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Abstract 
In this paper, based on the definition of two-parameter joint entropy and the maximum entropy 

principle, a method was proposed to determine the prior distribution by using the maximum entropy 
method in the reliability evaluation of low-voltage switchgear. The maximum entropy method takes kinds of 
priori information as different constraints. The optimal prior distribution was selected by maximizing entropy 
under these constraints, which not only contains the known prior information but also tries to avoid the 
introduction of other assumption information. Based on non-parametric bootstrap method, the hyper-
parameters of prior distribution is obtained by two-order moment of prior information. Finally, with the 
bootstrap method, the prior distribution robustness and the posterior robustness were analyzed, and the 
posterior mean time between failures for the low-voltage switchgear was estimated. 
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1. Introduction 

Low-voltage switchgear is responsible for power control, protection, measurement, 
transformation and distribution in low-voltage power supply system. For the reliability evaluation 
of low-voltage switchgear with high reliability and long life, traditional reliability assessment 
method needs to obtain sufficient data by a large number of sample life tests which is time-
consuming, costly and inefficient [1]. Therefore, the rational use of empirical and historical data 
to determine priori distribution can lay a solid theoretical foundation for the reliability evaluation 
of low-voltage switchgear. 

Bayes method can make good use of not only the field test information, but also priori 
information, such as historical test information, test information for similar models and the same 
type products with different conditions, and so on. And the priori information can be used to get 
the priori distribution which increases the failure data. This method has been applied in most 
fields, such as medical system [2], web [3], electrical engineering [4], finance [5], and speech 
recognition [6]. While, there is no discussion about low-voltage switchgear. 

In this paper, Bayes method is used to evaluate the reliability of low-voltage switchgear. 
The priori distribution of low-voltage switchgear is determined by maximum entropy method 
which avoids the introduction of other assumption information because of the using of priori 
information. According to maximum entropy principle, priori information can be taken as different 
contrains, and the optimal prior distribution can be selected by maximizing entropy under these 
constraints. The non-parametric bootstrap method is used to expand data capacity and then 
hyper-parameters of priori distribution is eatimated. Finally, with the bootstrap method, the prior 
distribution robustness and the posterior robustness is analyzed, and the posterior mean time 
between failures for the low-voltage switchgear is estimated. 
 
 
2. Maximum Entropy Method 

During the practical application of Bayes theory, there is some available prior 
information, but you would like try not to introduce any other assumptive information except the 
priori information. This problem can be effectively solved by the concept of entropy [7]. Entropy 
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is definited that when Θ is discrete, π is the probability density of Θ, εN(π) means the entropy of 
π. And εN(π) is defined as: 

 

     = - logN i i     


                               (1) 

 
If π(θi)=0, π(θi)logπ(θi) can be defined as zero. 
It is assumed that part of prior information about θ has been known, then these 

information can be expressed by some constraints of π(θi). The assumption is: 
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In the premise of meeting the above constraints (including Σπ(θi)=1), the obtained 

solution is: 
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Where, λk is the constant determined by the above-mentioned constraints. 

When Θ is continuous, Jaynes defined entropy as [8,9]: 
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Where, π0(θ) is the non-information prior. While people can still use the following definition. 

Part of prior information are expressed as follows: 
 

       1, ,k k kE g g d k m      
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      …                  (5) 

 
The prior density that εN(π) can be got the maximum is determined by formula (6). 
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Where, λk is a constant determined by formula (7).  
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3. The Maximum Entropy Method for the Prior Distribution of Low-voltage Switchgear 
3.1. The Joint Prior Distribution Determined by the Maximum Entropy 

The basic viewpoint of maximum entropy principle is that, to accurately infer the system 
state in the case where there is only part of the information, a reasonable state should be 
selected to meet the constraint condition and maximize the entropy. 

Formula (8) is the expression of the joint prior distribution π(η,m), and formula (9) to 
formula (11) are its constraint conditions. 
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Where, ηi, mj are the origin moments of i order and j order of two-parameter η and m 
respectively; k and n is the highest order of two-parameter origin moment respectively. 

If one-order moment and two-order moment are exist, when k=n=2, by constructing and 
solving the auxiliary fonctionelle of joint density function, π(η,m) can be known [10, 11], 
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3.2. Parameter Determination of Prior Distribution 

The bivariate normal prior distribution contains hyper-parameters which can be 
calculated by prior information. So, for the problems of small samples with insufficient historical 
data, the small sample data can be re-sampled to expand the data capacity by using bootstrap 
method to simulate the general characteristics and determine the prior information [12, 13]. 

The methods of determining hyper-parameter by using non-parametric bootstrap 
method are described as follows [14]. 

T=(t1,t2,…tn) denotes a set of obtained samples with total failure. The distribution 
parameter samples can be obtained by the following steps. 

1) The self-help sample  1 2 n, ,T t t t    …,  can be obtained by carrying out sampling with 

replacement for T=(t1,t2,…tn); 

2) m̂  and ̂  can be got from the maximum likelihood estimation with the self-help 

sample  1 2 n, ,T t t t    …, ; 

3) Repeat the previous two steps for N times, then the estimated parametric sample can 
be got: 
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ˆ ˆ ˆˆ ˆ ˆ, , , , ,N Nm m m  …，                             (13) 

 
4) The expectations and variances of m and η can be got by the obtained estimation 

parametric samples. 

m̂  and 
2
mS  denote the expectation and variance of the shape parameter m respectively, 

̂  and 
2S  denote the expectation and variance of the scale parameter η. Then: 
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By calculating the transcendental moment, the hyper-parameter expressions of the prior 

distribution can be obtained: 
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The life distribution of a certain low-voltage switchgear obeys Weibull (3600,1.5). 30 
samples are randomly generated as the historical failure data, that is the prior information, as 
shown in Table 1. 

 
 

Table 1. Historical Failure Data of Low-voltage Switchgear (unit: hours) 
950 6439 3432 2201 1273 809 5552 3746 5365 5140 

2708 5328 280 3315 1849 6039 4144 3090 2384 2050 
1836 7962 3044 3254 1950 2400 2034 1330 1607 840 

 
 
The parameters of the bivariate normal prior distribution are as follows: 
 

2 2
m1.69, 0.0509, 3740, 180121m                             (17) 

 
Then the prior density function of low-voltage switchgear can be got: 
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3.3. Robust Analysis of Prior Distribution 

Before using the prior distribution, it is necessary to analyze its impact on the posteriori 
statistical inference results, which is known as the robust analysis of prior distributions [15, 16]. 

A way to deal with priori uncertainty is to try to exclude the priori which should not be 
considered in the aspect of data from the considered priori. Marginal density m*(t/π) can play a 
very important role because it is known as the relative likelihood marginal distribution functions. 
The marginal distribution values of relative likelihood functions represent the relative probability 
of field test samples with π(η,m) as the prior distribution. 

m*(ti /π), i=1,…N can be calculated when the field samples (t1,t2,…tN) are obtained. The 
prior distribution can be considered conforming to the field test data, which shows the prior 
distribution π(η,m) can be determined to be robust, if the value of m*(ti /π) is not particularly 
small. For two-parameter Weibull distribution, the relative marginal likelihood function of joint 
prior distribution π(η,m) is [17]: 
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To ensure the compatibility of prior information and the field testing information, the 

following test data (T1,…T10)=(885, 2165, 3560, 9001, 2036, 1110, 5602, 1630, 7187, 3720) as 
the field test information will be put into the following formula, 
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The relative marginal likelihood function values can be summarized in Table 2. 
 
 

Table 2. Relative Marginal Likelihood Function Values of Prior Distribution 
The first group The second group The third group The forth group The fifth group 

0.5518 7.295 3.536 48.81 0.1241 
The sixth group The seventh group The eighth group The ninth group The tenth group 

3.719 5.701 2.568 0.5819 91.73 
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4. The Posterior Distribution and Reliability Estimation of Low-voltage Switchgear 
Based on Bayes principle, it is assumed that the field life data of low-voltage switchgear 

is T=(t1,t2,…tn), then the likelihood function can be expressed as: 
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The joint posterior distribution of parameter η and m can be expressed as: 
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Then the point estimate of the posterior distribution can be obtained: 
 

1 2 1 2
ˆ ˆ( | , ) 3960, ( | ,t ) 1.5466n nE t t t m E m t t                      (23) 

 
Finally, the estimation of posterior mean time between failure of the low-voltage 

switchgear is: 
 

 ˆ ˆ1 1/ 3562hMTBF m                                (24) 

 
 
5. The Posterior Robustness Analysis of Low-voltage Switchgear 

Formula (12) can be rewrittened as follows: 
 

   2 2: ,m ~ , , ,m mN                                    (25) 

 
Where, 
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Cη and Cm are the value intervals of η and m, which is determined by the experience of 

experts. Also it is assumed that the acceptable maximum posterior expected loss within this 
confidence interval is γ. The posterior distribution π(η,m/T) can be obtained according to the 
Bayes formula after the field date T is obtained. The parametric range of prior distribution whose 
posterior expected loss is no more than γ can be calculated by: 
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In fact, it is difficult to calculate the parametric range of prior distribution by sloving the 

inequality (27). However, prior information can be used to get a set of parameters, based on 
which it is assumed that some of these parameters are constant, then change other parameters 
to get the approximate range of parameters. 

In addition, by combining with the prior information and self-help sample methods, the 
sample mean and sample variance of the parametric samples can be obtained: 

 
2 2 5ˆˆ 1.44, S 0.025, 2962, S 1.98 10mm                    (28) 

 
Then a set of hyper-parameters of prior distribution can be got: 
 

2 2 51.44, 2962, 0.025, 1.98 10m m                             (29) 
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A set of field samples T can be obtained by sampling method, as shown in Table 3. 
 
 

Table 3. A set of Field Samples With Censored Data (unit: hours) 
Complete failure data 203 323 934 1583 1947 1961 3206 

Censored data 783 1353 1016 3097 3300   

 
 

The posterior distribution π(η,m/T) can be obtained based on the test information of 
field samples. 

To judge the robustness of the posterior distribution, it is necessary to know the 
parameter range of the prior distribution. The most commonly used method to get the range is 
by solving marginal distribution of every parametric obtained based on the posterior distribution. 
When solving, it is adopted to fix three parameters and chang another parameter. Then the 
parametric range of prior distribution is got by analyzing the obtained posterior expected loss. 

According to their experience, experts provide the confidence intervals Cm=(1, 1.7),  
Cη=(2500, 3500) and the acceptable maximum posterior expected loss γ=0.2. Other parameters 
in the prior distribution are fixed, and μη is calculated through formula (30) with 50 as the unit 
and the value got from 2500 to 3500 in turn. 
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Where,
2 2 51.44, 0.025, 1.98 10m m       . Results are summarized in Figure.1. 
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Figure 1. The posterior probability with different μη 
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Figure 2. The posterior probability with different variances when μη=2800 and μη=3300 
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It can be shown that in the confidence interval Cη=(2500, 3500), when μη is changed 
between 2800 and 3350, it can be sure that the posterior expected loss ρ is less than 0.2. 

The posterior probability of 
2
  changed from 51.0 10  to 52.5 10  are showm in Figure 2 

when μη  is 2800 and 3300 respectively. It can be known that the posterior expected loss is less 

than 0.2 when μη is changed between 2800 and 3300, Cη=(2500, 3500), and 
2 52.2 10   . 

The same method can also be used to calculate the range of μm when Cm=(1, 1.7) and 
ρ≤0.2. Then it can be got that the value range of μm is changed between 1.1 and 1.54. 

Therefore, the prior distribution can be choosed by: 
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It can be sure the posterior expected loss is less than 0.2 within the given confidence 

intervals if the parameters of prior distribution are taken values in a wider range. Therefore, the 
prior distribution is robust. 
 
 
6. Conclusion 

According to the maximum entropy principle, it takes kinds of priori information as 
different constraints. The optimal prior distribution is selected by maximizing entropy under 
these constraints. The obtained prior distribution not only contains the known prior information 
but also avoids the introduction of other assumption information. Taking the historical failure 
data of low-voltage switchgear as priori information, these hyper-parameters of prior distribution 
were estimated to get the prior density function by two-order moment of prior information. 
According to the field test data, it can be obtained that the posterior mean time between failures 
for the low-voltage switchgear is 3562 h by analyzing the reliability of low-voltage switchgear. 
When given the confidence intervals Cm=(1, 1.7), Cη=(2500, 3500)and the acceptable maximum 
posterior expected loss γ=0.2 by experts experience, the prior distribution robustness and the 
posterior robustness were analyzed with the bootstrap method. 
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