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Abstract 
On the basis of the fundamental differential evolution (DE), this paper puts forward several 

improved DE algorithms to find a balance between global and local search and get optimal solutions 
through rapid convergence. Meanwhile, a random mutation mechanism is adopted to process individuals 
that show stagnation behaviour. After that, a series of frequently-used benchmark test functions are used 
to test the performance of the fundamental and improved DE algorithms. After a comparative analysis of 
several algorithms, the paper realizes its desired effects by applying them to the calculation of single and 
multiple objective functions. 
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1. Introduction 

In the scientific research and engineering design, many specific problems can be 
summarized as the problems of parameter optimization. However, in practice, these 
optimization problems usually have multiple design objectives, which contract with and restrict 
each other [1]. The performance optimization of one problem usually leads to the performance 
degradation of at least one of the other problems, which indicates that it is difficult to make 
many objectives to reach optimization simultaneously. Therefore, the research of multi-objective 
optimization algorithm has become a research hospot in current science and engineering design 
[2]. Evolutionary algorithm is the general term of heuristic research and optimization algorithms 
inspired and developed from natural biology and system and to solve multi-objective 
optimization problems with evolutionary algorithm has been widely used [3]. 

As an important part of evolutionary algorithm, differential evolution has been widely 
used in solving optimization problems because it has simple theory, simple operation and strong 
robustness [4]. The basic principle of differential evolution is to disturb a certain individual in the 
group and search the search space; however, it is too random in choosing the individuals 
generating differences and it is easy to cause algorithm prematurity or long-time optimization so 
as to make it unable to obtain global optimization solution [5]. Besides, when settling multi-
objective optimization problems, differential evolution is affected by its own limitations, making 
the selection of mutation strategy and the setting of parameter values seriously restrict the 
performance of the algorithm [6]. 

In order to solve the above-mentioned problems, this paper has investigated the 
selection and parameter values of mutation strategy when using differential evolution in multi-
objective optimization.First, the paper makes an numerical experiment on step length F and 
crossover operator CR of the fundamental DE algorithm. And then it makes a comparative 
analysis to get the range of the optimal value of the two. To avoid the shortcomings of DE 
algorithm in handling global optimization, we make some improvements to keep the variety of 
group and accelerate population convergence. Secondly, the paper makes an numerical 
experiment on the performance of the improved algorithms and makes a comparative analysis. 
Finally, the paper uses the improved DE algorithms to solve the optimization of multiple 
objective functions. 
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2. DE Algorithm 
2.1  Basic Ideas of DE Algorithm 

DE algorithm is an evolutionary algorithm based on real-number encoding to optimize 
the minimum value of functions. The concept was put forward on the basis of population 
differences when scholars tried to solve the Chebyshev polynomials. Its overall structure is 
analogous to that of genetic algorithms. The two both have the same operations such as 
mutation, crossover, and selection [7]. But there are still some differences. Here are the basic 
ideas of DE algorithm: the mutation between parent individuals gives rise to mutant individuals; 
crossover operation between parent individuals and mutant individuals is applied according to 
certain probability to generate test individuals; greedy selection between parent individuals and 
test individuals is carried out in accordance with the degree of fitness; the better ones are kept 
to realize the evolution of the population [8]. 
 
 
2.1.1  Mutation Operation 

For each individual t
ix , generate mutant individual 1 2( , , , )t t t t T

i i i iDv v v v  in accordance 

with the following expression: 
 

1 2 3
( )t t t t

ij r j r j r jv x F x x    1,2,3 ,j D                   (1) 
 

In the expression, 
1 1 1 11 2( , , , )t t t t T
r r r r Dx x x x  ,

2 2 2 21 2( , , , )t t t t T
r r r r Dx x x x  , and 

3 3 3 31 2( , , , )t t t t T
r r r r Dx x x x  are three individuals randomly selected from the population;

1

t
r jx , 

2

t
r jx , 

and 
3

t
r jx are the components in the jth dimension of 1r , 2r , and 3r , respectively; F is the 

mutation operator that lies between [0.5,1]. So we can obtain mutant individual t
iv . 

 
 

2.1.2 Crossover Operation 
We obtain test individual 1 2( , , , )t t t t T

i i i iDu u u u   from mutant individual t
iv  and parent 

individual t
ix  in line with the following principle: 

 

 
 

 0,1   _

  0,1   _

t
ijt

ij t
ij

v if rand CR or j j rand
u

x if rand CR or j j rand

                                 (2) 

 
In the expression, [0,1]rand is a random number between [0,1]; CR , the crossover 

operator, is a constant at [0,1]; the bigger CR  is, the more likely crossover occurs; _j rand is an 

integer randomly chosen between [1,D], which guarantees that for test individual t
iu , at least 

one element must be obtained from mutant individual t
iv . The mutation and crossover 

operations are both called reproduction [9]. 
 
 
2.1.3 Selection 

DE algorithm adopts the “greedy” selection strategy, which means selecting one that 
has the best fitness value from parent individual t

ix  and test individual t
iu  as the individual of 

the next generation. The selection is described as: 
 

1 ( ) ( )t t t
t i i i

i t
i

x if fitness x fitness u
x

u otherwise
   

                                              

(3) 
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Where fitness, the objective function to be optimized, is regarded to be the fitness 
function. Unless stated, the fitness function in the paper is an objective function with a minimal 
value[10]. 
 
 
2.2 Calculation Process of DEAlgorithm 

From the principles of fundamental DE algorithm mentioned above, we can understand 
the calculation process of DE algorithm as follows: 
(1) Parameter initialization: NP : population size; F : scale factor; D : spatial dimension of 

mutation operator; evolution generation 0t  . 

(2) Random initialization of the initial population 1 2( ) { , , , }t t t
NPX t x x x  , where

1 2( , , , )t t t t T
i i i iDx x x x  . 

(3) Individual evaluation: calculate the fitness value of each individual. 
(4) Mutation operation: mutation operation is applied to each individual in accordance with 

Expression (1) to work out mutant individual t
iv . 

(5) Crossover operation: crossover operation is applied to each individual in accordance with 
Expression (2) to work out test individual t

iu . 

(6) Selection: select one from parent individual t
ix  and test individual t

iu  as the individual of the 

next generation in accordance with Expression (3). 
(7) Test termination: the next generation of population generated from the above process is 

1 1 1
1 2( 1) { , , , }t t t

NPX t x x x      ; suppose the optimal individual in ( 1)X t   is 1t
bestx  ; if it reaches 

the maximum evolution generation or meets the criteria of errors, merge and output 1t
bestx   as 

the optimal solution; otherwise, make 1t t  and return to step (3). 
 
 
2.3 Parameter Selection of DEAlgorithm 
2.3.1 Selection of Population Size NP 

In view of computation complexity, the larger the population size is, the greater the 
likelihood of global optimal solution becomes. But it also needs more calculation amount and 
time. Nonetheless, the quality of the optimal solution does not simply gets better as the 
population size expands. Sometimes, it’s the other way round. The accuracy of solutions even 
declines after population size NP increases to a certain number. This is because a larger 
population size reduces the rate of convergence, though it can keep the variety of population. 
Variety and the rate of convergence must be kept in balance. Hence, the accuracy will decrease 
if the population size gets larger but the maximum evolution generation remains unchanged. 
The larger the population size is, the greater the variety is. Therefore, a larger population size is 
needed to expand variety and prevent premature convergence of a population [11]. 

According to our previous research results, the appropriate population size for simple 
low-dimensional problems should lie between 15 and 35 in the case of given maximum 
evolution generation. In the same circumstance, the population size that maintains between 15 
and 50 helps keep a good balance between variety and the rate of convergence [12]. 
 
 
2.3.2 Selection of Scale Factor F 

Let us test the performance of scale factor F . Set the population size at 15. Make sure 
the crossover operator and the maximum evolution generation stay unchanged. 

Based on the test on scale factor F  of the banana function, we know that in the case of 
the same initial population, the results of every 30 times of running vary greatly from each other 
when 0.7F  , and we can get better local optimization and faster rate of convergence at the 
expense of lower success rate of optimization and longer running time; when 0.7F  , there are 
no significant differences between the results of every 30 times of running, and we can get 
better global optimization, shorter running time, and faster rate of convergence. 

To sum up, F , to a certain degree, can regulate the local and global search of an 
algorithm. A bigger F  helps keep the variety of population and increase the global search 
ability, while a smaller F  helps increase the local search ability as well as the rate of 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 4, December 2014: 977 – 984 

980

convergence. Hence, the value of F  should be neither too big nor smaller than a specific 
value[13]. This explains why the algorithm has good effects when [0.7,1]F  .  

 
 
2.3.3 Selection of Crossover Operator CR 

To test the effect of crossover operator on algorithm performance, we make the scale 
factor 0.9F   and set population size at 20. Make the crossover operator lie between 0 and 1. 
Set the interval at 0.1. Let the maximum evolution generation remain the same. 

The test shows the banana function can change CR . Thus, in the case of the same 
initial population, the results of every 30 times of running vary greatly from each other when 

0.3CR  , and we can get better local optimization at the expense of slower rate of convergence, 
lower success rate of optimization and longer running time; when 0.3CR  , there are no 
significant differences between the results of every 30 times of running, and we can get better 
global optimization; but when 0.3 0.6CR  , we get slower rate of convergence and longer 
running time; when 0.6CR  , we get faster rate of convergence and shorter running time[14]. 
 
 
3. Simulation Testing of Five Improved DEAlgorithms 
3.1 Five Improved DEAlgorithms 

The fundamental DE algorithm can be described as: DE/rand/1/bin. “bin” means 
crossover operation. DE/x/y/z is used to differentiate the other DE deformations. x defines 
whether the variant vector is “random” or “optimal”, y denotes the number of residual vectors 

used, and z stands for the method of crossover operation. Below are the DE deformations if we 
only consider the selection modes of base points and the number of difference vectors: 

 

DE/rand/1 
1 2 3

( )t t t t
i r r rv x F x x   

DE/best/1 
1 2

( )t t t t
i best r rv x F x x   

DE/rand/2 
1 2 3 4 5

( )t t t t t t
i r r r r rv x F x x x x     

DE/best/2 
1 2 3 4

( )t t t t t t
i best r r r rv x F x x x x     

DE/rand-to-
best/1 1 2

( ) ( )t t t t t t
i i best i r rv x F x x F x x      

 
 
3.2Several Benchmark Test Functions 
(1) Banana function 

 
2 2 2

2 1 1( ) 100 ( ) (1 )f x x x x                                          (4) 

1 23 , 3x x    
 

Global optimal solutions: 1 9.998919e 01x   , 2 9.998012e 01x   , and ( ) 0.000000f x  . 

(2) Schaffer function 
 

2 2 2 2 2 2
1 2 1 2 1 2( ) 0.5 [(sin ) 0.5] / (1 0.001 ( )) 10 , 10f x x x x x x x         

                  
(5) 

 
Global optimal solutions: 1 0.000000x  , 2 0.000000x  , and ( ) 0.500000f x   

(3) Bohachevsky function 
 

2 2
1 2 1 2( ) 0.3 cos(3 ) 0.3 cos(4 ) 0.3f x x x x x                         (6) 

 
The optimal solution is -0.24, which lies between [0,-0.24] and[0,0.24]. 
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(4) Multimodal function 
 

2 2 0.25 2 2 0.1 2
1 2 1 2 1 2( ) (( ) ) ((sin(50 ( ) ) ) 1) 5.12 , 5.12f x x x x x x x                      (7) 

 
The minimum value here is 0 and there is an infinite local minimum. 

Below are the graphs of the above four test functions: 
 
 

 
 

(a) Banana function                               (b) Schaffer function 
 
 

 
 

(c) Bohachevsky function                                (d) Multimodal function 
 

Figure 1. Four benchmark test functions 
 
 

 
 

(a) Evolution curve of banana function           (b) Evolution curve of Schaffer function 
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(c) Evolution curve of Bohachevsky function     (d) Evolution curve of multimodal function 
 

Figure 2. Evolution curves offour benchmark test functions 
 
 
3.3 Test Results 

Test the five algorithms using the test functions introduced in 3.2. 15NP  , 0.9F  , 
0.9CR  , and the maximum evolution generation is 200. Average the results of the 30 times of 

running and we can get the evolution curves shown as in Figure 2. 
According to the results and evolution curves of the above test functions, in the case of 

the same initial population, there are no significant changes in the results of every 30 times of 
running. Besides, the five improved algorithms can optimize functions well and thus yield very 
good results. For different functions, the rate of convergence varies, so does the efficiency of 
finding optimal solutions. The five algorithms have similar optimal performance, but some 
algorithms have longer running time and some functions have better optimization. 
 
 
4. Application of DEAlgorithm in Multi-objective Optimization 

Based on the previous description, DE algorithm is of great importance in solving 
complicated optimization problems. In the next part, we use DE algorithm to solve single- and 
multiple-objective optimization problems with equality constraints or inequality constraints. 

  
 

4.1Single-objective Optimization Problem 
The standard form of single-objective optimization is generally expressed as: 
 
min  1 2 3( , , , , )nf x x x x    

s.t 1 2 3( , , , , ) 0i ng x x x x            1,2,3, ,i m   

                                       1 2 3( , , , , ) 0j nh x x x x  
     

1,2,3, ,j l                                   (8) 

                                                               i i ia x b   

 
To solve the above problems, we usually convert constrained problems into 

unconstrained ones by dint of the penalty function method. Here are its basic ideas: merging the 
constraint function of a problem into an objective function in a certain way, so that the whole 
problem is converted to an unconstraint problem. To realize it, we can produce the fitness 
function in the form of ( ) ( ) ( )W x f x rD x   
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In the expression, penalty function ( )D x  is a continuous function that meets 

0
( )

0

x X
D x

x X

 
 

. ( )f x  is the scale coefficient and 0r  . X  is the feasible region of the 

problem. Besides, we can deal with the constraint condition i i ia x b   as follows: 

 

2

1, 2,3 ,

1,2,3 ,
m i i i

m i i i

g x b i m

g a x i m




   
                                          

(9) 

 
The structure of penalty function depends on the exterior point method: 
 

3
2 2

1 1

( ) ( ( )) ( ( )) ( ( ))
i m

j i i
j i

D x h X g X g X
 

  
                         

(10) 

 

Where 
0 ( ) 0

( ( ))
1 ( ) 0

i
i

i

g X
g X

g X



    

 
For an objective function, we can first find its minima and then use DE algorithm so as 

to find the maxima of the function. The conversion method is the fitness function below: 
 

3
2 2

1 1

( ) ( ( )) ( ( )) ( ( ))
i m

j i i
j i

D x h X g X g X
 

  
                        

(11) 

 

min( ( )) ( )fitness f x W W x                                         (12) 

 
Where ( ( )) 0fitness f x   and minW  is a given value or the minimum value in ( )W x . In this 

way, the maximization of an unconstrained problem is converted into a minimization problem. 
 
 
4.2 Multi-objective Optimization Problem 

Under normal conditions, the multiple objective function is expressed as: 
 

1 1 2 2{ ( ), ( ), , ( )}q qMax z f x z f x z f x   
                     

(13) 

 
( ) 0 1,2,3 ,

.
( ) 0 1,2,3 ,

i

j

g x i m
s t

h x j l

  
   

 

 
Below is the evolution curve of DE algorithm based on the simulation results: 
 

 
 

Figure 3. Evolution curve of multiple objective function 
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From the evolution curves and running results, we know that all the five improved DE 
algorithms can find their corresponding optimal solutions in the 30 times of running. The 
algorithms remain quite stable. However, they have different rate of convergence and running 
time. 

 
 

5 Conclusion 
This paper describes the design ideas of DE algorithm and further improves the 

parameters of the algorithm. After that, it compares the results of the numerical experiment and 
then analyzes the performance of the improved DE algorithms, thus providing the basis for the 
application of the algorithms. In the end, the paper adopts the penalty function method and the 
weighted strategy to deal with the constraint conditions of multiple-objective optimization 
problems and uses the improved DE algorithms to solve constrained optimization problems. 
Thereby, it helps expand the application areasof the DE algorithm. 
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