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Abstract 
In this paper, an upper uniform smooth approximation function of absolute value function is 

proposed, and some properties of uniform smooth approximation function are studied. Then, absolute 
value equation (AVE), Ax - |x| = b, where A is a square matrix whose singular values exceed one, is 
transformed into smooth optimization problem by using the upper uniform smooth approximation function, 
and solved by quasi-Newton method. Numerical results in solving given AVE problems demonstrated that 
our algorithm is valid and superior to lower uniform smooth approximation function. 
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1. Introduction 

Consider the AVE: 
 

Ax x b                                                                          (1) 

 

Where n nA R  , , nx b R , and x  denotes the vector with absolute value of each 

component of x . Mangasarian O.L et al. shown that AVE (1) is NP-hard in general form [1].  

Mangasarian [2] proposed a finite computational algorithm for AVE, which is solved by a 
finite succession of linear programs. Semismooth Newton method is proposed for solving the 
AVE, which largely shortens the computation time than the succession of linear programs (SLP) 

method In [3, 4]. If the singular values of A  exceed 1, then the semismooth Newton iterates are 
well defined and bounded. However, the global linear convergence of this method is only 
guaranteed under more stringent condition. In addition, NP-hard n-dimensional knapsack 
feasibility problem is equivalent to AVE [5]. 

Zhang, et al. proposed a generalized Newton method to AVE, which has global and 
finite convergence [6]. Louis Caccetta presented a smoothing Newton algorithm to solve the 
AVE [7], and proved that convergence rate was quadratic. Recently, AVE (1) has been well 
studied by Jiri Rohn [8-10]. Especially, Jiri gave an method for computing all solutions of  AVE. 
Iterative method, Minimum Norm Solution, and Picard-HSS iteration method to AVE are 
demonstrated in [11-13]. Harmony search algorithm with chaos and Smooth Newton method 
based on lower uniform smoothing approximation function are proposed in [14, 15]. Yong has 
applied AVE to solve two-point boundary value problem of linear differential equation [16]. 

Compared with literature [15], the basic contribution of present work is that an upper 
uniform smooth approximation function of absolute value function is presented. After replacing 
the absolute value function by upper uniform smooth approximation function, the non-smooth 
AVE is formulated as smooth nonlinear equations, furthermore, an unconstrained smooth 
optimization problem, and solved by quasi-Newton method. 

This paper is outlined as follows. In section 2, upper uniform smoothing approximation 
function and its properties are studied. In section 3 AVE is formulated as an unconstrained 
smooth optimization problem. In the same time, some lemmas of AVE are demonstrated. In 
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section 4, quasi-Newton method to AVE is given. Numerical examples are considered in section 
5. Section 6 concludes the paper.  

 
 

2. Upper Uniform Smoothing Approximation Function of Absolute Value Function 

Definition 2.1 A function 
1 1, 0:f R R    is called a uniformly smoothing 

approximation function of a non-smooth function 
1 1:f R R  if, for any 

1t R , f  is 

continuously differentiable, and there exists a constant    such that: 
 

( ) ( ) ,    >0t tf f     , 

 
Where 0   is constant independent on t . 

Following we will give a uniformly smoothing approximation function of  ( )t t  . 

Theorem 2.1  Let 
sin sin( ) sin ln e e ,0

2

t t

t  



  

 
      

 
. Then 

(i) 0 ( ) ( ) sin ln2t t     ; 

(ii)
 ( )

1
d t

dt


 , and 

 

0

( )
0

t

d t

dt





 . 

 
Proof (i). 

sin sin sin sin sin( ) ( )=sin ln e e sin ln =sin ln e e

t t t t tt t

t t e    
    

     
        

   

, 

Since  =max{ , }t t t  , so  0, 0t t t t     . Moreover,  t t  or t t   is equal to 0 at 

least. Then sin sin0=sin ln1 sin ln e e sin ln(1 1)=sin ln2

t t t t

    
   

    
 
 

, That is: 

0 ( ) ( ) sin ln2t t     . 

(ii)  

 
2

sin sin sin

2

sin sin sin

( ) e e e 1
=

e e e 1

t t t

t t t

d t

dt

  
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




 
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 

, 

 
Thus, 

 

 ( )
1

d t

dt


   and  

  sin sin

sin sin0
0

( ) e e
=0

e e

t t

t t

t
t

d t

dt

 
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 
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




 
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  
  

. 

 

Figure 1-3 show ( )t  and ( )t t   with 0.6, 0.2, 0.06     . 
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(a)  ( )t  with 0.6   

 

(b) ( )t t   with 0.6   

 

Figure 1.  ( )t  and ( )t t   with 0.6   
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(b) ( )t t   with 0.2   

 

Figure 2.   ( )t  and ( )t t   with 0.2   

 
 

 

(a) ( )t  with 0.06   

 

(b) ( )t t   with 0.06   

 

Figure 3. ( )t  and ( )t t   with 0.06   
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From Figure 1-3, with the decrease of parameter ,   ( )t  is decreasing, and

0
lim ( ) ( )t t


 


 . So ( )t  is an upper uniform smooth approximation function of absolute 

value function ( )t t  . 

 
 
3. Smoothing approximation function of AVE 

Define : n nH R R  by: 

 

( ):H x Ax x b  .                                                                       (2) 

 

H  is a non-smooth function because of  the non- smooth of the ( )t t  . In theory, 

x  is a solution to AVE (1) if and only if 0( )H x  . In this section we give a smoothing 

function of H  and study its properties. Firstly we give some lemmas. 
Lemma 3.1 

[1] 
  

(a) AVE (1) is uniquely solvable for any 
nb R  if the singular values of A  exceed 1.  

(b) AVE (1) is uniquely solvable for any 
nb R  if 

1 1A  . 

Lemma 3.2. For a matrix n nA R  , the following conditions are equivalent. 

(a) The singular values of A  exceed 1. 

(b) 
1 1A  . 

Lemma 3.3
[15]

. Suppose that A  is nonsingular and 
1 1BA  . Then, BA  is 

nonsingular. 

Lemma 3.4
[15]

. Let ( )D diag d  with [ 1,1], 1,2, ,i i nd   L . Suppose that 
1 1A  . 

Then, A D  is nonsingular. 

Definition 3.1
[15]

. A function , 0: n nH R R    is called a uniformly smoothing 

approximation function of a non-smooth function : n nH R R  if, for any  
nx R , H  is 

continuously differentiable, and there exists a constant    such that: 
 

( ) ( ) ,    >0x xH H     . 

 

Where 0   is constant without depend on x . 

Let  1 2( ) ( ), ( ), , ( )
T

nx x x x    L , ( ) , 1,2, ,i ix x i n   L .  

For any 0
2


  , let  

  1 2( ) ( ), ( ), , ( )
T

nx x x x       L , 

sin sin( ) sin ln e e , 1,2, ,
i ix x

ix i n 
 

 
    

 
 

L . 

Define : n nH R R   by: 

  

( ) ( )x xH Ax b   .                                                          (3) 

 

Clearly, H  is a smoothing function of H . Now we give some properties of H , which will be 

used in the next section. 
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By simple computation, for any  0  , the Jacobian of  H  at 
nx R  is: 

 

 1 2( ) ( ), ( ), , ( )nx x x xH A diag          L  

 
Where, 
  

sin sin

sin sin

e e
( ) , 1,2, ,

e e

i i

i i

x x

i x x
x i n

 



 







  



L . 

 

Theorem 3.1. Suppose that 
1 1A  . Then ( )xH

  is nonsingular for any 0
2


  . 

Proof:  Note that for any 0
2


  , by Theorem 2.1, ( ) 1, 1,2, ,ix i n    L . 

Hence, by Lemma 3.4, we have ( )xH
  is nonsingular. 

Theorem 3.2. Let ( )H x  and ( )xH  be defined as (2) and (3), respectively. Then, 

( )xH  is a uniformly smoothing approximation function of ( )H x . 

Proof:  For any 0
2


  , by Theorem 2.1. 

 
2

1
( ) ( ) ( )( ) ( ) ( ) ln2 sin

n

i ii
x x x xH H x x n      


      . 

 

Denote ( )x   is the solution of (3), then ( )x   converges to the solution of (1) as   

goes to zero. 

For any 0
2


  , Define : nR R   and : nR R   by: 

  

21
( )

2
( )x H x  , 

21
( )

2
( )x H x   . 

 

Theorem 3.3. Suppose that 
1 1A  . Then, for any 0

2


   and 

nx R  , ( ) 0x   

implies that ( ) 0x  . 

Proof:  For any  0
2


   and 

nx R , ( ) [ ( )] ( )Tx x xH H     . By Theorem 3.1, 

( )xH
  is nonsingular. Hence, if  ( ) 0x  , then ( )xH  and ( ) 0x  . 

 
 
4. Quasi-Newton Method 

Following we give quasi-Newton method for solving ( ) 0xH  .  

Algorithm 4.1.  Quasi-Newton method for AVE. 

Step 1. Given 
00 , 0

2
k


   . Establish the objective function. 
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21
( )

2
( )

k k
x H x   . 

 

Step 2. Apply quasi-Newton method to solve min ( )
kx

x . Let  argmin ( )
kk

x
xx  . 

Step 3. Check whether the stopping rule is satisfied. If satisfied, stop.  

Step 4. Let 1 (1 ) /k k

k k e e      , : 1k k  . Return to step 2. 

 
 
5. Numerical Results  

Some numerical tests are performed in order to illustrate the efficiency of the quasi-

Newton method to AVE. We set 0 sin1  , and initial point 0 (10, 10, ,10)Tx  L . All 

experiments were performed on MatlabR2009a with Intel(R) Core(TM) 4×3.3GHz and 2GB 
RAM. 
 
5.1. AVE Problems 

Problem 1. Let A  be a matrix whose diagonal elements are 500 and the nondiagonal 

elements are chosen randomly from the interval [1,2]  such that A  is symmetric. Let 

eIAb )(   such that (1, 1, ,1)Tx  L is the unique solution. 

Problem 2. Let matrix A  is given by: 
 

, 1 1,4 , , 0.5, 1, 2, , .ii i i i i i ja n a a n a i n      L  

 

Let eIAb )(   such that (1, 1, ,1)Tx  L  is unique solution. 

Problem 3. Consider AVE problems with singular values of A  exceeding 1 where the 
data (A, b) are generated by the Matlab scripts: 

 
rand('state',0);R=rand(n,n); 
A=R'*R+n*eye(n,n);b=(A-eye(n,n))*ones(n,1); 
 

And (1, 1, ,1)Tx  L is the unique solution. 

 
5.2. Computational Results 

In order to validate the performance of quasi-Newton method and smooth Newton 
method [15], all problems with different dimensions are solved. Both two methods can better 
solve all AVE problems, and the only difference is computation time. Detailed time consumed 
(in seconds) by quasi-Newton method and smooth Newton method are shown in Table 1. 

 
 

Table 1. Detailed Computational Results for Solving AVE 

n 
Problem 1 Problem 2 Problem 3 

Literature [15] Algorithm 4.1 Literature [15] Algorithm 4.1 Literature [15] Algorithm 4.1 

8 2.2463e-01 1.9156e-01 2.0387e-01 2.2138e-01 2.2671e-01 4.6614e-01 

16 1.9817e-01 1.7614e-01 2.0327e-01 3.3228e-01 2.0697e-01 3.1517e-01 

32 1.3182e-01 2.9504e-01 3.1278e-01 4.0457e-01 4.2120e-01 4.5155e-01 

64 2.6280e-01 3.8578e-01 7.5631e-01 9.2178e-01 8.2783e-01 8.0741e-01 

128 5.7621e-01 6.0386e-01 1.8361e+00 1.7888e+00 2.0160e+00 1.9551e+00 

256 2.3177e+00 1.8785e+00 7.1377e+00 6.8506e+00 7.7866e+00 6.5793e+00 

512 1.5106e+01 1.1017e+01 3.8601e+01 3.2385e+01 4.4028e+01 3.2306e+01 

 
 

From Table 1, with the dimension increased, our method is less time consumed in most 
cases, especially for larger dimension. 
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6. Conclusion 
A new upper uniform smooth approximation function of absolute value function is 

presented, and is applied to solve AVE. The effectiveness of the method is demonstrated by 
solving some randomly generated AVE problems. Future works will also focus on studying the 
upper uniform smooth approximation function of absolute value function on other engineering 
problems, such as nonlinear control [17], support vector machines [18-19], artificial intelligence 
[20]. 
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