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Abstract 
Two classical first order iteration methods, Richardson iteration and HSS iteration for linear 

systems with positive definite matrix, are demonstrated. Theoretical analyses and computational results 
show that the HSS iteration has the advantages of fast convergence speed, high computation efficiency, 
and without requirement of symmetry. 
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1. Introduction 

Consider a linear system: 
 
Ax b                                             (1) 
 

Where n nA R   is nonsingular. Instead of solving system (1) by a direct method, e.g., by 
Gaussian elimination, in many cases it may be advantageous to use an iterative method of 
solution. This is particularly true when the dimension n of system (1) is very large. This paper 
provides some classical iterative methods. 

The general scheme of what is known as the first order iteration process consists of 
successively computing the terms of the sequence: 

 
1 ,     0,1,2,k kx Bx k                             (2) 

 

Where the initial guess 0 nx R  is specified arbitrarily [1]. The matrix B  is known as the 

iteration matrix. Clearly, if the sequence kx  converges, i.e., if there is a limit: lim k

k
x x


 , then 

x  is the solution of system (1).  

Iterative method (2) is first order because the next iterate 1kx   depends only on one 

previous iterate, kx . Following we give two classical first order iteration, Richardson iteration and 
HSS iteration. The basic contribution of present work is to validate the performance of iteration 
method for linear systems with positive definite matrix generated randomly. 

In section 2, Richardson iteration method and convergence analysis are demonstrated, 
and HSS iteration method and convergence analysis are developed in Section 3. Optimal 
convergence speeds of Richardson and HSS iteration are studied in Section 4 for symmetric 
positive definite matrix. Section 5 gives some numerical example generated randomly. Section 6 
concludes the paper. 

We now describe our notation. All vectors will be column vectors. The notation 
n nA R   will signify a real n n  matrix, ρ( )A  be spectral radius of matrix A , and 

2
A  denote 

2-norm. We write I  for the identity matrix ( I  is suitable dimension in context ). A vector of 
zeros in a real space of arbitrary dimension will be denoted by 0. 
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Definition 1.1 The matrix A  is symmetric positive definite (SPD, [2]), i.e., 0Td dA   

for every ,nd R d  0 , and TA A . 

Definition 1.2 The matrix A  is generalized positive definite (GPD, [2]), i.e., 0Td dA   
for every ,nd R d  0 . 

 
 

2. Richardson Iteration for Symmetric Positive Definite Matrix 
Richardson iteration was proposed by Lewis Richardson [3]. It is similar to 

the Jacobi and Gauss-Seidel method. 
By recasting system (1) as follows: 
 

 x I A x b   
 

 
The Richardson iteration is: 
 

   1 , 0,1,2,k k k kx I A x b x b Ax k                       (3) 

 
In doing so, the new system will be equivalent to the original one for any value of the parameter 

0  . System (3) is a particular case of (2) with B I A   and b  . 

In order to prove convergence of Richardson iteration, we first give following lemma. 

Lemma 2.1 Let min 1 2 3 1 max0 n n              . For any 0  , let  

 ρ( ) max 1
j

j
   .  

1. If the parameter   satisfies the inequalities 
max

2
0 


  , then ρ( ) 1  . 

2. The ρ( )  achieves its minimal value max min
opt opt

max min

ρ ( )
+

 
 


  when 

opt
min max

2 
 

 


. 

Proof. 1) Since min 1 2 3 1 max0 n n              , thus: 

 

   min maxmax 1 max 1 , 1
j

j
       

 

If the parameter   satisfies the inequalities
max

2
0 


  , then: 

  

max max1 1 1 1 1         

 
And, 
  

min
min min

max

1 1 2 1 1 1 1
  


          

 
Thus, 

  

   min maxmax 1 max 1 , 1 1
j

j
       . 
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 2) If 
max

2
0 


  , the value. 

 

   min maxρ( ) max 1 max 1 , 1
j

j
       

 
 

Is shown by a bold polygonal line in figure 1; it coincides with min1   before the 

intersection point, and after this point it coincides with max1  . Consequently, the minimum 

value of opt optρ ρ ( )  is achieved precisely at the intersection, i.e., at the value of opt   

obtained from the following condition: 
 

opt min opt min opt max opt max1 = 1 = 1 = (1 )           
 

 
Which yields: 
 

opt
min max

2
 




 

 
Consequently, 
 

max min
opt opt

max min

ρ ( )
+

 
 


  

 
 

   
 

Figure 1. Image of    min maxρ( ) max 1 max 1 , 1
j

j
         

 
 

Example 2.1: Let 1 2 33, 2, 3, 4n       . For any 0  , let: 

 

   ρ( ) max 1 max 1 2 , 1 3 1 4
j

j
         ，  
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Figure 2. Image of function 1 2 , 1 3 , 1 4     , and bold polygonal line 

 
 

Is image of    ρ( ) max 1 2 , 1 3 , 1 4 max 1 2 1 4           ， . 

From Figure 2, if 
max

2
0 0.5


   , then: 

  

   ρ( ) max 1 2 , 1 3 , 1 4 max 1 2 1 4 1            ，  

 

Moreover, if opt
min max

2 1

3
 

 
  


,  ρ( ) max 1

j
j

    achieves its minimal 

value max min
opt opt

max min

1
ρ ( )

+ 3

 
 


  . 

Theorem 2.1: Sppose n nA R   be symmetric positive definite (SPD) matrix. In 

Richardson iteration (3), if the parameter   satisfies the inequalities 
max

2
0 


  , then the 

sequence kx  of iteration (3) converges to the solution of linear system (1) for arbitrary initial 

point 0 nx R . Moreover, the best performance of convergence occurs on 

max min
opt opt

max min

ρ ρ ( )
+

 
 


   with opt

min max

2 
 

 


, where min  and max  are the 

minimum and the maximum eigenvalues of the matrix A . 
Proof. Let ρ( )B  be spectral radius of matrix B I A  . The necessary and sufficient 

condition for convergence of Richardson iteration is ρ( ) 1B  . 

Suppose that, , 1, 2, ,j j n   , are the eigenvalues of A  arranged in the ascending 

order: 
 

min 1 2 3 1 max0 n n               

 

Suppose , 1, 2, ,jv j n  , be the eigenvalues of B I A  . Then 1j jv   , 

1, 2, ,j n  . 

Since min 1 2 3 1 max0 n n              , then: 

  



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 14, No. 4, December 2016 :  1586 – 1597 

1590

min 1 2 3 1 max1 1n nv v v v v           

 
Thus, 
 

     min maxρ( ) max max 1 = max 1 , 1
j j

j j
v

B v


        

 

According to lemma 2.1, if 
max

2
0 


  , then: 

  

     min maxρ( ) max max 1 = max 1 , 1 1
j j

j j
v

B v


         

 
Thus Richardson iteration is convergent. 

Moreover, when ρ( )  achieves its minimal value max min
opt opt

max min

ρ ( )
+

 
 


 , Richardson 

iteration has the best performance of convergence in theory. 
 
 

3. HSS Iteration for Generalized Positive Definite Matrix 

For system of linear equations with generalized positive definite matrix n nA R   (or 
non-Hermitian positive definite).  Splitting coefficient matrix. 

  
A H S   
 

Where 1
( )

2
TH A A  , 1

( )
2

TS A A  . Since ,T TH H S S   , we call A H S   

Hermitian/skew-Hermitian splitting (HSS, [4-5]).  

Lemma 3.1 [6]: Let n nA R  ,
1

( )
2

TH A A  ,
1

( )
2

TS A A  .  

1) A  is generalized positive definite (GPD) if and only if  H  is symmetric positive 
definite (SPD). 

2) If A  is generalized positive definite (GPD), then the determinant 0A  , and 1A  is 

also generalized positive definite. 
3) If A  is generalized positive definite (GPD), then for any 0  , ( + )I H , ( + )I S ,

1( + )I H  , and 1( + )I S   are also generalized positive definite. 

4) If A  is generalized positive definite (GPD), then for any 0  , 1( )( + )I S I S    

is an orthogonal matrix, thus 1

2
( )( + ) =1I S I S   . 

HSS iteration method of system (1) as follows: 
 

1 ( ) ( ) ,     0,1,2,k kx T x G b k      ,                  (4) 

 

Where           1 1 1 1
( )= + + ,   ( ) 2 + +T I S I H I H I S G I S I H              , 

and parameter 0  . For the convergence property of the HSS iteration, we first give following 
lemma. 

Lemma 3.2: Let min 1 2 3 1 max0 n n              . For any 0  , let:  
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 ρ( ) max
+j

j

j


 


 

    
  

 

 
1) For any 0  , ρ( ) 1  . 

2) The ρ( )  achieves its minimal value 
max min

opt opt

max min

ρ ( )
+

 


 


  when 

opt min max     . 

Proof. 1) Since 0, 1,2, ,j j n    , for any 0   
 

+ 1, 2, ,j j j n      ，  

 
That is: 
  

1
+

j

j

 
 


 , 1, 2, ,j n   

 
Thus: 
  

ρ( ) max 1
+j

j

j


 


 

    
    

 

2) Since min 1 2 3 1 max0 n n              , thus: 

 

maxmin

min max

max max ,
+ + +j

j

j


    
     

          
       

 

Consequently, the minimum value of opt optρ ρ ( )  is achieved precisely at the 

intersection, i.e., at the value of opt   obtained from the following condition: 

 

opt min opt min opt max opt max

opt min opt min opt max opt max

= = =
+ + + +

       
       

    
  
 

 

 
Which yields: 
 

opt min max    

 
So, 
 

max min
opt opt

max min

ρ ( )
+

 


 


  

 

Example 3.1: Let 1 2 33 2, 3, 4n      , . For any 0  , let: 
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2 3 4
ρ( ) max = max , ,

+ +2 +3 +4j

j

j


    
    

           
   

 

 

 

Figure 3. Image of function 2 3 4
, ,

2 3 4

  
  
  
  

, and bold polygonal line 

 
 

Is image of 2 3 4 2 4
ρ( ) max , , max ,

2 3 4 +2 +4

    
    

        
         

. 

From Figure 3, for any 0  , then: 
  

2 4
ρ( ) max , 1

+2 +4

 
 

   
  

   
 

Moreover, if opt min max= = 8    , ρ( )  achieves its minimal value. 

 

 max min
opt opt

max min

2 2
ρ ( ) =

+ 2 2

 


 
 




 

 
Following we apply the above lemmas to obtain the convergence of HSS iteration. 

Theorem 3.1: Suppose n nA R   be generalized positive definite (GPD) matrix. In HSS 

iteration (4), for any 0  , ρ( ( )) ρ( ) 1T    , so the sequence kx  of iteration (4) converges 

to the solution of linear system (1) for arbitrary initial point 0 nx R . Moreover, the 

best performance of convergence occurs on 
max min

opt opt

max min

ρ ( )
+

 


 


  with 

opt min max   , where min  and max  are the minimum and the maximum eigenvalues of the 

matrix H . 
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Proof: 
 

 
 

  

1

1 1

1 1

2

1 1

2 2

1

2

ρ( ( ))=ρ ( + ) ( )( + )

             =ρ ( )( + ) ( )( + )

             = ( )( + ) ( )( + )

            ( )( + ) ( )( + )

             = + = max
+j

j

j

T I S T I S

I H I H I S I S

I H I H I S I S

I H I H I S I S

I H I H


   

   

   

   

 
 

 



 

 

 



 

 

  

  




  

 
According to lemma 3.2, for any 0  , ρ( ( )) ρ( ) 1T    . Thus Richardson 

iteration is convergent. 

Moreover, when ρ( )  achieves its minimal value 
max min

opt opt

max min

ρ ( )
+

 


 


 , HSS 

iteration has the best performance of convergence in theory. 
Remark. In HSS iteration, if A  is symmetric positive definite (SPD), then: 
 

1
( )

2
TH A A A   , 1

( )
2

TS A A   O  

 
Thus, 
 

     1 1
( )= + ,   ( ) 2 +T I A I A G I A        

 
Compared with Richardson iteration, HSS iteration reduces the requirement of 

symmetry. So absolute value equations [7], saddle point problem [8] are also solved by HSS 
iterative method. 

 
 

4. Optimal Convergence Speed of Richardson and HSS Iteration 
For symmetric positive definite matrix, the optimal convergence speed of Richardson 

and HSS iteration are contrasted in this section. 
Lemma 4.1: Let 0 a b  . Then: 
 

++

b a b a

b ab a

 
  

 
Proof: 
 

0 a b   1
b

a
 

b b

a a
  b a a b  

    ( ) ( )b a b a b a b a      


+ +

b a b a

b a b a

 
  

 
Theorem 4.1: If A  is symmetric positive definite (SPD) matrix, then the optimal 

convergence speed of HSS iteration is superior to that of Richardson iteration. 
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Proof. Suppose that, , 1, 2, ,j j n   , are the eigenvalues of A  arranged in the 

ascending order: 
 

min 1 2 3 1 max0 n n               

 
Then, by Theorem 3.1, the optimal spectral radius of HSS iteration is 

max min
opt opt

max min

ρ ( )
+

 


 


  with opt min max   . While by Theorem 2.1, the optimal 

spectral radius of Richardson iteration is max min
opt opt

max min

ρ ( )
 
 





 with opt

min max

2
 




. 

According to Lemma 4.1, if min max  , then: 

  

max min max min

max minmax min+

   
  

 



 

 
Thus, 
 

opt opt opt optρ ( ) ρ ( )   

 
So the corresponding optimal convergence speed of HSS iteration is superior to that of 
Richardson iteration. 

Remark. Power method is  conventional way for finding the greatest eigenvalue 
of a matrix. Since n nA R   be symmetric positive definite matrix. Thus, maximum eigenvalue 

max  of matrix A  can be obtained by power method. Meanwhile, minimum eigenvalue min  of 

matrix A  can be obtained by calculating maximum eigenvalue of matrix 1A . 
 
 
5. Computational Results 

In order to illustrate the performance of Richardson iteration and HSS iteration method, 
we solve linear systems with symmetric positive definite matrix generated randomly. Where the 
data (A, b) are generated by the Matlab scripts: 

 
rand('state',0);R=rand(n,n);A=R'*R+n*eye(n);b=A*ones(n,1); 
 

Such that (1, 1, ,1)Tx    is the unique solution. We set the random-number generator to the 

state of 0 so that the same data can be regenerated. Let 0x  0 , 41 10   . We use 
1k kx x     as the stopping rule. All experiments were performed on MatlabR2009a with 

Intel(R) Core(TM) 4×3.3GHz and 2GB RAM. 
Simulations were carried out to compare the performance of the Richardson iteration, 

HSS iteration, and Gauss-Seidel iteration. Spectral radius (ρ), iterations (k), and elapsed time (t) 
of three iteration methods are listed in Table 1 for different dimension n. 
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Table 1. Spectral radius, iterations, and elapsed time for different dimension n 

n 
Gauss-Seidel Richardson HSS 

ρ k t (s) ρ k t (s) ρ k t (s) 
50 0.8822 87 0.0049 0.8659 84 0.0051 0.5771 24 0.0064 

100 0.9631 280 0.0108 0.9277 165 0.0047 0.6756 33 0.0075 
150 0.9823 577 0.0614 0.9501 244 0.0140 0.7242 40 0.0201 
200 0.9897 986 0.2894 0.9620 326 0.0294 0.7558 47 0.0358 
250 0.9932 1482 0.9227 0.9692 407 0.0707 0.7777 52 0.0580 
300 0.9952 2069 2.1918 0.9714 489 0.1200 0.7946 57 0.0962 
350 0.9965 2814 4.9141 0.9778 574 0.2017 0.8084 62 0.1328 
400 0.9973 3619 9.5858 0.9805 657 0.3437 0.8194 67 0.1909 
450 0.9978 4511 16.9223 0.9826 741 0.4601 0.8287 71 0.2457 
500 0.9982 5521 28.3678 0.9843 825 0.6667 0.8367 75 0.3223 
550 0.9985 6605 44.8219 0.9857 909 0.9678 0.8436 79 0.4497 
600 0.9988 7847 68.9272 0.9869 994 1.2830 0.8497 82 0.5649 
650 0.9989 9101 100.3113 0.9879 1079 1.6678 0.8551 86 0.6657 
700 0.9991 10450 142.4005 0.9887 1164 2.1944 0.8599 89 0.7852 
750 0.9992 11996 200.6673 0.9895 1249 2.6713 0.8643 93 0.9353 
800 0.9993 13526 272.2897 0.9901 1334 3.3175 0.8683 96 1.0879 
850 0.9994 15337 368.2543 0.9907 1421 4.0451 0.8720 99 1.2743 
900 0.9994 17052 475.4076 0.9912 1509 4.8815 0.8754 102 1.4799 
950 0.9995 18962 621.7682 0.9917 1595 5.7889 0.8785 105 1.7050 

 
 

Figure 4(a) shows spectral radius of three methods for different dimension n. Figure 
4(b) shows spectral radius of two methods for different dimension n. Figure 5(a) shows 
iterations of three methods for different dimension n. Figure 5(b) shows iterations of two 
methods for different dimension n. Figure 6(a) shows elapsed time of three methods for different 
dimension n. Figure 6(b) shows elapsed time of two methods for different dimension n. 

 

 
(a) 

 
(b) 

Figure 4. Spectral radius 
 

 
(a) 

 
(b) 

Figure 5. Iterations 
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(a) 

 
(b) 

 
Figure 6. Elapsed time 

 
 

Figure 7(a) shows convergence process of three methods with n=50. Figure 7(b) shows 
convergence process of two methods with n=50. Figure 8(a) shows convergence process of 
three methods with n=100. Figure 8(b) shows convergence process of two methods with n=100. 
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Figure 7. Convergence process of x1 with n=50 
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Figure 8. Convergence process of x1 with n=100 

 
 
We can see that Gauss-Seidel iteration method is poor, while HSS iteration method is the best. 
 

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

dimension

el
ap

se
d 

tim
e

 

 
Gauss-Seidel iteration

Richardson iteration

HSS iteration

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

dimension

el
ap

se
d 

tim
e

 

 
Richardson iteration

HSS iteration

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration

x 1

 

 
Gauss-Seidel iteration

Richardson iteration

HSS iteration

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration

x 1

 

 
Richardson iteration

HSS iteration

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

x 1

 

 
Gauss-Seidel iteration

Richardson iteration

HSS iteration

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

x 1

 

 
Richardson iteration

HSS iteration



TELKOMNIKA  ISSN: 1693-6930  

Iteration Methods for Linear Systems with Positive Definite Matrix (Longquan Yong) 
 

1597

6. Conclusion  
We have demonstrated two iterative methods, Richardson iteration and HSS iteration. 

Theoretical analyses and computational results show that the HSS iteration method has the 
advantages of fast convergence speed, high computation efficiency, and without requirement of 
symmetry. Future works will also focus on studying the applications of HSS iteration on saddle 
point problems [9], continuous Sylvester equations [10], and choices of parameters in iteration 
method [11-12]. 
 
 
Acknowledgements 

This work is supported by the National Natural Science Foundation of China 
(11401357), the Project of Youth Star in Science and Technology of Shaanxi Province 
(2016KJXX-95), Scientific Research Program Funded by Shaanxi Provincial Education 
Department (16JK1150), and the Foundation of Shaanxi University of Technology (SLGKYQD2-
14). 
 
 
References  
[1] Ryaben'kii VS, Tsynkov SV. A theoretical introduction to numerical analysis. CRC Press. 2006. 
[2] Horn RA, Johnson CR. Matrix analysis. Cambridge university press. 2012. 
[3] Richardson LF. The approximate arithmetical solution by finite differences of physical problems 

involving differential equations, with an application to the stresses in a masonry dam. Philosophical 
Transactions of the Royal Society of London. 1911; 210: 307-357. 

[4] Bai ZhongZhi, GH Golub, MK Ng. Hermitian and skew-Hermitian splitting methods for non-Hermitian 
positive definite linear systems. SIAM Journal on Matrix Analysis and Applications. 2003; 24(3): 603-
626. 

[5] Bai ZhongZhi, Yang Xi. On HSS-based iteration methods for weakly nonlinear systems. Applied 
Numerical Mathematics. 2009; 59(12): 2923-2936. 

[6] Li Jiongsheng. Positive definite property of real square matrix. Journal of Mathematics in Practice and 
Theory. 1985; 15(3): 67-73. 

[7] Davod Khojasteh Salkuyeh. The Picard-HSS iteration method for absolute value equations. 
Optimization Letters. 2014; 8(8): 2191-2202. 

[8] Tong Qiujuan. Solving the generalized saddle-point problems based on the PSS splitting iterative 
method. Journal of Jilin University (Science Edition). 2015; 53(3): 401-406. 

[9] Fan HT, Zheng B. A preconditioned GLHSS iteration method for non-Hermitian singular saddle point 
problems. Computers & Mathematics with Applications. 2013; 67(3): 614-626. 

[10] Zhou D, Chen G, Cai Q. On modified HSS iteration methods for continuous Sylvester equations. 
Applied Mathematics & Computation. 2015; 263: 84-93. 

[11] Chen F. On choices of iteration parameter in HSS method. Applied Mathematics & Computation. 
2015; 271: 832-837. 

[12] Wu YJ, Li X, Yuan JY. A non-alternating preconditioned HSS iteration method for non-Hermitian 
positive definite linear systems. Computational & Applied Mathematics. 2015: 1-15.  

 


