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Abstract 
Many engineering problems are the complex optimization problems with the large numbers of 

global andlocal optima. Due to its complexity, general particle swarm optimization method inclines towards 
stagnation phenomena in the later stage of evolution, which leads to premature convergence. Therefore, a 
highly efficient particle swarm optimizer is proposed in this paper, which employ the dynamic 
transitionstrategy ofinertia factor, search space boundary andsearchvelocitythresholdbased on individual 
cognitionin each cycle to plan large-scale space global search and refined local search as a whole 
according to the fitness change of swarm in optimization process of the engineering problems, and to 
improve convergence precision, avoid premature problem, economize computational expenses, and obtain 
global optimum. Several complex benchmark functions are used to testify the new algorithm and the 
results showed clearly the revised algorithm can rapidly converge at high quality solutions. 
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1. Introduction 

As a newly developed population-based computational intelligence algorithm, Particle 
Swarm Optimization (PSO) was originated as a simulation of simplified social model of birds in a 
flock [1]-[4]. The PSO algorithm has less parameters, easy implementation, fast convergence 
speed and other characteristics, is widely used in many fields,such as solving combinatorial 
optimization, fuzzy control, neural network training, etc. But, the PSO algorithm with other 
algorithms is also easy to fall into local optimumin fast convergence process, affecting the 
convergence precision, so how to overcome premature convergence, and improve the accuracy 
of convergence is always a hot and difficult problem in the research field [5]-[11]. 

To avoidthe premature problem and speed up the convergence process, thereare many 
approaches suggested by researchers.According to the research results published in recent 
years, the improvement of PSO algorithm mainly includes adjusting algorithm parameters, the 
improvement of topological structure, and mixed with other algorithm, etc [6]-[12].The purpose 
of improvement strategiesis to balance the global search ability and local search ability of 
particles, so as to improve the performance of the algorithm. 

In this paper, we modified the traditional PSO (TPSO) algorithm with the dynamic 
transition strategy ofinertia factor, search space boundary andsearchvelocitythresholdbased on 
individual cognitionin each cycle,whichcan balance the global search ability and local search 
ability of particles, and has an excellent search performance to lead the search direction in early 
convergence stage of search process. Experimental results on several complexbenchmark 
functions demonstrate that this is a verypromisingway to improve the solution quality and rate of 
success significantly in optimizing complex engineering problems. 

Section 2 gives some background knowledge of the PSO algorithm. In section 3, the 
proposed method and the experimental design are described in detail, and correlative results 
are given in section 4. Finally, the discussions are drawn in section 5. 
  
 
2. Back Ground 

In 1995, the particle swarm optimizer (PSO) is a populationbasedalgorithm that 
wasinvented by James Kennedy and Russell Eberhart,which was inspired by the social 
behaviorof animals such as fish schooling and bird flocking.Similar to other population-based 
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algorithms, suchas evolutionary algorithms, PSO can solve a variety ofdifficult optimization 
problems but has shown a fasterconvergence rate than other evolutionary algorithms onsome 
problems. Anotheradvantage of PSO is that it has very few parameters toadjust, which makes it 
particularly easy to implement [1]. In PSO, each potential solution is a “bird” in the search 
space, which is called “particle”. Each particle has a fitness value evaluated by the objective 
function, and flies over the solution space with a velocity by following the current global best 
particle and its individual best position. With the directions of best particles, all particles of the 
swarm can eventually land on the best solution. 

The foundation of PSO is based on the hypothesisthat social sharing of information 
among conspecificsoffers an evolutionary advantage.In the original PSO formula, particle i is 
denoted as Xi=(xi1,xi2,...,xiD), which represents a potential solution to a problem in D-dimensional 
space. Each particle maintains a memory of its previous best position Pbest, and a velocity 
along each dimension, represented as Vi=(vi1,vi2,...,viD). At each iteration, the position of the 
particle with the best fitness in the search space, designated as g, and the P vector of the 
current particle are combined to adjust the velocity along each dimension, and that velocity is 
then used to compute a new position for the particle. 

In TPSO, the velocity and position of particle i at (t+1)th iteration are updated as follows: 
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Constants c1 and c2 determine the relative influence of the social and cognition 

components (learning rates), which often both are set to the same value to give each 
component equal weight; r1 and r2 are random numbers uniformly distributed in the interval 
[0,1].A constant, vmax, was used to limit the velocities of the particles. The parameter w, which 
was introduced as an inertia factor, can dynamically adjust the velocity over time, gradually 
focusing the PSO into a local search [5].  

To speed up the convergence process and avoid the premature problem, Shi proposed 
the PSO with linearly decrease factor method (LDWPSO) [4],[5]. Suppose wmaxis the maximum 
of inertia factor, wmin is the minimum of inertia factor, run is the current iterations, runmax is the 
total iterations. The inertia factor is formulated as:  
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3. A Highly Efficient Particle Swarm Optimizer (HEPSO) 

Due to thecomplexity of a great deal global and local optima,TPSO isrevised as HEPSO 
by fourdynamic strategies to adapt complex optimizationproblems. 
 
 
3.1. Dynamic Harmonization Inertia Factor w 

 First of all, the larger w can enhance global search abilities of PSO, so to explore large-
scale search space and rapidly locate the approximate position of global optimum, the smaller w 
can enhance local search abilities of PSO, particles slow down, deploy refined local search, and 
obtain global optimum. Secondly, the more difficult the optimization problems are, the more 
fortified the global search abilities need, once located the approximate position of global 
optimum, the refined local search will further be strengthen to get global optimum [7]-[12]. 
Therefore,the wcan harmonize global search and local searchautomatically, avoid premature 
convergenceand to rapidly gain global optimum. 

According to the conclusions above, a new inertia factor decline curve ⑷for PSO is 
constructed, demonstrated in Figure 1: 
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Where n is a constant larger than 1, taken 50 as initial value in the paper.Evidently, the 
inertia factor decline curve of figure 1can forcefully search large-scale global space, and 
dynamically transform to refined local search, namely global search abilities and local search 
abilities are harmonized based on the strategy to adapt demand of complex 
optimizationproblems. 

 

 
 

 
Figure1. Dynamic harmonization w curve 

 
 

 
Figure 2. Dynamic transformation w curves 

 
 

3.2.Dynamic Transformation Inertia Factor w Strategy  
Global search and local search are two key aspects of PSO based on w. In a given time 

of search process, it is usually hard to determine, when to end the large-scale global search, 
and start local search,and gain quick convergence [8]-[10]. 

In figure2,p1, p2,…, pn are transformation points, d1, d2, …, dn are global convergence  
points, the algorithm select a transformation point from them,  and switch to refined local search 
to global convergence point. The selection of transformation pointis usually hard. Toconfirm the 
transformation point,the algorithm is designed to combine iteration times of current global 
optimum of functions.If the current global optimum is not improved after the search of an interval 
of definite iterations, the algorithm switch to refined local search with the smaller n, or continue 
current global search with the current n. Thecomputed equation is defined as: 
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Where ki

gdp  , i
gdp are the (i+k)th, ith ,taken values of t

gdp respectively, k is an interval of 

definite iterations. 
 
 
3.3.Dynamic Transformation Search Space Boundary Strategy 

In search process, all particles gather gradually to the current best region, the 
algorithmis propitious to quicken convergencebecause of the reducedsearch space, but, the 
global optima may be lost [7]-[10]. In most cases, the global optima may be hidden somewhere 
in the gathering area nearby, and the effective search areafound is not easy.To solve 
theproblem, the improved algorithm not only reduces the search space to quicken convergence, 
but also avoids the premature problem, especially in complex optimizationproblems.Thus, a 
dynamic transformation search spaceboundary strategy is designed based on individual 
cognition. Assume that a particle flight in the current boundary [bmax(i),bmin(i)], the 
algorithmreduce the search boundary if the current optimum is better, otherwise, expand search 
boundary in next iteration, and  in the same breath, randomly initialize the speed and position of 
each particle after the k iterations. Thebmax and bmin are the boundary of the swarm in the k 
iteration. The computed equation is defined as: 
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3.4. Dynamic Transformation Search Velocity ThresholdStrategy  

Many published works based on parameters selection principles pointed out, velocity 
threshold [vmax(i),vmin(i)] of a particleaffects the convergence precision and speed of algorithm 
strongly [9]-[11]. Largevmax(i)increases the search region, enhancing global search capability, as 
well as small vmax(i) decreases the search region, adjusting search direction of each particle 
frequency. Thus, adynamic transformation search velocitythresholdstrategy is designed based 
on individual cognition. Thevmax and vmin are the threshold of the swarm in the k iterations, the 
computed equation is defined as: 
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According to the above methods, TPSO is modified as HEPSO, whichhas the excellent 

search performance to optimize complex problems. The flow of the HEPSOalgorithm is as 
follows: 
Step1.  Set algorithm parameters;  
Step2.  Randomly initialize the speed and position of each particle; 
Step3.  Evaluate the fitness of each particle and determine the initial values of the individual 

and global best positions: t
idp and t

gdp ; 

Step4.  Update velocity and position using (1), (2) and (4); 
Step5.  Evaluate the fitness and determine the current values of the individual and global best 

positions: t
idp and t

gdp ; 

Step6.  Detect the gbesti, gbesti+1 and gbesti+k, to dynamically transformw,search space 
boundary and velocity threshold using (5), (6)and (7); 

Step7.  Randomly initialize the speed and position after the k iterations; 
Step8.  Loop to Step 4 and repeat until a given maximum iteration number is attained or the 

convergence criterion is satisfied. 
 
 
4. Computational Experiments 
4.1.Testing Functions 

To test the HEPSO and compare it with other techniques in the literature, we adopt 
large variety of benchmark functions [8]-[16], among which most functions are multimodal, 
abnormal or computational time consuming, and can hardly get favorable results by current 
optimization algorithm. Due to limited space, we only select four representative functions 
optimization results to list in the paper. 
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4.2. Algorithm Parameter Setting  
Parameters used in our algorithm are set to be: learning rate c1=c2=2; w=0.7, wmax =1, 

wmin=0.1; maximumiterations runmax=30000; iterations k =1000(300 for f1(x)); population size is 
100; speed and position of particles are limited in definition area of functions; take function f1(x), 
f2(x), f3(x), f4(x) as fitness value. Stop rule is: |fbest─fmin|≤10-4 (fbest and fmin are the global 
optimum and the current getting optimum). The running environment is: MATLAB7.0, Pentium 
IV 2GHz CPU, 256M RAM, Win XP OS. 

 
 

4.3.Experimental Results 
The testing functions is run50 times based onTPSO, LDWPSO and HEPSO, the 

comparison of statistical results of 20-1000 dimensions functions are shown in table 1-2, 
respectively. In addition, the datum of literature [12] (MAGA) is likewise listed in table 1. 1000-
10000 dimensions functions are test with MAGA,TPSO, LDWPSO and HEPSO based on the 
sampling interval 500, each testing function runs 20 times yet, the statistical results are shown 
in table 1-2 and figure 3-6, respectively. 

 
Table 1. Results of 20-10000 dimensions functions average convergence iterations 

n Function Stopcriterion 
Algorithm 

MAGA TPSO LDWPSO HEPSO 

20 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

2483 
4301 
3583 
2566 

2120 
685 
731 
936 

1872 
377 
608 

1873 

802 
102 
77 

1632 

100 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

5443 
10265 
5410 
4447 

3743 
934 
872 

1169 

2659 
865 
864 
948 

867 
209 
151 

2346 

200 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

7284 
14867 
6061 
5483 

6562 
1183 
1063 
1349 

4458 
962 
947 

1135 

887 
1278 
165 

2678 

400 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

12368 
17939 
6615 
6249 

10348 
1461 
1564 
1723 

7659 
1123 
1062 
1587 

1586 
1743 
245 

2356 

103 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

22827 
20083 
7288 
7358 

15617 
2834 
2034 
2327 

13457 
1260 
1143 
4562 

2654 
1668 
389 

2698 

2×103 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

45621 
17521 
7156 

14578 

27435 
6533 
2867 
4021 

18652 
4534 
1145 
2523 

10845 
3532 
452 

2034 

4×103 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

90453 
13067 
7611 

12034 

70123 
8545 
3823 
6701 

40032 
4065 
1945 
4967 

15034 
2056 
624 

2506 

6×103 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

130067 
13166 
7607 

16223 

85324 
9022 
4712 
8156 

43136 
4517 
2055 
3578 

25156 
2533 
1156 
3156 
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n Function Stopcriterion 
Algorithm 

MAGA TPSO LDWPSO HEPSO 

8×103 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

125245 
14523 
7921 

18234 

81489 
85434 
4567 
7067 

61378 
6556 
3467 
4523 

18000 
3500 
568 

3512 

104 

f1(x) 
f2(x) 
f3(x) 
f4(x) 

10-4 

198745 
19807 
7992 

27983 

130679 
14332 
6621 

15357 

85045 
8523 
4434 

13534 

41289 
4668 
1745 
6123 

 
 

Table 2.Comparison results of 20-10000 dimensions functions average convergence rate (%) 

 
n 

f1 (x) f2 (x) 

TPSO LDWPSO HEPSO TPSO LDWPSO HEPSO 

20 82.2 89.7 100 100 100 100 

100 52.7 65.8 100 84.4 100 100 
200 33.5 53.5 100 66.3 90.7 100 
400 26.6 45.1 98.1 43.8 65.2 100 
103 6.8 22.1 93.2 31.2 54.3 100 

2×103 5.5 19.8 84.3 24.2 43.6 89.8 

4×103 4.2 16.8 69.1 22.3 39.7 84.4 

6×103 2.9 14.4 60.1 19.7 32.6 78.3 

8×103 1.8 12.8 53.6 28.5 30.5 70.1 

104 1.3 11.6 44.7 16.3 25.9 64.8 

n 
f3 (x) f4 (x) 

TPSO LDWPSO HEPSO TPSO LDWPSO HEPSO 

20 87.3 100 100 69.4 90.6 100 
100 61.8 91.2 100 50.7 72.5 100 

200 40.6 72.6 100 30.1 53.8 95.7 
400 33.9 54.5 95.3 20.8 38.8 90.3 
103 14.1 47.3 90.6 7.2 24.3 89.5 

2×103 8.7 22.8 84.6 23.5 23.5 78.2 

4×103 7.1 20.4 68.4 21.7 17.3 58.4 

6×103 5.4 15.6 60.1 18.5 14.2 55.1 

8×103 4.9 14.1 57.8 16.9 12.3 50.4 

104 3.6 12.4 53.6 15.3 10.5 43.6 

 
 

 
 

Figure 3. The convergence results of f1(x)  
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Figure 4. Theconvergence results of f2(x)  
 
 

 
 

Figure 5.Theconvergence results of f3(x)  
 
 

 
 

Figure 6. Theconvergence results of f4(x) 
 
 

5. Conclusion 
The experimental results of Table 1-2 can deduce that the effectiveness of the 

HEPSOalgorithm based on individual cognitionis validated,which guide particles to search in the 
more effective areathrough dynamic adjustmentthe search space, provide stable convergence, 
resulting in higher success rate and accuracy of convergence. The algorithm runs classical PSO 
only, so to keeps its simple and easy characteristic. 

The experimental results of Figure 3-6 show that the HEPSOalgorithm has excellent 
search performance, especially complex engineering problems. As the dimensions of the 
functions grow fleetly, the increase of the average convergence steps is slow, so the algorithm 
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has rapid convergence speed and can avoid premature.In addition, it can easily be applied to 
large and more complex practical multi-objective optimization problems. 
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