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Abstract 
To facilitate the integration of learning resources categorized under different ontology 

representations, the techniques of ontology mapping can be applied. Though many algorithms and 
systems have been proposed for ontology mapping, they do not have an automatic weighting strategy on 
class features to automate the ontology mapping process. A novel method of computing the feature 
weights is proposed. By feature semantic analysis, the different entities similarity calculation model and 
weight calculation model were defined. The results show that it makes the ontology mapping process more 
automatic while retaining satisfying accuracy. Improve ontology mapping effectiveness. 
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1. Introduction 

Being one of the best instrument of knowledge presentation and the basis of semantic 
web technologies, ontology is mainly described with RDF (Resource Description Framework) 
and OWL(Ontology Web Language) released by W3C besides CYCL, DOGMA, F-Logic and the 
like developed and used by other organizations. Currently, domain ontology has been applied in 
many fields such as artificial intelligence, software engineering, library science and semantic 
web[1],[2]. The resources represented by different ontologies in different fields would be 
integrated and classified via ontology mapping. As the key factor of ontology mapping, the entity 
similarity measurement can be generally divided into three methods with different bases, 
namely, terminology, structure and semantics. Besides, the process of mapping can also be 
classified into three types, namely, manual, semi-automatic and automatic [3],[4]. 

Influenced by factors such as classification scheme, representation language, and 
background knowledge, the ontology in a same field may appear quite different. Therefore, 
when studying the issue of ontology mapping, besides the researches on the class matching of 
different entities, the features (i.e. relations) between them also matters. Generally, the system 
of ontology mapping possesses two strategies, namely, single strategy and multi-strategy [5],[6]. 
When multi-strategy is adopted, different similarity measurements shall be combined into a 
single one properly. During the process, most weight distribution of resources is made based on 
the experiences or experiments of the experts nowadays, while this method remains time-
consuming and unstable when used in Web resources represented by different ontologies[7],[8].  

Ontology mapping is a kind of process in which the entity of the source ontology 
(including class and features) would be mapped and represented by a target ontology, and the 
similarity measurement also includes other related entities owing to certain relational features 
besides the entity itself. A concept of “universality” among classes in ontology representation is 
proposed in this thesis: if a feature possesses a high universality, the partition degree of a class 
would become low and the similarity would thus remain indistinguishable, namely, the larger a 
feature’s universality becomes, the smaller the weight will get. And the following comes the 
detailed explanations. 
  
 
2. Semantics Features 

Since the ontology possesses many feature types such as tags, annotations, attributes, 
relations (parent class and subclass) and examples, the distinctive feature among entities is 
called “uniqueness” [9],[10]. As a hypothesis, if the ontology of a feature is unique, meanwhile 
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there is a class with same features in another ontology, then we consider the above ontologies 
equal to each other. Just as we can easily distinguish human beings when they were put into a 
group of animal by noticing the feature of “thought”, since they are the only species who 
possess the ability of thinking. On the contrary, since they maintain the same features, it is hard 
to distinguish them when in a crowd.    

This thesis defines  21 ,ccCom f  as two different semantic forms which represent two 

feature-based ontologies with different feature types in related semantics similarities. For 
instance, related semantics for the string type “tag” and “annotation” might be a set of 
synonyms, while the relational semantics of a related feature might be a set of classes which 
connect via certain relations. If value(c,f) is defined to express Feature f’s value of Class c, and 
sem(f,c) to express Feature f’s semantic associated value of Class c, the formula for the value 

of Feature f, ontology c1 and c2 and  21,ccComf  can be defined as follows: 

 

     
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Among which sem(f,c1) and sem(f,c2) are respectively the synonyms of value(c1,f) and 

value(c2,f). Besides, the similarities between binding property f, c1 and c2 can also be defined as 
follows: 
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Moreover, as for the value of relational features such as “parent class”, “subclass” and 

“example”, it can be considered as a collection of ontologies which originate from a certain 
feature. And the relational features of c1 and c2 could thus be defined as the follows: 
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The value of conceptual feature  21 ,ccCom f  drawn from the above calculation can 

be used to calculate the value of weight of a feature. If we define O as the ontology, C for a set 
of entities which belongs to O, F for a group of features of C, which include “tags”, “annotations”, 

“parent class”, “binds”, “relations”, “examples” and the like, the  21 ,ccCom f  definition of a 

feature is as follows:  
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Among which n represents the amount of classes in C; and ci, cj are the classes of C, 

the weight of Feature f could thus be defined as the follows: 
 

ff CMW  1                                                                                  (5) 

 
 
3. Similarity Measurement 

If the weight of the entity features represented by the two ontologies is worked out, the 
similarity measurement of different classes can be calculated by integrating various feature 
weight, for the similarity measurement of class and feature inter influences each other during 
the process[11],[12]. Since a class is described by a set of features, the similarity of features 
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should be taken into account when doing similarity measurement. When make ontology 
mapping, iterative algorithm would be adopted in this thesis.    

Definitions: original ontology  111 , FCO  , target ontology  222 , FCO  , c1 and c2 

for class collection, F1 and F2 for feature collection. 1
ie  and 2

je  for entities, and the classes and 

features also belongs to their ontologies O1 and O2. In order to benefit the expression of the 

aforementioned algorithm, related variables are defined as follows:  21, jik eeSim  for the entity, 

and the similarity weight for 1
je  and 2

ie  would be worked out after applying the iterative 

algorithm for k times and it would also be represented by  21, jik eeISim . 
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The entity 1
ie  which described by a set of feature collection can be defined as

       11
2

1
1

1 ,,)( iliii efefefeF  , among which 1Fft  , lt ,1 . Another entity which 

described by a set of feature collection can also be defined as
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iterative algorithm    2121 ,max, mikmjik eeISimeeISim  for k times, an adjusted result 

  21
jik eeA   can be worked out via calculation. In order to calculate  21

1 , jik eeSim  , we defines 

     mkkk gAgAgAVF ,),(, 21   to adjust  2
jeF  to  1

ieF . And related Formula 7 is as 

follows: 
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Among which the attribute value of SIMk is based on its type: 
(1) If X and Y are not in the same type, then SIMk(X,Y)=0 
(2) If X and Y are in the same type such as “character type” or “numeric type” and X=Y, the 

SIMk(X,Y)=1, otherwise:  
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(3) If X and Y are both entity sets, then: 
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As is shown in Figure 1 the ontology representation of synonyms, the formula of 

similarity measurement of “Book”, an entity in the source ontology and the one in target ontology 
is as follows: 
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Among which Similarity On Superclass, Similarity On Label and Similarity On Subclass 

are the corresponding similarity of features (Simk) and the feature weight (W) for features, 
super-class and sub-class by running the similarity measurement.  
 

        
 
Figure 1. The Ontology Representation                Figure 2. Comparison on Experimental  
                       of a Sample 
 
 
Results 

During the process of round-robin, if nearest adjustment function Ak+1 and the similarity 
function Simk+1 are in the same value with Ak and Simk, then end the circulation and iteration. 
The adjustment algorithm is as follows: 
PROCEDURE: Ontology Mapping  
INPUT: Ontology O1,O2 

OUTPUT: Alignnment A 
  BEGIN 
     W1=ComputeWeight(O1) 
     W2=ComputeWeight(O2 ) 
     A0=ComputeInitialAlignment(O1, O2) 

Sim0=ComputeInitialSimilarity (O1, O2,A0) 
k = 1  
WHILE k≠-1 
   FOR ei in O1 
      FOR ej in O2 
       PUT(Simk, ComputerSimilarity(ei , ej , Ak-1))  
      END_FOR 
    END_FOR  
    Ak= GetAlignment(Simk)  
    IF Simk≒Simk-1 AND Ak≒Ak-1 THEN  
       k = -1  
       ELSE  
           k = k +1  
           END_IF  
       END_WHILE  
       OUTPUT(A)  
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   END_BEGIN  
END_PROCEDURE 

 
As is shown in the above algorithm, if the respective entity number for Ontology O1 and 

O2 is n and m, the time complexity of the very algorithm would be O (n×m). 
 
 
4. Experimental results and Analyses 

The test data of this thesis is OAEI 2009 Corpus (http://oaei.ontologymatching.org/), 
and the evaluation of the performance standard remain to be precision rate, recall rate and F-
measure [13]. The respective definitions of the calculation formula are as follows:  
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The test data includes 33 identified classes, 24 relations, 44 attributes, 56 examples 
and 20 examples with no attribute. The experiment has also compared the proposed method 
(AFW) with Lily, MapPSO, and TaxoMap, and as is displayed in Figure2 below, owing to the 
adoption of automatic feature weight calculation, the matching efficiency and the three 
performance standards have been improved significantly. 

 
 

5. Conclusion 
By emphasizing the importance to represent features via the method of weight and 

analyzing the semantics of features, this thesis has designed the computing model of entity 
weight and calculated the similarity weight among various relations. Due to the adoption of 
iteration method and automatic feature weight calculation, the Ontology-mapping efficiency has 
been improved in related experiments. Besides, it also possesses better characteristics in 
precision rate, recall rate and F-measure when comparing with other systems. Priorities would 
be given on the studies of improving the robustness and adjustable capability of the algorithm in 
the near future.   
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