
TELKOMNIKA, Vol.12, No.4, December 2014, pp. 977~984
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v12i4.531  977

Received August 28, 2014; Revised October 19, 2014; Accepted November 5, 2014

Multi-objective Optimization Based on Improved
Differential Evolution Algorithm

Shuqiang Wang*1, Jianli Ma2
1 School of Information and electrical engineering, Hebei University of Engineering, Handan 056038,

Hebei, China
2 Suburban water and power supply management office of Handan City, Handan 056001, Hebei, China

*Corresponding author, e-mail: 178038139@qq.com

Abstract
On the basis of the fundamental differential evolution (DE), this paper puts forward several

improved DE algorithms to find a balance between global and local search and get optimal solutions
through rapid convergence. Meanwhile, a random mutation mechanism is adopted to process individuals
that show stagnation behaviour. After that, a series of frequently-used benchmark test functions are used
to test the performance of the fundamental and improved DE algorithms. After a comparative analysis of
several algorithms, the paper realizes its desired effects by applying them to the calculation of single and
multiple objective functions.

Keywords: differential evolution, effect of parameters, numerical experiment, multi-objective optimization

1. Introduction

In the scientific research and engineering design, many specific problems can be
summarized as the problems of parameter optimization. However, in practice, these
optimization problems usually have multiple design objectives, which contract with and restrict
each other [1]. The performance optimization of one problem usually leads to the performance
degradation of at least one of the other problems, which indicates that it is difficult to make
many objectives to reach optimization simultaneously. Therefore, the research of multi-objective
optimization algorithm has become a research hospot in current science and engineering design
[2]. Evolutionary algorithm is the general term of heuristic research and optimization algorithms
inspired and developed from natural biology and system and to solve multi-objective
optimization problems with evolutionary algorithm has been widely used [3].

As an important part of evolutionary algorithm, differential evolution has been widely
used in solving optimization problems because it has simple theory, simple operation and strong
robustness [4]. The basic principle of differential evolution is to disturb a certain individual in the
group and search the search space; however, it is too random in choosing the individuals
generating differences and it is easy to cause algorithm prematurity or long-time optimization so
as to make it unable to obtain global optimization solution [5]. Besides, when settling multi-
objective optimization problems, differential evolution is affected by its own limitations, making
the selection of mutation strategy and the setting of parameter values seriously restrict the
performance of the algorithm [6].

In order to solve the above-mentioned problems, this paper has investigated the
selection and parameter values of mutation strategy when using differential evolution in multi-
objective optimization.First, the paper makes an numerical experiment on step length F and
crossover operator CR of the fundamental DE algorithm. And then it makes a comparative
analysis to get the range of the optimal value of the two. To avoid the shortcomings of DE
algorithm in handling global optimization, we make some improvements to keep the variety of
group and accelerate population convergence. Secondly, the paper makes an numerical
experiment on the performance of the improved algorithms and makes a comparative analysis.
Finally, the paper uses the improved DE algorithms to solve the optimization of multiple
objective functions.

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 4, December 2014: 977 – 984

978

2. DE Algorithm
2.1 Basic Ideas of DE Algorithm

DE algorithm is an evolutionary algorithm based on real-number encoding to optimize
the minimum value of functions. The concept was put forward on the basis of population
differences when scholars tried to solve the Chebyshev polynomials. Its overall structure is
analogous to that of genetic algorithms. The two both have the same operations such as
mutation, crossover, and selection [7]. But there are still some differences. Here are the basic
ideas of DE algorithm: the mutation between parent individuals gives rise to mutant individuals;
crossover operation between parent individuals and mutant individuals is applied according to
certain probability to generate test individuals; greedy selection between parent individuals and
test individuals is carried out in accordance with the degree of fitness; the better ones are kept
to realize the evolution of the population [8].

2.1.1 Mutation Operation

For each individual t
ix , generate mutant individual 1 2(, , ,)t t t t T

i i i iDv v v v  in accordance

with the following expression:

1 2 3
()t t t t

ij r j r j r jv x F x x    1,2,3 ,j D  (1)

In the expression,
1 1 1 11 2(, , ,)t t t t T
r r r r Dx x x x  ,

2 2 2 21 2(, , ,)t t t t T
r r r r Dx x x x  , and

3 3 3 31 2(, , ,)t t t t T
r r r r Dx x x x  are three individuals randomly selected from the population;

1

t
r jx ,

2

t
r jx ,

and
3

t
r jx are the components in the jth dimension of 1r , 2r , and 3r , respectively; F is the

mutation operator that lies between [0.5,1]. So we can obtain mutant individual t
iv .

2.1.2 Crossover Operation
We obtain test individual 1 2(, , ,)t t t t T

i i i iDu u u u  from mutant individual t
iv and parent

individual t
ix in line with the following principle:

 
 

 0,1 _

 0,1 _

t
ijt

ij t
ij

v if rand CR or j j rand
u

x if rand CR or j j rand

      (2)

In the expression, [0,1]rand is a random number between [0,1]; CR , the crossover

operator, is a constant at [0,1]; the bigger CR is, the more likely crossover occurs; _j rand is an

integer randomly chosen between [1,D], which guarantees that for test individual t
iu , at least

one element must be obtained from mutant individual t
iv . The mutation and crossover

operations are both called reproduction [9].

2.1.3 Selection

DE algorithm adopts the “greedy” selection strategy, which means selecting one that
has the best fitness value from parent individual t

ix and test individual t
iu as the individual of

the next generation. The selection is described as:

1 () ()t t t
t i i i

i t
i

x if fitness x fitness u
x

u otherwise
   



(3)

TELKOMNIKA ISSN: 1693-6930 

Mutli Objective Optimization Based on Improved Differential Evolution …. (Shuqiang Wang)

979

Where fitness, the objective function to be optimized, is regarded to be the fitness
function. Unless stated, the fitness function in the paper is an objective function with a minimal
value[10].

2.2 Calculation Process of DEAlgorithm

From the principles of fundamental DE algorithm mentioned above, we can understand
the calculation process of DE algorithm as follows:
(1) Parameter initialization: NP : population size; F : scale factor; D : spatial dimension of

mutation operator; evolution generation 0t  .

(2) Random initialization of the initial population 1 2() { , , , }t t t
NPX t x x x  , where

1 2(, , ,)t t t t T
i i i iDx x x x  .

(3) Individual evaluation: calculate the fitness value of each individual.
(4) Mutation operation: mutation operation is applied to each individual in accordance with

Expression (1) to work out mutant individual t
iv .

(5) Crossover operation: crossover operation is applied to each individual in accordance with
Expression (2) to work out test individual t

iu .

(6) Selection: select one from parent individual t
ix and test individual t

iu as the individual of the

next generation in accordance with Expression (3).
(7) Test termination: the next generation of population generated from the above process is

1 1 1
1 2(1) { , , , }t t t

NPX t x x x      ; suppose the optimal individual in (1)X t  is 1t
bestx  ; if it reaches

the maximum evolution generation or meets the criteria of errors, merge and output 1t
bestx  as

the optimal solution; otherwise, make 1t t  and return to step (3).

2.3 Parameter Selection of DEAlgorithm
2.3.1 Selection of Population Size NP

In view of computation complexity, the larger the population size is, the greater the
likelihood of global optimal solution becomes. But it also needs more calculation amount and
time. Nonetheless, the quality of the optimal solution does not simply gets better as the
population size expands. Sometimes, it’s the other way round. The accuracy of solutions even
declines after population size NP increases to a certain number. This is because a larger
population size reduces the rate of convergence, though it can keep the variety of population.
Variety and the rate of convergence must be kept in balance. Hence, the accuracy will decrease
if the population size gets larger but the maximum evolution generation remains unchanged.
The larger the population size is, the greater the variety is. Therefore, a larger population size is
needed to expand variety and prevent premature convergence of a population [11].

According to our previous research results, the appropriate population size for simple
low-dimensional problems should lie between 15 and 35 in the case of given maximum
evolution generation. In the same circumstance, the population size that maintains between 15
and 50 helps keep a good balance between variety and the rate of convergence [12].

2.3.2 Selection of Scale Factor F

Let us test the performance of scale factor F . Set the population size at 15. Make sure
the crossover operator and the maximum evolution generation stay unchanged.

Based on the test on scale factor F of the banana function, we know that in the case of
the same initial population, the results of every 30 times of running vary greatly from each other
when 0.7F  , and we can get better local optimization and faster rate of convergence at the
expense of lower success rate of optimization and longer running time; when 0.7F  , there are
no significant differences between the results of every 30 times of running, and we can get
better global optimization, shorter running time, and faster rate of convergence.

To sum up, F , to a certain degree, can regulate the local and global search of an
algorithm. A bigger F helps keep the variety of population and increase the global search
ability, while a smaller F helps increase the local search ability as well as the rate of

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 4, December 2014: 977 – 984

980

convergence. Hence, the value of F should be neither too big nor smaller than a specific
value[13]. This explains why the algorithm has good effects when [0.7,1]F  .

2.3.3 Selection of Crossover Operator CR

To test the effect of crossover operator on algorithm performance, we make the scale
factor 0.9F  and set population size at 20. Make the crossover operator lie between 0 and 1.
Set the interval at 0.1. Let the maximum evolution generation remain the same.

The test shows the banana function can change CR . Thus, in the case of the same
initial population, the results of every 30 times of running vary greatly from each other when

0.3CR  , and we can get better local optimization at the expense of slower rate of convergence,
lower success rate of optimization and longer running time; when 0.3CR  , there are no
significant differences between the results of every 30 times of running, and we can get better
global optimization; but when 0.3 0.6CR  , we get slower rate of convergence and longer
running time; when 0.6CR  , we get faster rate of convergence and shorter running time[14].

3. Simulation Testing of Five Improved DEAlgorithms
3.1 Five Improved DEAlgorithms

The fundamental DE algorithm can be described as: DE/rand/1/bin. “bin” means
crossover operation. DE/x/y/z is used to differentiate the other DE deformations. x defines
whether the variant vector is “random” or “optimal”, y denotes the number of residual vectors

used, and z stands for the method of crossover operation. Below are the DE deformations if we
only consider the selection modes of base points and the number of difference vectors:

DE/rand/1
1 2 3

()t t t t
i r r rv x F x x   

DE/best/1
1 2

()t t t t
i best r rv x F x x   

DE/rand/2
1 2 3 4 5

()t t t t t t
i r r r r rv x F x x x x     

DE/best/2
1 2 3 4

()t t t t t t
i best r r r rv x F x x x x     

DE/rand-to-
best/1 1 2

() ()t t t t t t
i i best i r rv x F x x F x x      

3.2Several Benchmark Test Functions
(1) Banana function

2 2 2

2 1 1() 100 () (1)f x x x x     (4)

1 23 , 3x x  

Global optimal solutions: 1 9.998919e 01x   , 2 9.998012e 01x   , and () 0.000000f x  .

(2) Schaffer function

2 2 2 2 2 2
1 2 1 2 1 2() 0.5 [(sin) 0.5] / (1 0.001 ()) 10 , 10f x x x x x x x         

(5)

Global optimal solutions: 1 0.000000x  , 2 0.000000x  , and () 0.500000f x 

(3) Bohachevsky function

2 2
1 2 1 2() 0.3 cos(3) 0.3 cos(4) 0.3f x x x x x        (6)

The optimal solution is -0.24, which lies between [0,-0.24] and[0,0.24].

TELKOMNIKA ISSN: 1693-6930 

Mutli Objective Optimization Based on Improved Differential Evolution …. (Shuqiang Wang)

981

(4) Multimodal function

2 2 0.25 2 2 0.1 2
1 2 1 2 1 2() (()) ((sin(50 ())) 1) 5.12 , 5.12f x x x x x x x         (7)

The minimum value here is 0 and there is an infinite local minimum.

Below are the graphs of the above four test functions:

(a) Banana function (b) Schaffer function

(c) Bohachevsky function (d) Multimodal function

Figure 1. Four benchmark test functions

(a) Evolution curve of banana function (b) Evolution curve of Schaffer function

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 4, December 2014: 977 – 984

982

(c) Evolution curve of Bohachevsky function (d) Evolution curve of multimodal function

Figure 2. Evolution curves offour benchmark test functions

3.3 Test Results

Test the five algorithms using the test functions introduced in 3.2. 15NP  , 0.9F  ,
0.9CR  , and the maximum evolution generation is 200. Average the results of the 30 times of

running and we can get the evolution curves shown as in Figure 2.
According to the results and evolution curves of the above test functions, in the case of

the same initial population, there are no significant changes in the results of every 30 times of
running. Besides, the five improved algorithms can optimize functions well and thus yield very
good results. For different functions, the rate of convergence varies, so does the efficiency of
finding optimal solutions. The five algorithms have similar optimal performance, but some
algorithms have longer running time and some functions have better optimization.

4. Application of DEAlgorithm in Multi-objective Optimization

Based on the previous description, DE algorithm is of great importance in solving
complicated optimization problems. In the next part, we use DE algorithm to solve single- and
multiple-objective optimization problems with equality constraints or inequality constraints.

4.1Single-objective Optimization Problem
The standard form of single-objective optimization is generally expressed as:

min 1 2 3(, , , ,)nf x x x x  

s.t 1 2 3(, , , ,) 0i ng x x x x    1,2,3, ,i m 

 1 2 3(, , , ,) 0j nh x x x x  

1,2,3, ,j l  (8)

 i i ia x b 

To solve the above problems, we usually convert constrained problems into

unconstrained ones by dint of the penalty function method. Here are its basic ideas: merging the
constraint function of a problem into an objective function in a certain way, so that the whole
problem is converted to an unconstraint problem. To realize it, we can produce the fitness
function in the form of () () ()W x f x rD x 

TELKOMNIKA ISSN: 1693-6930 

Mutli Objective Optimization Based on Improved Differential Evolution …. (Shuqiang Wang)

983

In the expression, penalty function ()D x is a continuous function that meets

0
()

0

x X
D x

x X

 
 

. ()f x is the scale coefficient and 0r  . X is the feasible region of the

problem. Besides, we can deal with the constraint condition i i ia x b  as follows:

2

1, 2,3 ,

1,2,3 ,
m i i i

m i i i

g x b i m

g a x i m




   
    

(9)

The structure of penalty function depends on the exterior point method:

3
2 2

1 1

() (()) (()) (())
i m

j i i
j i

D x h X g X g X
 

  

(10)

Where
0 () 0

(())
1 () 0

i
i

i

g X
g X

g X



  

For an objective function, we can first find its minima and then use DE algorithm so as

to find the maxima of the function. The conversion method is the fitness function below:

3
2 2

1 1

() (()) (()) (())
i m

j i i
j i

D x h X g X g X
 

  

(11)

min(()) ()fitness f x W W x  (12)

Where (()) 0fitness f x  and minW is a given value or the minimum value in ()W x . In this

way, the maximization of an unconstrained problem is converted into a minimization problem.

4.2 Multi-objective Optimization Problem

Under normal conditions, the multiple objective function is expressed as:

1 1 2 2{ (), (), , ()}q qMax z f x z f x z f x   

(13)

() 0 1,2,3 ,

.
() 0 1,2,3 ,

i

j

g x i m
s t

h x j l

  
   

Below is the evolution curve of DE algorithm based on the simulation results:

Figure 3. Evolution curve of multiple objective function

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 4, December 2014: 977 – 984

984

From the evolution curves and running results, we know that all the five improved DE
algorithms can find their corresponding optimal solutions in the 30 times of running. The
algorithms remain quite stable. However, they have different rate of convergence and running
time.

5 Conclusion
This paper describes the design ideas of DE algorithm and further improves the

parameters of the algorithm. After that, it compares the results of the numerical experiment and
then analyzes the performance of the improved DE algorithms, thus providing the basis for the
application of the algorithms. In the end, the paper adopts the penalty function method and the
weighted strategy to deal with the constraint conditions of multiple-objective optimization
problems and uses the improved DE algorithms to solve constrained optimization problems.
Thereby, it helps expand the application areasof the DE algorithm.

References
[1] Matthias Ehrgott, Jonas Ide, Anita Schöbel. Minmax robustness for multi-objective optimization

problems. European Journal of Operational Research. 2014; 239(1): 17-31.
[2] Marko Kovačević, Miloš Madić, Miroslav Radovanović, Dejan Rančić.Software prototype for solving

multi-objective machining optimization problems: Application in non-conventional machining
processes. Expert Systems with Applications. 2014; 41(13):5657-5668.

[3] Jan Hettenhausen, Andrew Lewis, Timoleon Kipouros. A Web-based System for Visualisation-driven
Interactive Multi-objective Optimisation. Procedia Computer Science. 2014; 29: 1915-1925.

[4] Banaja Mohanty, Sidhartha Panda, P.K. Hota. Differential evolution algorithm based automatic
generation control for interconnected power systems with non-linearity. Alexandria Engineering
Journal. 2014; 53(3): 537-552.

[5] Piotr Jędrzejowicz, Aleksander Skakovski. Island-based Differential Evolution Algorithm for the
Discrete-continuous Scheduling with Continuous Resource Discretisation. Procedia Computer
Science. 2014; 35: 111-117.

[6] Saber M. Elsayed, Ruhul A. Sarker, Daryl L. Essam. A self-adaptive combined strategies algorithm
for constrained optimization using differential evolution. Applied Mathematics and Computation. 2014;
241(15): 267-282.

[7] Coello C A C. Evolutionary Multi-Objective Optimization A Historical View of the Field. IEEE
Computational Intelligence Magazine. 2010; 1(1): 28-36.

[8] Laumanns M, Thiele L, Deb K, Zitzler E. Combining Convergence and Diversity in Evolutionary Multi-
Objective Optimization. Evolutionary Computation. 2010; 10(3): 263-282.

[9] Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multi-objective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation. 2009; 6(2): 182-197.

[10] Zitzler E, Deb K, Thiele L. Comparison of Multi-objective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation. 2010; 8(2): 173-195.

[11] Knowles J, Corne D. Approximating the Nondominated Front Using the Pareto Archived Evolution
Strategy. Evolutionary Computation. 2011; 8(2): 149-172.

[12] Coello C A C. Evolutionary Multi-Objective Optimization: Some Current Research Trends and Topics
That Remain To Be Explored. Frontiers of Computer Science in China. 2009; 3(1): 18-30.

[13] Reyes-Sierra M, Coello C A C. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-
the-art. International Journal of Computational Intelligence Research. 2006; 2(3): 287-308.

[14] Qu B Y, Suganthan P N. Constrained Multi-Objective Optimization Algorithm with anEnsemble of
Constraint Handling Methods. Engineering Optimization. 2011; 43(4): 403-416.

