal solution. To avoid this problem (ruin local optimal),
the pheromone on that edges is reduced/evaporated, when the best of length tour is same for t
times iterations (t=700) in a row.
Trs = T.Trs, (11)

where 0<x<1. Variable is considered as a fair number. When x is set too high, ruining of local
optimum will fail to be obtained. Contrarily, if x is set too small, it will decrease pheromone
significantly and affect the construction of tour. The algorithm of HABCO is described as Fig. 4.

4. Performance and Analysis Results
4.1. Analysis Constructing the Robust Agent

As aferementioned, the pheromone and distance nodes are two variables important in
ACO. This section probes whether the two variables can be to a judgment of the quality agent.
One benchmark TSP, st70, is investigated to see impact of the distance and amount pheromone
at each stages that is performed by ants. This actions are tried on three stages while number
agents are ten. Firstly the agent (ant) travels all cities stage by stage with follow the ACS rule on
Eqg. (2). We observer two kind the agents. The first is the best agent which get the best complete
tour. The second one is the worst agent which get the worst complete tour. While traveling, the
total distance and the amount of pheromone at each edges is added and calculated in one stage.
After traveling one stage, each agent continues next stage without interaction each other. At last,
after each agents completes their tour, the length complete tour and pheromone of each ants also
be calculated and ranked.

In the observation, considering by calculating the distance traveled at one stage is not
reliable. It shows the best ant which gets the shortest distance tour has various position rank on
first stage. Further, the worst ant which travels the longest distance has not always bad position
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Set parameters and number stage
For each stages
For each ant-bees
construct solution; local update
End ant-bees
Semi-global update; Ranked ant-bees
For each ant-bees //Back to hive
Classify ant-bees into scout, recruiter, follower
End ant-bees
All ant-bees exchange information
If (stage=number stage)
Calculating the length complete tour of each ant-bees
Global update by the best ant-bee
Ruin local optima
End if
End Stage
Local Search

Figure 4. HABCO Algorithm.

on first stage. It means that an ant can not guarantee getting the relatively short in the complete
tour when traveling relatively short at the first stage. Contrarily, when an ant travels relatively long
at first stage, she can not guarantee getting relatively long in the complete tour. It is because each
ants is possible to choose several cities which have short distance in the beginning, but she has
no choice except continuing the long distance at last. Thus, the total tour might be still relative
long at last.

The second observation is to rely on the total amount of pheromone in one stage-tour
traveled by each ants. In this experiment, it shows that the ant which gathered a lot of pheromone
at first stage tends to be a good or best ant in the complete tour. The other hand, the ant which
get the shortest distance probably gets the high pheromone on its first stage. So, it is more
reasonable that total amount of pheromone at each stage indicates the quality sub-tour. The
greater total pheromone that the ant achieves in one stage, the ant has high probability of getting
the good complete tour. So if the amount at early stage-tour is higher, the ant tends to get the
best complete tour. Contrary, if the pheromone at early stage-tour is lower, the ant tends to the
worst complete tour.

As a notion, this research is performed on three stages. In our investigation, the result of
four or more stages is not be reliable. It means the pheromone gathered by agents at first stage
can not be a good judgment of quality agents.

Experiments are conducted to evaluate the performance of HABCO. Table 1 shows the
settings of various parameters for the proposed algorithm.This paper details two comparison.The
first one is a comparison HABCO and BCO, and the second one is a comparison HBCO and ACS.
All algorithms are executed 10 times and nine dataset benchmark TSP.

Table 1. Parameter Setting of HABCO algorithm

Parameter Symbol Set value
number ant-bee M 10
number stage S 3
iteration nc 1000

degree pheromone B 2
parameter local update 0% 0.1
pheromone decay « 0.1

limit exploitation q 10 %
factor ruin local optima X 0.95

)

Table 2 display the results of all algorithms and optimal solution (BKS/best known solu-
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tion) as well. The first comparison is HABCO and BCO. Table 4 shows HABCO+2opt outper-
forms BCO+2o0pt. On some datasets (eil51, kroa150, a280), HABCO without 2opt outperforms
BCO+20pt. At first HABCO uses ACS method (Eq. (1) and Eq. (2)) to construct the tour. ACS
has an advantage to make the edge more dynamic by perform local update. With local update,
pheromone on edge visited is diminished and make it less desirable. Therefore the premature
converge can be avoided. As a consequence, the agent (ant) has many various options to de-
velop its tour. With only ten agents, ACS can get the good quality tour. In other hand, BCO has
main advantage on exchange information agents (bees) on their hive. Before backing to hive,
construction bee depends only the role on Eq. (7). It makes the selection candidate node is more
static. BCO has also a slightly complex formula than ACS, and also has many variables to set.
The difference setting sometimes generates the different significant results. The second compari-
son should be discussed is comparing HABCO and ACS. Table 4 shows that HABCO outperforms
ACS either with 2opt or without 2opt. HABCO also shows slightly better either in average or best
case. Although ACS and HABCO uses the same role to construct the tour (Eq. (1), Eq. (2)) at
each stages, HABCO has an advantage in producing the competitive tour of their agents by dupli-
cating the good sub tour and discarding the bad sub tour in their hive. Therefore, in constructing
the tour, HABCO has smarter agents than ACS.

Table 2. Performance HABCO, ACS and BCO on nine benchmark datasets

Bench BKS ACS ACS+20pt BCO+20pt HABCO HABCO+20pt
mark Avg Best Avg Best Avg Best Avg Best Avg Best
eil51 426 432.4 430 430.3 428 432.1 429 430.7 428 429.1 427
berlin52 7542 7715.8 7542 7611.4 7542 7652.6 7542 7577.9 7542 7543.5 7542
st70 675 693.4 684 686.2 680 683.2 675 686.5 680 681.1 678
kroal00 | 21282 | 22054.8 | 21716 21568 21369 | 21927.3 | 21369 | 21789.9 | 21402 | 21413.5 | 21282
eil101 629 649.9 641 643.9 636 656.2 645 643 634 641.7 634
kroa150 | 26524 | 27476.9 | 26889 | 27219.1 | 26912 | 27452.4 | 27063 | 27139.1 | 26881 | 27015.9 | 26781
d198 15780 | 16480.2 | 16202 16207 15918 | 16351.5 | 16021 16421.5 | 16182 16030 15895
a280 2579 2739.6 2686 2669.9 2640 2834.1 2701 2702.4 2653 2665.1 2630
u724 41910 46363 44688 | 44136.4 | 43781 | 46516.7 | 44091 | 45117.8 | 43901 | 44002.3 | 43432

5. Conclusion

HABCO as combination three algorithms, ACS, BCO and ELU-Ants, is an affective algo-
rithm to solve the TSP problem. In solving TSP, HABCO divides the tour into some stages likes
on BCO algorithm. In touring some cities in a stage, HABCO uses the ACS method from choos-
ing the nodes, and updating local and global updating pheromone. The quality of each agents
HABCO is judged based on the pheromone gathered at each stages. The pheromone gathered
in ACS algorithm classifies agent into follower, recruiter and scout agent like on BCO algorithm.
A good judgment on premature step makes the probably good agent (identified as recruiter) du-
plicated, and the probability bad agent (identified as follower) is discarded. The scout agent is
exist to maintain the new alternative tour. This process generates the competitive agent in each
iteration. This algorithm also proposed the semi-global update pheromone to adopt the ELU-Ants
algorithm.Comparing ACS and BCO, HABCO can solve TSP problem better. It can be seen from
solving some dataset TSP problem with local or without local search.
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