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Abstract 
This paper presents one new algorithm for local community discovery. It employs a new vertex 

selection strategy which considers not only the boundary structure of candidate local community but also 
the probability which the investigated vertex will return to the candidate local community. A local random 
walk is adopted to compute this return probability which does not require the global information. We 
choose four algorithms for comparison which are the best ones existed by far. For better evaluation, the 
datasets include not only the computer generated graphs in standard benchmark but also the real-world 
networks which are classical ones in global community discovery. The experimental results show our 
algorithm outperforms the other ones on the computer generated graphs. The performance of our 
algorithm is approximately the same with the algorithm proposed by Luo, Wang and Promislow on real-
world networks. 
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1. Introduction 

Extracting community structures in complex networks has gained much attention 
recently. Generally, networks can be modelled as graph ( )G V E  , where V  is a set of vertices 

representing individuals and E  is a set of edges that show the interaction between the vertices. 
There is no universally accepted definition of community. Conventionally, a community of a 
network is a group of vertices that are densely connected amongst themselves while being 
sparsely connected to the vertices outside the group. Usually, the vertices of one community 
exhibit certain common characteristics.  

Many algorithms have been proposed to discover community structure in real world 
networks. However, these algorithms are supposed to find the entire community structure of the 
graph. This constraint makes these algorithms cannot handle the dynamic networks and the 
large scale networks. Unfortunately, networks in real world usually are larger than the scale can 
be settled by the fastest algorithms [1].  

Recent works focus on finding local community structure, which detects the community 
given a start vertex. This task has many scenarios in daily applications. For example, the police 
might like to quantify the local communities of a suspect given his social network. Several 
methods have been proposed to extract local community. However, they suffer in one or more 
ways. For instance, proposed algorithms in [2],[3] are designed to process the graphs which has 
a minimal connected initial topology. The methods [4]-[6] in require some degree of global 
information obeys ascertain partitions. The algorithm in [7] is presented for dynamic networks. In 
addition, its time complexity is too high which is 4( )O V   larger than many global community 

discovery algorithms.  
Due to above limitations, these methods are not widely used. Currently, the popular 

methods for finding local community are [8]-[10] which will be discussed further in Section 3. 
Local community can be formally defined as follows: Given an undirected graph ( )G V E   and 

a start vertex s V . In the absence of the global knowledge, a subgraph ( )s s sG V E   is 

extracting from G  containing the start vertex s , where s  is densely connect with the vertices of 

sV  than the vertices of sV \V . 
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The algorithms of [8]-[10]  have the following problems: Clauset’s algorithm [8] give 
hierarchical community while not output a certain local community. The algorithm proposed by 
[9] and [10] perform well on the graphs which contains significant local communities but work 
poor on the graphs without strong community structure. In addition, the correctness of these 
algorithms drop dramatically when process the vertices that lie on the boundary of local 
community. The reason is that they are designed mainly on the greedy of local community 
measure. The merging and removal of vertex in the temporary local community just investigate 
the boundary. Therefore,  these methods could not explain why the output local community is 
relevant with the start vertex. The limitation will affect the further application of the found local 
community. In the following section, we will present one measure to the relevance of local 
community and the start vertex. 

This paper proposes one new algorithm for extracting local community. The vertex 
selection of our algorithm considers only the boundary structure affected by the insertion of 
vertex but also the probability which the vertex will return to the candidate local community. This 
return probability is computed by a local random walk which does not demand the global 
structure of the graph. We compare our algorithm with four algorithms which are the best ones 
known by far. The datasets includes not only the computer generated ones in standard 
benchmark but also the ones modelled by real-world networks which are classical ones in global 
community discovery. The latter ones represents different type of community structure which 
helps to evaluate the algorithms. The experimental results show our algorithm outperforms the 
other ones on the graphs in the standard benchmark, and performs almost the same with the 
algorithm proposed by Luo, Wang and Promislow [9] on real-world datasets.  

The rest of this paper is organized as follows: Section 2 presents the related works. The 
proposed algorithm is given in Section 3. The evaluation of the algorithm on artificial and real-
world datasets is illustrated in Section 4. Section 5 discusses some furtherer improvement. 
Finally, Section 6 concludes the paper. 
  
 
2. Related Works 

This section describes three state-of-the-art algorithms for detecting local community. In 
addition, we provide formal definitions of related measures.  

Firstly, Clauset gave the definition of local modualarity [8] as the portion of the 
connecting edges in the boundary edges, where connecting edge denotes the edge connects 
the vertex in the local community to the vertex outside the community.  

Let C  denotes the local community and B  be the vertices comprise the boundary in 

which each vertex has at least one neighbor not in C . The boundary-adjacency matrix is 
defined by Clauset [8] as  

 
1 if vertices and are connected

and either vertex is in

0 otherwise
ij

i j

B B


 
 

  (1) 

 
Based on this, Clauset proposed the measure "local modualarity" to be  
 

( )ijij

ijij

B i j
R

B

 




 (2) 

 
where ( )i j   is 1 when either iv B  and jv C  or vice versa, and is 0 otherwise. By means of 

this measure, one community is expected to have few connections from its boundary to the part 
outside the community, while having a greater proportion of connections from the boundary 
back into the community.  

Clauset gave a greedy method on the local community measure "local modualarity". But 
the output is a hierarchical community containing given vertex which doesnot show the region of 
local community.  
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Luo, Wang and Promislow [9] proposed several algorithms based on the framework 
maintaining two vertex queues: adding queue and deleting queue. The merging of the vertex in 
adding queue and the removal of the vertex in deleting queue will both increase the local 
community measure. The algorithm repeats computing the these two queues and performing 
addition and removal operations until these two queues are empty; that is, adding any vertex 
into C  nor removing any vertex in C  will improve the measure. At that time, the community C  
will be output. The employed measure M  is defined as follows:  

 
( )

[ ][ ]

ijij

ijij

B i j
M

B i C j C

 


 



 

(3) 

 
where [ ]i C  equals 1 when i C , otherwise 0. The definition of [ ]j B  is similar.  

Luo, Wang and Promislow provided three versions of proposed algorithm [11]: greedy 
addition, add-all addition and K-like move. Stated by [11], the algorithm using add-all addition 
performs best among these three versions. We implement the versions of the add-all addition 
and greedy addition, denoted by allLWP  and greedyLWP , in our experiments.  

Recently, Bagrow [10] employed the greedy measure "outwardness" to select vertices 
merging into local community. The outwardness of vertex v  with respect to community C  is 
defined as:  

 

( )

1
( ) ([ ] [ ])

( )v
i v

C i C i C
v 

    
      (4) 

 
where ( )v  are the neighbors of v .  

Bagrow [10] defined a p -strong community as stopping criteria. A community C  is 

called p -strong if a fraction p  of vertices in C  satisfy that they have more neighbors inside C  

than outside. Bagrow [10] stated multiple values of p  can be used simultaneously.  

From the above introduction, it concludes that these three algorithms adopt greedy 
strategy on respective measures. Unfortunately, these measures are defined mainly on the 
boundary edges. They do not consider the start vertex directly. For example, LWP’s algorithm 
has to determine whether the start vertex lies in the resulting local community since it contains 
removed operation. In addition, this shortcoming will be more prominent when the start vertex 
lies on the boundary of local community, which will be discussed further in the section 
presenting the experimental results. 
 
 
3. Proposed method: Local Community Discovery Algorithm using Local Random Walk 

Different from current methods, our algorithm dedicates to evaluate the relation of local 
community and the start vertex instead of investigating the boundary of local community only. 
To achieve this, we employ local random walk strategy to compute the visit probability of the 
vertices which will be used for the vertex selection. Next, we introduce the random walk strategy 
and our local random method.  

There are various random walk strategies on graphs such as Markov chains [12], 
quantum random walk [13] and random walk based on vertex degree distribution [7], etc. This 
paper develops one new local random walk based on Marov chains. Necessary definitions are 
give, at first.  

Let ( )G V E   be a connected graph with n  vertices and m  edges. Consider a random 

walk on G : start with vertex 0v ; at the t -th step, we assume the probability that move to a 

neighbor of tv  is 1 ( )td v , where ( )td v  is the degree of tv  (equivalently, the number of 

neighbors of tv  ). Then, the sequence of these random nodes ( 0 1 )tv t      is a Markov chain. 

We denote the matrix of trasition probabilities of this Markov chain by ( )ijM p  where i j V  . 

We have  
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1 ( ) if ( )

0 otherwiseij

d i i j E
p

  
    

 (5) 

 

We denote the probability that vertex u  is visited at step t -th by 0 ( )v
t u . The Vector 

0v
t  stores the probabilities of all vertices in graph G . Then,  

 
0 0
1

v vT
tt M    (6) 

 
This paper adopts the version of random walk with restart, because we wish to reveal 

the relation of the start vertex and other vertices. The formula is  
 

0 0
01 (1 )v vT

tt M c e        (7) 
 
where 0e  is one vector of which the value of 0v ’s position is 1 and other values are 0. Then, 

0c e  in Formula (7) indicates that random walk has probability c  to restart with 0v  at each step.  

It is necessary to mention that the computation of Formulas (6) and (7) requires the 
global information of graph. Therefore, we could not employ directly. We propose one 
approximate computation of random walk with restart when searching the candidate subgraph. 
In addition, we use adjacency list to store the transition probability ijp  instead of matrix M . 

Then, the probability 0
1

v
t   can be computed by the following formula:  

 
0

0

0

0
( )

1

0
( )

( )
(1 )

( )
( )

( )(1 )
( )

v
t

v uv
t v

t

v u

u
u v

d v
u

u c u v
d v









 




 

 



  




  (8) 

 
where ( )u  denotes the neighbor set of vertex u . We can search the adjacency list of vertex u  

to obtain ( )u . Then, this computation will not demand global adjacent information; that is, can 

be calculated locally.  
Furthermore, we restrict the probability computation within the searching subgraph and 

the outside boundary. Formally, denote current subgraph by subG  and outside boundary by OB . 

Then, OB  can be formulated by  
 

{ ( ) }sub subOB u u v v G u G        
 

Therefore, Formula (8) is changed into:  
 

0

0

0

0
( )

1

0

( )

( )
(1 )

( )
( )

( )(1 )
( )

sub

sub

v
t

v u v G OBv
t v

t

v u v G OB

u
u v

d v
u

u c u v
d v









   




   

 



  









  (9) 

 
We next introduce the vertex selection strategy of our algorithm. 

We select one vertex to add into the current community at each step. Our goal is to 
select the vertices which lie in the same local community as the start vertex. Therefore, the 
visiting probability which travels from the start vertex is suitable for consideration while choosing 
vertices. Suppose u  is the vertex which is evaluating for choosing. Beside the value of visiting 
probability of u  at step t , we also measure the fraction of probability which u  will go back into 
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the current candidate community at step 1t  . We next present the measure of selection, 
formally.  

Let subG  be the candidate community at step t  and OB  be the outside boundary of 

subG . Thus, the vertices of set OB  are candidates for choosing to be merged into subG . Let 

0 ( )v
t u  be the visiting probability of vertex u  while the start vertex is 0v . Then, our measure for 

choosing vertex u  is defined as:  
 

0

0

0

0

0

0

( ) 2

( )

( )

( )
( ) ( ) ( )

( )

( )
( )

( )

sub

sub

sub

v
tv G v uv

t v
t

v
tv G v uv

t v
v G v u t

v
u u

u

v
v

u











  

  

  

  

 






 (10) 

 

The item 
0

( )

0

( ) 2

( )
( )

v
tv G v usub

v
t

v

u




  

 forces that the vertices has high “return" probability obtain 

high priority to be selected. The reason that exponent number is set to 2 arises from the 
following two aspects: (i) if the number is set to 1, this measure also works but not as good as 

that equals 2. Because when exponent number is 1, the measure equals 0

( )
( )

sub

v
tv G v u

v
   , 

which shows the sum of visiting probability of the neighbors of v  in subG . It does not indicate 

the fraction of probability which the vertex will return to the candidate local community. Since 
one vertex has higher “return" fraction, the vertex bears closer connection with the start vertex. 
Therefore, we do not set the exponent number to 1; (ii) We have tested the number is larger 
than 2. The results of selection is almost the same.  

In brief, we choose the vertex has maximum value of   to be merged into the 
candidate community subG . Then, recompute the visiting probability and the values of   until 

satisfied the stopping criteria.  
The stopping criteria of existed algorithms is too simple. For example, most algorithms 

such as greedyLWP  and allLWP  algorithms [11] halt when there is no insertion or deletion of 

vertex can improved the measure. On the other hand, several algorithms such as Bagrow’s 
algorithm [10] stop when their measures reach the desire thresholds. Furthermore, some 
algorithms does not stop until searching the whole graph. One instance is the algorithm 
proposed by Clauset [8]. We next present the stopping criteria for our select-and-merge 
procedure.  

Our algorithm employs the measure M  defined by Formula 3 to mark "potential" local 
communities. Since our algorithm merges the vertices one by one, it is straightforward that 
measure for evaluation will increase or decrease dramatically if potential local community is 
found and this local community is significant. We denote these increasing or decreasing points 
by "jumping" points. Then, we record the potential local communities which are indicated by 
these increasing or decreasing points. Finally, we determine output which local community as 
result.  

We now discuss the jumping points further by different cases. Let tm  be the value of 

measure M  at step t .  
Case 1: Increasingly jumping point. We call tm  is one increasingly jumping point if the 

following proposition holds  
 

11 1 1 1 1 1 1( ) ( ) ...... ( )t t t t t t nm m m m m m                (11) 

 
where 1  and 1n  are parameters such that 10 1   and 1n  is a positive integer. One example 

is illustrated on the left of Figure 1. This type of jumping point shows that one vertex which is not 
in the same local community as start vertex is merged into the current community. Therefore, 
we record the community at step 1t   as one potential community in this case.  
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Figure 1. Different cases of jumping points  
 
 

Case 2: Decreasingly jumping point. When the values of M  drop dramatically, it 
probably finds one local community. However, it usually discovers one major part of the local 
community not the whole at that step. The values of M  usually will still decrease in the 
following steps. Therefore, it requires to find the following step of which the values of M  
change sightly or increase.  

We call tm  is one decreasingly jumping point if the following proposition holds  

 

2

2

2

1 2 2 2 2

1 2 2 2 2

1 2 2 2 2

( ) ( ) ...... ( )

( ) ( )

( ) ( ) ...... ( )

( ) ( ) ...... ( )

k k k k k k n k

t t t t t m t

t t t t t m t

m t m m m m m m

k qt t t

m m m m m m

m m m m m m

  

  

  

  

  

       

           

   
         

         

  (12) 

 
where 2 , 2  and 2n  are parameters such that 2 20 1     and 2n  is a positive integer. By 

Formula 12, it is supposed that variable t  must be the smallest value of which the 
corresponding M  value indicates the flat or increasing segment. This constrain guarantees that 
it obtains the correct flat or increasing segment after one dramatically decreasing step.  

An example of decreasingly jumping point followed by a flat segment is displayed on the 
middle of Figure 1. On the other hand, the case followed by an increasing segment is shown on 
the right of Figure 1. Since the flat segment or increasing segment begins at step t , we record 
the community at step t  as one potential community in this case.  

We next present the procedure of our algorithm as follows: 
  

Local Community Discovery Using Local Random Walk 
Input: graph G  with adjacent list AL , start vertex 0v ,  

Parameters：  1 , 1n , 2 , 2 , 2n , 2m  and    

Output: local community 0( )localG v   

Set 0{ }subG v  and 0
0 1v  ;  

Use vertex set OB  to store the outside boundary of subG , set OB  ;  

For ( 1t  ; 3t  ; t   ) {  
Update the boundary OB  of subG ;  

Compute 0v
t  for all vertices in subG OB  by Formula 8;  

Insert the vertex u , which ( )u  is maximum, into subG ;  

}  

0

0.2

0.4

0.6

0.8

1
Case 1

Merging Sequence

M

0

0.2

0.4

0.6

0.8

1
Case 2 (flat segment)

Merging Sequence
M

0

0.2

0.4

0.6

0.8

1
Case 2 (increasing segment)

Merging Sequence

M
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Do {  
Update the boundary OB  of subG ;  

Compute 0v
t  for all vertices in subG OB  by Formula 9;  

Insert the vertex u , which ( )u  is maximum, into subG ;  

Compute tm  which is the measure M  for subG  by Formula 3;  

Determine whether tm  is a jumping point at current step t ;  

If it is, record the jumping point;  
1t t  ; }  

While ( subG  is small than G  and 1tm   )  

Output the subgraph of the first jumping point as 0( )localG v .  

 

The reason that we use Formula 8 to compute 0v
t  when 1 3t   is we wish to know 

visiting probability of the vertices which are very closed with the start vertex 0v  (that is, the 

vertices of which the distance from 0v  is no larger than 3). Though this computation is not as 

correct as the classical random walk, it is sufficient for the vertex selection. Moreover, our 
algorithm just outputs the local community found by the first jumping point. It does not output the 
hierarchical community according to our problem statement.  

We next present the time complexity of our algorithm. It needs 3(( ) )avgO Deg  time to 

compute 0v
t  for 1 3t  , where avgDeg  is the average degree of the vertices in graph G . For 

the remained step 3t  , the running time is bounded by 2
0( ( ( )) )localO V G v  . In the worst case, it 

is 2( ( ) )O V G  . Usually, the result community 0( )localG v  is much smaller than the whole graph G

Thus, our algorithm runs in 3 2
0(( ) ( ( )) )avg localO Deg V G v    time in average. 

 
 
4. Experiments for Evaluation 

In this section, we employ the benchmark method proposed by Bagrow [10] to give an 
objective comparison with the existing algorithms for finding local community structures. 
Bagrow’s method [10] uses computer generated networks. Besides these artificial networks, we 
also evaluate the algorithms on famous real-world datasets which show different structures of 
local community.  

Computer generated networks: In Bagrow’s benchmark, it creates a classical graph 
( )G V E   of ( ) 128V G  , which is then randomly partitioned into four reference communities to 

contain equal number of vertices (32 vertices). Each vertex has an average degree 
16in outz z z   , where out-degree outz  equal the number of edges connect the vertices 

outside the communities. It is Clear that a small outz  shows a strong community structure. In 

order to evaluate the performance less affected by randomness, we generate 100 graphs for 
each outz  from 1 to 7.  

Real-world datasets: We choose some famous datasets modeled by real-world graphs 
such as karate club network [1], US college football league [14] and dolphin social network [15]. 
These graphs has different structures of local community.  

Karate club network contains 34 members as vertices and 78 edges representing 
friendship between members. Due to a disagreement between the club’s administrator and the 
club’s instructor, the club splits into two smaller communities. In addition, these two 
communities are prominent.  
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Figure 2. Karate club network  
 
 

The US college football network is constructed from the game schedule of the 2000 
season. The nodes in the network represent the 115 teams, while the edges represent 613 
games played in year. The teams are divided into 11 conferences of 8-12 teams each and 
generally games are more frequent between teams of the same conference than between 
teams of different conferences. Therefore, the community structure is strong in each 
conference.  

The dolphins social network studied by David and Lusseau [15] was constructed from 
observations of a community of 62 bottle-nose dolphins. This network is divided into two groups 
according to their age. But the community structure is not as significant as the karate club 
network. We next provide the evaluation measures. 

Normalized mutual information (NMI) is an important evaluation criteria in local 
community discovery [16][10]. The correct partition is denoted by { }R R RP C C  , where RC  is 

the reference local community. Similarly, the found is denoted by { }F F FP C C  , where FC  is 

the result local community. A confusion matrix N  is employed in NMI measure, where the rows 
correspond to the real communities, and the columns correspond to the found communities. The 
element of N , ijN  is the number of nodes in the real community i  that appear in the found 

community j . Then, then NMI measure of similarity between the partitions, based on 

information theory, is defined below:  
 

1 1

1 1

2 log( )
( )

log( ) log( )

R F

R F

C C
ij ij i ji j

R F C C
i i j ji j

N N N N N
I P P

N N N N N N

  

    

 
 

  

 
 

 

 
where the sum over row i  of matrix ijN  is denoted .iN  and the sum over column j  is denoted 

jN .  

Thus, a NMI score of 1 shows that both communities are identical and a score of 0 is 
when these two communities are totally independent.  

On the other hand, we employ the F -measure to reveal the efficiency of local community 
discovery algorithms. Precision is the fraction of the FC  retrieved that lies in RC .  

 

F R

F

C C
precision

C

 


 


 

 
The recall is the fraction of RC  which are successfully detected by FC .  
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We adopt the weighted harmonic mean of precision and recall. That is, the traditional F

-measure is  
 

2

( )

precision recall
F

precision recall

 



 

 
The parameter setting is given as follows: Formula 11 shows the conditions that one 

step is considered as one jumping point: 1  represents increasing gap and 1n  requires how 

many consecutive points should reach the gap. Similarly, 2  and 2n  represent the decreasing 

gap and the number of consecutive points obtaining the gap, respectively. In addition, 2  

stands for the threshold of one flat segment and 2m  show the number of consecutive points of 

which the values should not go beyond the threshold.  
In our algorithm, we set 1 0 05   , 2 0 03   , 2 0 0015    and 1 2 2 3n n m    for all the 

datasets.  
Since the measure M  will diminish to 0 when the subgraph subG  covers the whole 

graph G , it is supposed to halt the search while subG  is too large. In this case, there is probably 

no significant local community containing the start vertex 0v . We use parameter   to stop the 

algorithm when measure M  is too small. The parameter   is set to 0.15 in our algorithm.  

We compare our algorithm, denoted by LRW , with the state-of-the-art ones by far 
which are Bagrow’s algorithm [10], nLWP  and ALWP  proposed by Luo, Wang and Promislow 

[11].  
It is note that we choose the best p  in range {0 75 0 76 1}      for all the datasets 

according to Bagrow’s algorithm. We found overall performance is best when 0 9p    which 

coheres to the result in [10].  
 
 

Table 1. Results on real-world datasets  
karate   football   dolphins   

LRW Bagrow LWPn LWPA LRW Bagrow LWPn LWPA LRW Bagrow LWPn LWPA 

Favg 0.858 0.7709 0.7646 0.6436 0.7922 0.7027 0.9058 0.1862 0.6695 0.6685 0.5021 0.9367 

Fstd 0.118 0.1535 0.2418 0.0745 0.145 0.2991 0.1591 0.0285 0.1369 0.1473 0.2945 0.1618 

Iavg 0.5372 0.4438 0.5275 0.0332 0.6114 0.5568 0.84 0 0.3301 0.2603 0.2939 0.7597 

Istd 0.205 0.2413 0.3084 0.0812 0.2095 0.311 0.2307 0 0.1616 0.1791 0.3014 0.2583 

 
 

We enumerate each vertex as the start vertex and perform the algorithm to detect the 
local community. The experimental results are presented by Table 1, where avgF  and stdF  are 

the average and the standard deviation of F -measure, avgI  and stdI  are the average and the 

standard deviation of NMI  measure. The best values are illustrated by bold font. The nLWP  

algorithm on the dolphins dataset.  
It shows that LRW  performs best on avgF  and avgI  of karate networks. For the others, 

the results of LRW  stand the second position. It appears that the overall results of nLWP  

algorithm and our algorithm are better than the others. Therefore, we show the overall 
performance which is given by Figure 3.  
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Figure 3. Overall performance of the results on real-world datasets  
 
 

It appears that the overall performance of our algorithm is approximately the same as 

nLWP  algorithm on real-world datasets. Our algorithm works better on karate and dolphins 

datasets while poorer on football dataset compared with nLWP  algorithm. However, our 

algorithm is more stable than nLWP . One reason is that our algorithm performs best on one 

dataset and stands the second on the remained two dataset. On the other hand, the stdF  and 

stdI  of our algorithm are less than the ones of nLWP  on all datasets.  

Next, we present the experimental result on computer generated networks which is 
illustrated by Figure 4. It shows that our algorithm and nLWP  outperform the others. By the plot, 

it appears that our algorithm and nLWP  works approximately the same when outz  is small. That 

is, the community structure of test graphs is significant. While outz  goes large, the performance 

of nLWP  drops more dramatically than our algorithm, especially when 6 7 8outz    .  

 
 

 
Figure 4. avgF  and avgI  results on 128-nodes network Overall  

 
 

We summary the results and present theoverall performance on computer generated 
networks by Figure 5. It concludes that our algorithm performs better than nLWP  algorithm on all 

the evaluation measures.  
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Figure 5. Overall performance of the results on 128-nodes network 

 
 

5. Conclusions and future work 
This paper presents one new algorithm for detecting local community containing given 

vertex. The vertex selection strategy of our algorithm is different from the existed ones. The 
strategy considers not only boundary stricture but also the "return" probability of the vertex 
which is computed by a local random walk. We select the algorithm which are the best ones 
known by far for comparison. Besides the standard benchmark of local community discovery, 
we also perform experiments on the datasets modeled by real-world networks which are the 
classical ones in global community discovery. The experimental result shows that our algorithm 
and nLWP  algorithm perform almost the same on real-world datasets.  

In addition, these two algorithms outperform the others. On the other hand, our 
algorithm outperforms the other algorithms on the datasets of the standard benchmark of local 
community discovery. It improves the F-measure and normalized mutual information by about 
0.05 on average. Moreover, the results show that our algorithm is more stable than the others 
while given different vertices.  

Furthermore, our local community evaluation measure can adopt different metrics. The 
metrics for evaluating (local) community have been intensive studied, such as [17]. Once the 
quantity of the metric is normalized into [0,1], our stopping criteria is applicable. Therefore, our 
method can use this metric for local community discovery. 

Moreover, our method can be integrated to semantic network while detecting topical 
community [18]. The routine is to amend the visiting probability for one vertex to its neighbor 
which is based on topology into the measure of topical similarity. That is, the neighbor which is 
more similar has high visiting probability.  
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