
ISSN: 1693-6930  73

A Novel Approach for Configuring The Stimulator of a BCI Framework…… (Indar Sugiarto)

A NOVEL APPROACH FOR CONFIGURING THE
STIMULATOR OF A BCI FRAMEWORK USING XML

Indar Sugiarto
Department of Electrical Engineering – Petra Christian University

Jl. Siwalankerto 121-131, phone: +62-31-2983442
Email: indi@petra.ac.id

Abstrak
Dalam BCI (Brain-Computer Interface), setiap aspek harus diperhatikan demi

keberhasilan operasional dari sistem BCI tersebut. Termasuk didalamnya adalah proses
pembuatan stimulator BCI yang handal dan fleksibel, terutama stimulator yang berkaitan erat
dengan umpan balik dalam bentuk aplikasi dari sistem BCI. Makalah ini menjelaskan
pendekatan baru untuk membuat stimulator visual yang fleksibel dengan memanfaatkan format
XML (Extensible Markup Language) yang dapat diterapkan pada sebuah unit sistem BCI.
Dengan menggunakan format XML untuk mengatur konfigurasi dari stimulator visual sebuah
unit BCI, kita dapat mengembangkan aplikasi BCI yang mampu mengakomodasi banyak
strategi percobaan dalam penelitian tentang BCI. Unit BCI dan platform konfigurasinya dibuat
dengan menggunakan bahasa pemrograman C++ dan memanfaatkan XML parser dari Qt yang
bernama QXmlStream. Dari hasil implementasi dan pengujian terlihat bahwa file konfigurasi
XML dapat dieksekusi dengan baik oleh sistem BCI yang digunakan. Selain kemampuannya
dalam menghasilkan frekuensi kedipan yang fleksibel serta pengaturan format teks untuk
sistem BCI berbasis SSVEP, file konfigurator tersebut juga memberikan pilihan pemakaian
hingga 3 bentuk bangun, 16 warna, dan 5 indikator umpan balik yang berbeda. Metode yang
dipaparkan dalam makalah ini dapat dipergunakan untuk meningkatkan kegunaan dari unit BCI
yang telah ada saat ini seperti BF++ Toys dan BCI 2000.

Kata kunci: Stimulator BCI, file konfigurasi, XML

Abstract
In a working BCI framework, all aspects must be considered as an integral part that

contributes to the successful operation of a BCI system. This also includes the development of
robust but flexible stimulator, especially the one that closely related to the feedback of a BCI
system. This paper describes a novel approach in providing flexible visual stimulator using XML
which has been applied for a BCI (brain-computer interface) framework. Using XML file format
for configuring the visual stimulator of a BCI system, we can develop BCI applications which can
accommodate many experiment strategies in BCI research. The BCI framework and its
configuration platform is developed using C++ programming language which incorporate Qt’s
most powerful XML parser named QXmlStream. The implementation and experiment shows
that the XML configuration file can be well executed within the proposed BCI framework. Beside
its capability in presenting flexible flickering frequencies and text formatting for SSVEP-based
BCI, the configuration platform also provides 3 shapes, 16 colors, and 5 distinct feedback bars.
It is not necessary to increase the number of shapes nor colors since those parameters are less
important for the BCI stimulator. The proposed method can then be extended to enhance the
usability of currently existed BCI framework such as BF++ Toys and BCI 2000.

Keywords: BCI Stimulator, Configuration File, XML

1. INTRODUCTION

One of the most promising applications of biomedical electronics in the area of human-
machine interaction is the so-called BCI (brain-computer interface). The BCI system comprises
of many components including hardwares, softwares and protocols. The protocol in the BCI will
be used to drive the system in order to ensure that the brain elicite necessary signals to be

  ISSN: 1693-6930

TELKOMNIKA Vol. 7, No. 2, Agustus 2009 : 73 - 82

74

acquired by the system. Depending on the type of the BCI, the present of a stimulator as a
mean of the protocol implementation may be mandatory. The stimulator plays vital role in BCI
system, especially for BCIs which operate exogenously. The so-called VEP (visual evoked
potential) is a special potential which can be elicited using visual stimulator. Some researches
show that certain pattern on this stimulator may produce different results, thus providing extra
flexibilities for the stimulator will enrich the BCI research. It is also preferable that the number of
trials in every BCI system must be set as small as possible and it means that the stimulator,
especially the one which provides the visual stimuli, must operate in the very exact time and in
the predetermined fashion.

These conditions, which are related to the manipulation of visual stimulator parameters,
need to be well defined and adjusted to fit the general requirements in the BCI program.
Unfortunately, most of the research groups involved with BCI “do” it in different ways according
to not only the systems and platforms used but also to data file formats. Moreover, these are
relative not only to the electrophysiological processed data (e.g. EEG, ERP signals) but also to
configuration settings (e.g. feedback rule, stimulator behavior, etc). This fact represents an
obstacle in tools exchange among different laboratories which perform similar BCI research.
Also, it is practically impossible to simulate the behavior of a system and to optimize it by
assembling modules from different groups as a unique way for describing their characteristics.

A typical situation is a group which is involved in the implementation of spellers that
would like to simulate the performances of systems built by assembling their developed
modules with other ones available from the literature. A recent study [2] has demonstrated that
under certain conditions it is possible to reliably predict the behavior of a system built by
assembling different modules if a well-defined and relatively simple description of them is
available. This will allow the optimization of many BCI systems without the need of really
building them: a way to break the interdependence of the modules and thus of the various
research groups. An effort of providing such “bridge” in the BCI research area has been started
by [5] which describe file formats based on the XML technology for storing some entities
frequently encountered among the BCI community as well as some free tools (BF++ Toys) that
use them and that were developed to optimize the performances of complete systems and to
document them. Unfortunately, they only focused their proposed method for only storing the
experiment data. Indeed, in order to be fully accessible to a wide audience, however, it is also
necessary to provide an efficient and extensible file format platform for the stimulator part of a
BCI program in order to fulfill the needs of virtually any scientist and to provide tools that are
able to handle the situation. Also, as pointed out by Wenke Burde [3], most BCI research tends
to improve BCI performance through developing better signal processing algorithms but only a
few which consider the aforementioned bridging mechanism between independent BCI
researchers as challenging opportunity. Maybe it is quite difficult for BCI researchers to find
appropriate methods or protocols which provide the necessary platform for building a working
BCI framework.

This paper deals with this issue, i.e. providing a platform for configuring the visual
stimulator of a BCI system in the form of XML (eXtensible Markup Language) file format. In our
proposed platform, we store the stimulator configuration data (the numbers of stimuli,
frequencies, etc.) in XML files in order to allow fast and simple interchanging of them, even on
Web, and at the same time a robust and customizable way of formatting them. This paper is
written in the following systematic. After a brief introduction about the background situation, a
review about the BCI framework will be described and the XML short introduction will be
provided prior to the explanation about the proposed platform. Afterward, issues on software
implementation and testing will be explained. Finally, the paper will be closed with conclusions.

2. METHOD
2.1. XML and the Development of the BCI Framework

Extensible Markup Language (XML) is a general-purpose specification for creating
personal markup languages, which makes use of tags. It describes data and distributes them in
a format, which is independent from the platform. This independence comes from the fact that
XML does not use a specific language: in fact, XML tags are not predefined, so that everyone
can write his own personal tags. XML is very similar to HTML (Hyper Text Markup Language)
but it is not its substitute as its aim is different: XML was designed for storing and exchanging

TELKOMNIKA ISSN: 1693-6930 ■

 A Novel Approach for Configuring The Stimulator of a BCI Framework…… (Indar Sugiarto)

75

data, while HTML was created for showing data in a format easily readable even if hardly
adjustable during time. In this way, it is very comfortable sharing data across different
laboratories as every researcher is free to extend them with the results of an analysis without
disturbing the activity of the other ones that can receive the new data and continue to work with
the previously developed tools. The essential characteristic of XML is that data are independent.
The content of a file is kept separate from its presentation, so that one can store the content in
an XML file only once and then extract and visualize it in the desired format (according to the
final format, there is an appropriate XML technology that allows its generation, called XSLT).

BCI system tries to create a direct bridge between human CNS (central nervous
system) with a computer or machine through neurophysiologic signals generated by the brain. It
then creates a new pathway for the brain to carry its message. At some extent, it is better to
describe a BCI system as a hybrid system in which all of its components collaborate together to
form an integrated system, as written in IEEE Signal Processing Magazine Volume 25 Number
1, January 2008: “A brain computer interface is a system that includes a means for measuring
neural signals from the brain, a method/algorithm for decoding these signals and a methodology
for mapping this decoding to a behavior or action”. This description of BCI system sounds more
technical since it emphasizes the importance of measurement-decoding-mapping interaction
within the system. The following diagram shows how those three components work to construct
a BCI system [6]. As Fig 1 show, the measurement task is performed within the Source sub-
system, decoding is performed by Signal Processing sub-system and mapping tasks are
performed by the User Application. Operator module acts as a central relay for system
configuration and online presentation of results to the investigator.

Fig 1. Mechanism of a BCI system in general. During operation, information (i.e., signals,
parameters, or event markers) is communicated from source to signal processing, to user

application, and back to source.

Those three core components of any BCI system require specific amount of computer
processing resource in order to work as ideal as possible as in “dream” BCI. In order to maintain
its complexity, it is necessary to develop a framework which encapsulates all those three core
components and provides standard protocols for their communication. An important remark
about this framework is that, as we already know, the human nervous system (including the
brain) is the most complex and adaptive system in the world. This title is reflected by the
phenomenon that every human brain may react differently to the same BCI system. There are
subjects who have good response on certain type of BCI system but the other ones don’t have
it. For some subject oscillations in the alpha and beta band during motor imagery work better
than the evoked potential approach and vice versa. This inter-subject variability corresponds to
spatial patterns and spectrotemporal characteristics of brain signals. A good BCI framework
should also address this issue. An example of excellent approach for this matter is given by
BCI2000 program [6], which can be viewed as a BCI framework as well. The BCI2000 system
tries to make a flexible BCI framework by collaboration of many user defined sub-programs.
Unfortunately, this system requires every sub-program to be hard-coded and embedded into the
main program using low-level inter-process communication (IPC) parameters before one can
use the BCI2000 in the real application. This “not so user-friendly” approach will become an

  ISSN: 1693-6930

TELKOMNIKA Vol. 7, No. 2, Agustus 2009 : 73 - 82

76

obstacle in bridging independent systems of each BCI laboratories. Thus in this paper, in order
to accommodate the future online-based BCI system, we develop the BCI framework using the
same approach as [5].

(a)

(b)

Fig 2. Block diagram of the BCI framework. (a) in system setup scenario, (b) for data abstraction

Since the development of BCI framework requires excessive part of program codes, the
explanation in this paper will be focused on the visual stimulator part of the BCI framework.
Based on the human capability to respond to external stimuli, we can expect that BCI could give
feedback in many ways. Sometimes it is quite difficult to determine which type of feedback is
best for certain application of a BCI system. Even presenting more than one type of stimulus
would help subject to improve his/her ability to control his/her own EEG. For example,
combining both random pattern and flickering pattern will provide a multimodal approach for the
BCI system enhancement. Fig 2 shows our proposed BCI framework in system setup scenario
and the data abstraction level. As it can be seen in Fig 2, there are at least three components of
sub-systems in the BCI framework system setup scenario which work simultaneously: data
recorder, signals visualization (analysis tools), and operator interface. But in the data
abstraction layer, there are at least seven major components which are required to be
synchronized: data acquisition, signals database/storage, feature processing (extraction and
classification), visualization (including stimulator), command generation for actuator, command
database, and the feedback acquisition.

TELKOMNIKA ISSN: 1693-6930 ■

 A Novel Approach for Configuring The Stimulator of a BCI Framework…… (Indar Sugiarto)

77

This research modifies the [7] and [5] methods in order to comply with our proposed
method and the entire system works as follows. Since it is possible to predict a collection of CIs
(control interfaces), given a collection of TRs (transducers), the performances of all the system
that is possible to build by combining all the TRs with all the CIs can be clearly used to optimize
BCI systems because it will be sufficient to choose the most efficient combination of TRs and
CIs. All the entities used for the description of TRs and CIs will be written in XML format both
for storage necessity and for easily managing the simulations for the computation of the
performances indicators.

The TR is composed by the acquisition stage, which deals with the electrophysiological
signals, and by the Classifier, formed by the Feature Extraction and the Feature Classification,
whose task is to extract the features of interest from the signals and to translate them into a
logical symbol (LS) which belongs to the classifier logical alphabet (LA). The LS, in general, has
no semantic meaning but is just a mapping with some subject’s performance (e.g. the character
selection in the spelling program [8]), the selection of a row in P300 virtual keyboard task [4]).
The CI encodes sequences of LSs and turns them into semantic symbols (SS) that belong to a
semantic alphabet (SA) by the Actuator part that can be used to drive an external peripheral
(e.g. virtual keyboards, robots, neuroprostheses). As an example, if we have a logical alphabet
of four symbols α, β, γ, δ the CI can implement an encoding for a virtual keyboard application
that associates the sequence ααα to the semantic symbol A, then ααβ to the semantic symbol B
and so on (usually one of the LSs is reserved for the UNDO key).

In this way 27 semantic symbols can be encoded with 3 LSs-long sequences so that the
26 characters of the English alphabet plus the space one can be mapped. In addition to these
symbolic parameters, the so-called Extended Confusion Matrix (ECM) metric for the evaluation
and optimization of the performances of BCI systems which combines the information about the
entities previously described (LA, SA, Encoders) with those derived from a new component, is
used. We used XML for storing LAs, SAs, ECMs and Encoders in the following format:

<?xml version="1.0" encoding="UTF-16"?>
<DOC>

<Type Name="Subject_01" SubType="Session_01"/>
<ECM>

<Row>
<In>α</In>
<C1>393</C1>
<C2>4</C2>
<C3>4</C3>
<C4>4</C4>
<Abstentions>45</Abstentions>

</Row>
<Row>

<In>β</In>
<C1>8</C1>
<C2>381</C2>
<C3>8</C3>
<C4>8</C4>
<Abstentions>45</Abstentions>

</Row>
<Row>

<In>γ</In>
<C1>16</C1>
<C2>16</C2>
<C3>357</C3>
<C4>16</C4>
<Abstentions>45</Abstentions>

</Row>
<Row>

<In>δ</In>
<C1>32</C1>
<C2>32</C2>
<C3>32</C3>
<C4>309</C4>
<Abstentions>45</Abstentions>

</Row>
</ECM>

</DOC>

  ISSN: 1693-6930

TELKOMNIKA Vol. 7, No. 2, Agustus 2009 : 73 - 82

78

In the visualization part, the EEG signals can be displayed spontaneously (in time
domain) or being interpolated for spatial visualization. After the features are extracted, certain
translation algorithm is required to decode the feature into executable commands for actuator.
In order to record the activity of the actuator, a command database program is required to keep
track and store the commands. After a certain mental task has been given, the subject brain will
react in a certain manner which will produce specific rhythmic signals. These feedback signals
are then being recorded and/or processed for further analysis. In order to synchronize all works
in the framework, we develop a synchronization protocol which generate timing signals and
request/acknowledge signals for data interchange between sub-systems.

2.2. The Proposed Platform for Stimulator Configuration

When working with exogenous BCI system, an external stimulator is required to elicit
certain EEG pattern. In a visual-based BCI stimulator, there are general requirements for
displaying the cues. For example in SSVEP-based BCI, the general parameters will be the
flickering animation frequencies, sizes, colors, shapes, positions, feedback style, and patterns
(solid or textured). To accommodate these, we develop the XML file format as follows.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ssvep_p300>
<ssvep_p300 version="2.0">
 <define shape=user_defined_shape>
 <self user_defined_parameters></self>
 <bar user_defined_parameters></bar>
 <label user_defined_parameters></label>
 <texture user_defined_parameters></texture>
 </define>
</ssvep_p300>

As the label name implies (i.e. ssvep_p300), we develop the stimulator so that it can
work for SSVEP- and P300-based BCI or combination of both BCI types.

Description:
 The XML file must have document ID as ssvep_p300 and it must contain attribute

version=”2.0”. The first line, which consists of statement <?xml version=”1.0”
encoding=”UTF-8”?> may be omitted but it is not recommended.

 Every ‘define’ element will start a new flickering animation definition and its shape is must
be specified in the ‘shape’ attribute. The following possible values for ‘shape’ attribute are:
rectangle, triangle, and circle. Note that the attribute’s value is case insensitive.

 After defining flickering animation’s shape, the next step is creating four elements within the
‘define’ element. These four elements are ‘self’, ‘bar’, ‘label’, and ‘texture’.

 ‘self’ element will be used to describe the flickering animation itself and it contains several
attributes. These attributes, which reside in an element definition, may be specified in
random order. The following attributes are valid for ‘self’ element:

o size  will determine the physical size of the animation in pixels;
o posx and posy  will determine the top-left corner for square and circle flickering

animation and determine the first point for triangle animation;
o posx2, posy2, posx3, posy3  will be used exclusively for determining the second

and the third points of a triangle flickering animation;
o freq  will determine the frequency of flickering animation;
o color  will determine flickering animation’s color; possible values are: white, red,

green, blue, cyan, magenta, yellow, gray, darkred, darkgreen, darkblue, darkcyan,
darkmagenta, darkyellow, darkgray, and lightgray

o texture  will determine if the flickering animation has texture or not;
 ‘bar’ element will be used to specify the appearance and behavior of feedback bar for each

flickering animation. The following attributes are valid for ‘bar’ element:
o type  will determine the style of feedback bar; possible values are: none,

individual, halfleft, halfright, and combination

TELKOMNIKA ISSN: 1693-6930 ■

 A Novel Approach for Configuring The Stimulator of a BCI Framework…… (Indar Sugiarto)

79

o color  will determine the color of feedback bar; possible values are: white, red,
green, blue, cyan, magenta, yellow, gray, darkred, darkgreen, darkblue, darkcyan,
darkmagenta, darkyellow, darkgray, and lightgray

o brush  will determine the filling rule for the bar; possible values are solid and line
o size  will determine the width of the bar; the height of the bar is follows the size of

the flickering animation;
o frame  will determine if the feedback bar is displayed with a frame or not, so the

possible values are yes or no
o framecolor  if the feedback bar has a frame, then this attribute will determine its

color; the possible values are the same with another color definition; if this attribute
is ignored, then the frame color will be set the same color with its parent

o blinking  will determine whether the feedback bar should also blinking with the
same frequency as the flickering animation itself; however, it is recommended to set
this value as no to avoid performance degradation when using many animations

o threshold  will determine the threshold value of feedback bar;

Fig 3. Several possible feedbacks displays: (a) NO_FEEDBACK_BAR, (b) INDIVIDUAL, (c)
HALF_RIGHT, (d) HALF_LEFT, (e) COMBINATION, and (f) a result for combining several

feedback types.

 (a) (b)

Fig 4. Two possible appearances of feedback bar: solid (left) or discrete (right).

 ‘label’ element will be used to specify flickering animation’s label and it will be displayed
anywhere on the screen, depending on the specified values below:

o text  any ASCII text in this attribute is valid as a flickering animation’s label; if this
attribute is NULL, then the flickering animation will be displayed without label

o size  will determine the font size of the label;
o color  will specify the color of the text; the possible values are the same with the

other color’s attribute above
o posx and posy  will determine the exact position of the text; if these attributes are

negative, then the text will be displayed on the center of the flickering animation;

  ISSN: 1693-6930

TELKOMNIKA Vol. 7, No. 2, Agustus 2009 : 73 - 82

80

 ‘texture’ element will be used to specify flickering animation’s texture. If textures are going
to be used for flickering animation animations, the texture attribute in the ‘self’ element must
be set as ‘on’ first. The following attributes are valid for this element:

o first  specify the full-path location of the first texture image filename; any
recognizable image by Qt may be used

o second  specify the full-path location of the second texture image filename; any
recognizable image by Qt may be used

 Every element must be closed with appropriate closing tag. Otherwise, it will not be
recognized as an element in the XML document format. This XML document must be saved
in standard ASCII format (with extension .xml).

In our proposed method, we also develop several type of feedback bars for SSVEP-
based BCI. Using the configuration file explained above, the following feedback bars can be
inserted together with the flickering stimulator for SSVEP-based BCI (can be seen in Fig 3 and
Fig 4).

3. IMPLEMENTATION AND DISCUSSION
The program is developed using C++ in Qt’s open source framework. The current

version of Qt being used in this paper is Qt 4.3.3. Since the free-license Qt is used, Microsoft
Visual Studio cannot be used as an IDE (Integrated Development Environment) for developing
the program, instead, Eclipse version 3.3.1.1 (Europa version) with Qt-Integration plug-in is
used. As an open-source mandatory of Qt and Eclipse, g++ version 3.4.5 of MinGW is used as
the compiler. When using g++ as compiler, gdb can be used as the debugger.

Qt supports two models of XML implementation: SAX (Simple API for XML) and DOM
(Document Object Model). The main different of SAX and DOM is SAX reports "parsing events"
directly to the application through virtual functions, while DOM converts an XML document into a
tree structure, which the application can then navigate. Qt also provides its own way to read or
write XML which is called QXml module (which consists of several useful class such as
QXmlAttributes, QXmlStreamReader, QXmlStreamWriter, etc). In this paper,
QXmlStreamReader is used for reading configuration file.

After compiling the BCI framework program, we provide the XML configuration file for
configuring the stimulator. For example, the following XML script will define a BCI application
which consists of four flickering animations: two square-shape (e.g. the first one with texture and
feedback bar and the second one with neither texture nor feedback bar), one textured circle-
shape with feedback bar, and one textured triangle shape with feedback bar.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ssvep_p300>
<ssvep_p300 version="2.0">

 <define shape="rectangle">
<self size="100" posx="0" posy="0" posx2="" posy2="" posx3="" posy3=""

freq="13.5" color="white" texture="no"></self>
<bar type="none" color="white" brush="solid" size="20" frame="no"

framecolor="ignore" blinking="no" threshold=""></bar>
 <label text="" size="" color="" posx="" posy=""></label>
 <texture first="" second=""></texture>
 </define>
 <define shape="rectangle">
 <self size="100" posx="200" posy="0" posx2="" posy2="" posx3=""

posy3="" freq="15.0" color="yellow" texture="yes"></self>
 <bar type="halfleft" color="white" brush="line" size="20" frame="yes"

framecolor="red" blinking="yes" threshold="0"></bar>
 <label text="two" size="20" color="green" posx="200" posy="50"></label>
 <texture first="default_texture1.bmp" second="default_texture2.bmp">
 </texture>
 </define>
 <define shape="triangle">
 <self size="100" posx="0" posy="200" posx2="100" posy2="200"

posx3="50" posy3="300" freq="17.5" color="blue" texture="yes">
 </self>
 <bar type="individual" color="red" brush="solid" size="20" frame="yes"

framecolor="red" blinking="no" threshold="200"></bar>
 <label text="three" size="20" color="green" posx="0" posy="250"></label>

TELKOMNIKA ISSN: 1693-6930 ■

 A Novel Approach for Configuring The Stimulator of a BCI Framework…… (Indar Sugiarto)

81

 <texture first="default_texture1.bmp" second="default_texture2.bmp">
 </texture>
 </define>
 <define shape="circle">

<self size="100" posx="200" posy="200" posx2="" posy2="" posx3=""
posy3="" freq="10" color="red" texture="yes"></self>

 <bar type="halfright" color="red" brush="solid" size="20" frame="yes"
framecolor="red" blinking="no" threshold="200"></bar>

 <label text="this is a circle LED" size="20" color="yellow" posx="100"
posy="200"></label>

 <texture first="default_texture1.bmp" second="default_texture2.bmp">
 </texture>
 </define>
</ssvep_p300>

Fig 5 shows the result for the above configuration script.

Fig 5. Display result from experiment with the given XML configuration script.

Fig 6. The complete BCI framework in action. The BCI framework uses XML file configuration to
control all widgets on the screen.

  ISSN: 1693-6930

TELKOMNIKA Vol. 7, No. 2, Agustus 2009 : 73 - 82

82

The proposed method has been pre-evaluated and implemented in real application of
BCI system for spelling program application. It has been demonstrated successfully as reported
by [8] and [1] as a result of public experiment in the event of CeBIT 2008 in Hannover. Fig 6
shows the screenshot result of the proposed BCI framework and its configuration platform.

4. CONCLUSION
A novel approach in providing flexible visual stimulator using XML has been presented

and applied for development of a BCI (brain-computer interface) framework. Using XML file
format for configuring the visual stimulator of a BCI system, we can develop BCI applications
which can accommodate many experiment strategies in BCI research. The BCI framework and
its configuration platform is developed using C++ programming language which incorporate Qt’s
most powerful XML parser named QXmlStream. The implementation and experiment shows
that the XML configuration file can be well executed within the proposed BCI framework. Beside
its capability in presenting flexible flickering frequencies and text formatting for SSVEP-based
BCI, the configuration platform only limited to providing 3 shapes, 16 colors, and 5 distinct
feedback bars. It is not necessary to increase the number of shapes nor colors since those
parameters are less important for the BCI stimulator. The proposed method can then be
extended to enhance the usability of currently existed BCI framework such as BF++ Toys and
BCI 2000.

REFERENCES
[1] Allison, BZ et al., “BCI Demographics I: How many (and what kinds of) people can use

an SSVEP BCI?”, Proceeding of 4th International Brain-Computer Interface Workshop and
Training Course 2008, Verlag der Technischen Universität Graz – Austria, 2008.

[2] Bianchi L, Quitadamo LR, Garreffa G, Cardarilli GC, Marciani MG., “Performances
evaluation and optimization of Brain-Computer Interface systems in a copy spelling
task”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2): 207-
216, 2007.

[3] Burde W, and Blankertz B., “Is the locus of control of reinforcement a predictor of
brain-computer interface performance?”, Proceedings of the 3rd International Brain-
Computer Interface Workshop and Training Course 2006, Verlag der Technischen
Universität Graz: 76-77, 2006.

[4] Millán, J., “Adaptive Brain Interfaces for Communication and Control”, 10th
International Conference on Human-Computer Interaction, Greece, 2003.

[5] Quitadamo LR, Marciani MG, Bianchi L., “Optimization of Brain Computer Interface
systems by means of XML and BF++ Toys”, International Journal of
Bioelectromagnetism, 9(3): 172- 184, 2007.

[6] Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR., “BCI2000: a general-
purpose brain–computer interface (BCI) system”, IEEE Transaction on Biomedical
Engineering, 51(6):1034–43, 2004.

[7] Sugiarto I, and Handoyo I., “Application of Distributed System in Neuroscience, A
Case Study of BCI Framework”, Proceeding of The First International Seminar on
Science and Technology (ISSTEC 2009), Universitas Islam Indonesia, Jogjakarta, 2009.

[8] Sugiarto I, Allison BZ, Gräser A., “Optimization Strategy for SSVEP-Based BCI in
Spelling Program Application”, Proceeding of International Conference on Computer
Engineering and Technology 2009 (ICCET 2009), International Association of Computer
Science and Information Technology (IACSIT), Singapore, 2009.

