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Abstract 
The natural disaster and design mistake can damage the bridge structure. The damage caused a 

severe safety problem to human.The study aims to develop the intelligent system for bridge health 
monitoring due to earthquake load. The Genetic Algorithm method in Neuro-Genetic hybrid has applied to 
optimize the acceptable Neural Network weight.The acceleration, displacement and time history of the 
bridge structural responses are used as the input, while the output is the damage level of the bridge. The 
system displays the alert warning of decks based on result prediction of Neural Network analysis. The 
best-predicted rate for the training, testing and validation process is 0.986, 0.99, and 0.975 respectively. 
The result shows the damage level prediction is agreeable to the damage actual values. Therefore, this 
method in the bridge monitoring system can help the bridge authorities to predict the health condition of 
the bridge rapidly at any given time. 
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1. Introduction 

Bridges are necessary structures to connect two places throughout the transportation 
system. The bridge should have enough strength capacity to withstand the self-weight and 
moving loadson the deck. Construction of the bridge shall be supervised by the bridge 
authoritiesto obtain long service life, ensure public safety, and reduce maintenance costs. One 
of the essential efforts to know the life cycle performances and management procedures of 
bridges is through Structural Health Monitoring (SHM). According to [1], SHM refers to the 
implementation of a damage identification strategy for Civil Engineering infrastructures. 
Application of SHM in Bridge Engineering aims to ensure long service life and improve the high-
level service to the highway users.  Meanwhile, [2] stated the objectives of bridge monitoring are 
to ensure bridge safety and provide a better maintenance planning continuously. The concept of 
health monitoring can be explainedregarding the goals of preventing health management in 
medical sciences.  

The diagnosis and precaution due to common ailments at a sufficiently early stage are 
the best options as the chances of curability are significantly higher. The potential in applying 
this concept in many aspects such as in Bridge Engineering to replace time-based maintenance 
with a symptom or health-based supportis well established [3]. In the past decade, traditional 
SHM combines visual observations and heuristic assumption with mathematical models of 
predicted behavior. Currently, the modern SHM system which includes the sensors, and 
automated reasoning techniques have been applied in bridge monitoring.SHM can also help the 
owners, builders, and designers of structures in rational decision making [4]. The variety of 
bridge data and information in bridge SHM should be recorded in real time so that the bridge 
structure can be observedin the monitoring room or remote area using internet connection. 
Therefore, theexpertsrationally should make the right decisions based on the bridge SHM 
results.  

There are many uncertainties or factors in the bridge projects have the high impact for 
the stability of bridge structures. First, the low level of the engineers‟ knowledgeand experience 
inconstruction andmethod of implementation. The failure in the bridge construction can cause 
catastrophic damages in theelement of a bridgeand can lead to the collapse of bridge 

mailto:reni.suryanita@eng.unri.ac.id


TELKOMNIKA  ISSN: 1693-6930  

Intelligent Bridge Seismic Monitoring System Based on Neuro Genetic Hybrid (Reni Suryanita) 

1831 

structures. One example is the I-35W Bridge in Minneapolis, Minnesota designed in 1964 and 
opened to traffic in 1967, which collapsed suddenly on August 1, 2007, as shown in Figure 1. 
The investigation by [5], reveals that bridge collapse is caused using undersized gusset plate in 
bridge construction. 

 
 

 
 

Figure 1. One section of the I-35W Bridge collapse [6] 
 
 

Another example is the collapse of the Kutai Kartanegara Bridge in East Kalimantan 
Indonesia on 26 November 2011, approximately ten years after construction completed, as 
shown in Figure 2. Touted as Golden Gate Bridge of Indonesia, the longest suspension bridge 
in the country at 710 m length, collapsed in less than 20 seconds. The evaluation and 
investigation team which is appointed by Indonesia‟s Ministry of Public Works announced that 
the cause was an accumulation of problems that included brittle bolts, lack of standards, 
fatigued materials, and improperly performed maintenance. At the time of monitoring on the 
bridge, a suspender cable brokeand caused the collapse of the bridge deck [7].These problems 
led to fatal stress to the bridge. The failure occurred when engineers were jacking underneath 
one side of the bridge deck at mid-span. Both the examples indicate that the lack of engineers‟ 
knowledge has been identified as the cause of the more significant problem in many aspects 
such as human safety, damages of public facilities and economics. 
 
 

   
 

Figure 2. Kutai Kartanegara Bridge before and after collapse [7] 
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The second, natural disaster such as an earthquake can affect the stability of bridge 
structures. The proximity of the bridge to the fault and site conditions influence the intensity of 
ground acceleration along the length of the bridge. Even a well-designed bridge may face 
damage as a result of theincreased vulnerability of the bridge to non-structural modifications 
which may alter the imposed load as well as structural deterioration due to earthquake  
loads  [6, 7]. Despite these uncertainties and variations, a lot can be learned from past 
earthquake damage, because the type of damage occurs repetitively. Stability and performance 
of bridge structure are important to ensure un-disrupted traffic without compromising the safety 
of its users.  

The bridge performance is revealed in the Eurocode 2 [10]  by imposing stricter damage 
naturaldisasters such earthquake can affect the stability of bridge structures. Due to the 
presence of much uncertainty and variations caused by the complexity of the whole bridge 
system, a lot of predictable responses are only known from past incidents. However, post-
earthquake inspection often takes time for the authorized assessor to perform specificchecks on 
the affected bridge. The condition bridge is essential to monitor and mitigate before the onset of 
problems.Bridge authorities should understand that to obtain long service lives and to reduce 
maintenance costs. Correct actions must be implemented right from the design and construction 
phases. The activities must also be performed with bridge management systems for service 
stage. This management system will assist in maintenance decision making by considering both 
structural safety and economy.  

According to the problem background, the bridge structure is necessary to evaluate and 
monitor regularly. The study proposed the new method to bridge monitoring and evaluation 
using a combination of Genetic Algorithm and Artificial Neural Networks methods. Many 
researchers have succeeded to apply the Artificial Neural Networks in their research,  
such as [11] proposed Artificial Neural Networks to predict damage detection for an idealized 
model of a bridge which could detect the change of stiffness in an element. The study only 
focuses on numerical simulation. Therefore, the accuracy of the method on real bridge 
monitoring using this technique has not been proven. Meanwhile [12] observed the Time Neural 
Networks (TNN) and Time Delay Neural Networks (TDNN) architectures with Back-propagation 
learning algorithm on structural health monitoring and damage detection. The algorithm has 
been adopted for vibration signature analysis of a typical bridge truss with simulated damaged 
states. Kerh, Huang et al. in 2011 have discussed the application of the Neural Networks on 
twenty-one bridges with span length over 500m in Taiwan [13]. The inputs of Neural Networks 
datasets are focal depth, epicenter distance, and local magnitude while the output is Peak 
Ground Acceleration (PGA) for each of the bridge site.Other researchers, [14] and [15] 
estimated the dynamic displacement of bridges due to dynamic load using the Neural Networks. 
The progressivemovement of the bridges is accepted as the actual physical quantities because 
it can quickly generate strain as well as stress, velocity, and acceleration at the measurement 
point. 

The application of Neuro-Genetic Hybrids method in Civil Engineering has been 
discussed by many researchers such as [16] who studied the technique to find the relationship 
between fatigue life of asphalt and fibers. The results show that the Neuro-Genetic Hybrids with 
two-hidden-layer can predict the fatigue life of fiber-reinforced asphaltic concrete with 96% 
accuracy. Meanwhile [17] studied the Neuro-Genetic Hybrids for prediction of pile bearing 
capacity with 99% accuracy, whereas [18] adopted the neuro-genetic algorithm to more 
effectively forecast and the best performance for the daily water demands. Other  
researchers, [19] has applied the hybrid of Artificial Neural Network with support vector machine 
method for detecting plagiarism, meanwhile [20] used the combination of Artificial Neural 
Network with Proportional Integral (PI) control technique for Doubly Fed Induction Generator 
(DFIG) based wind energy generation system. However, there has been little literature on the 
application of Neuro-Genetic Hybrids method in health monitoring of bridges based on 
displacement time series to predict the damage levels.The previous study about neural 
networks has applied to building astructure to predict the damage level of building [21] and on 
bridge monitoring to predict bridge health based on acceleration and displacement data  
domain [22]. Nevertheless, the previous study only focuses on structure response in x-direction 
only. Meanwhile, this study has been developed by using displacement and acceleration data in 
x, y, and z-direction. The monitoring system of bridges is designed to extend the lifetime of 
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deficient bridgesstructure. Therefore, the study aims to develop the intelligent network for bridge 
health monitoring due to earthquake load using Neuro Genetic Hybrids.  

 
 

2. The Proposed Method 
Commonly, problems faced by a conventional bridge monitoring system include the 

errors to interpret monitoring data and submission database system (server). Meanwhile, human 
issues include inconsistency and subjective while reading data in the monitoring system, and 
also insufficient knowledge to analyze thelacking interaction between visible defects and 
invisible structural degradation. Therefore, the accuracy and reliability of the results are pretty 
much subjective of the engineer experiences. Thus, the young engineers require specialized 
trainingbefore theygo into the field. Theyshould understand thefundamental knowledge of bridge 
engineering not only in theory but also in application to project.   

The errors occurred while performing analysis and interpreting data reading can be 
solved and minimized by Neuro-Genetic Hybrids methods. Neuro-Genetic hybrids consist of 
Neural Networks and Genetic Algorithms as numerical modeling techniques. The Neural 
Networks can model the non-linear relationship between a set of theinput and outputs without 
theneed to know the equations of mathematical.  In addition to that, Neural Networks require 
noprior knowledge of the relationship between the inputs and corresponding outputs.  
Compared to traditional methods, Neural Networks tolerate the relatively imprecise, noisy or 
incomplete data. Meanwhile, the Genetic Algorithms use three basic operations: selection, 
crossover, and mutation.  

The selection is the process of choosing the fitness string from the current population 
(parents) to the next generation (offspring). The Genetic Algorithm uses a community of 
candidate solutions as chromosomes. Computer programming-coding is used for a complete 
replacement for chromosome, crossover, mutation, and inversion at specific probabilities. Each 
parameter of the problem is a chromosome, which represents a unique independent 
parameter.Crossover is the process whereby new chromosomes are generated from existing 
individuals (each parent) by cutting each old string (chromosome) at a random location 
(crossover point) and replacing the tail of one series with the other. Mutation is a random 
process whereby the value of elements is changed such as 1‟s to 0‟s and vice versa in a binary 
string. The Genetic Algorithms provide the initial population, which is done by creating 
chromosomes randomly or by seeding the community with known fit chromosomes. According 
to [23], the Genetic Algorithms consist of three fundamental steps, namely evaluation, selection, 
and recombination as shown in Figure 3.   

 
 

 
 

Figure. 3. The Genetic Algorithm process 
 
 
The locations of observation points are determined according to modal identification 

function from the structural analysis results. According to [24], Neuro-Genetic hybrids have 
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provided efficient solutions to a wide-range of problems belonging to different domains. At the 
same time, various attempts have been successfully made to synergize the two or three 
different technologies in whole or in part, to solve problems for which these techniques could not 
find solution individually. This inventive method can be applied to the monitoring system for 
prediction of the bridge performances during and after the earthquake and getting the optimum 
weight more accurately and rapidly. Genetic Algorithm (GA) based on Back-Propagation Neural 
Network is a hybrid architecture in which a Back-Propagation Neural Network (BPNN) employs 
Genetic Algorithms for the determination of its weights. Several the researchers such as [25] 
have successfully used one hidden layer for their study. However, many researchers reported 
two hidden sheets are the best [12] and [14]. 

 
 

3. Research Method 
3.1. Neuro-Genetic Hybrids Procedure  

Genetic Algorithm (GA) based on Back-Propagation Neural Network is a hybrid 
architecture in which a Back-Propagation Neural Network (BPNN) employs Genetic Algorithms 
for the determination of its weights. In the study, the Neuro-Genetic Hybrid procedure has 
several steps. This process includes Back-Propagation Neural Networks and optimization of 
weight by Genetic Algorithms as shown in Figure 4. 

 
 

 

 
 

Figure 4. Flowchart of the Neuro-Genetic hybrid 
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Neuro-Genetic Hybrid consists of acceleration (A), displacement (D), and time (T) as 
input data, while output data are the damage levels (Step 1).The input data was conducted 
through the Nonlinear Finite Element Analysis under earthquake load using SAP 2000 Software. 
Meanwhile, the damage levels consist of minor-damage as Immediate Occupancy (IO), 
moderate-damage stated Life Safety (LS) and severe damage as Collapse Prevention (CP) 
level based on FEMA 356. In Step 2, input and output data are loaded for training BPNN. Every 
chromosome has several genes in an initial population of GA is definedas A chromosomes 
times B genes. B genes refer to the total of weight that involved in BPNN based on Neural 
Networks architecture. The configuration of a BPNN consists of x, y, and z where, x is the 
number of input neuron, y is a number of the hidden neuron, and z is some output neuron 
respectively. Therefore, the number of weights that are to be determined are (x+z)y. Selecting a 
gene length of d, the range of the chromosome string S comprising (x+z)y genes is (x+z)y.d. 

The Neuro-Genetic hybrid includes some hidden layers, iteration, mutation, and cross-over 
operator. 

Initially, a population (Po) of chromosomes of size Nis randomly generated. The weight 
sets for the BPNN are extracted from Po. For each weight set, the BPNN is trained for all the 
input instances of the given problem. The error in the training is utilized to compute the fitness 
value for each of the chromosomes.In the next phase, the worst-fit chromosomes are 
terminated and replaced by rest-fit chromosomes. The parent chromosomes are randomly 
selected in pairs, and a two-point crossover operator is applied to produce offspring. The new 
population P1 again has its fitness values computed after extraction of weights and computation 
of error. The generation progress is terminated until the population converges to the same 
fitness values. During the training of BPNN, Regression (R) and CPU time values are obtained 
and controlled by initial assumption (R > 0.80). The weights extracted from the „converged‟ 
populations are the final weights of the BPNN. 

The procedure of the testing is the same process with the BPNN training in Step 2, but 
without a weight optimization by GA. The process is done using the final weight in Step 2 and 
applies other data for testing. The control phase is over-fitting between training and testing of 
BPNN. If over-fitting occurred, then the structure of Neuro-Genetic hybrid should be modified 
(Step 3). The output of this method is the prediction of damage level of bridge structure (Step 4). 
 

3.2. The Bridge Monitoring System Procedure  
 The bridge monitoring system in the study has several components to support the 
primary function which includes server system, Artificial Intelligence, and sensor system. The 
monitoring system in the study is illustrated in Figure 5. The product of this intelligent monitoring 
system is an Intelligent Software. The software can be stated as a smart software because it 
can predict and analyze the damage level of a bridge due to the earthquake loads and also the 
other dynamic loading.  

The prediction based on the standard of FEMA 356 and analysis based on results of the 
forecast, which describes as green, orange, and red color of an alert system. The software is 
saved in the server system.  The software uses the Visual Basic in the program coding which is 
provided in the local monitoring. The testing using dummy data indicates that the developed 
intelligent monitoring could perform its functions, including control, predicting, and alerting. 
Artificial Intelligence consists of a Neuro-Genetic Hybrid to obtain the optimum weight (updated 
weight) as an engine in the monitoring software. The process includes the training and testing of 
BPNN.    

In this study, seven sensors such as LVDT and accelerometer are installed on the 
bridge. The sensors sent the signal to the data acquisition and passed data to the 
monitoringsoftware in the server system. The three steps of the monitoring system are adopted 
from previous research (Mardiyono et al., 2012). The first step is designing Neural Networks 
architecture including simulating the bridge damage level due to the earthquakes, training and 
testing neural and obtaining the initial weights. The second step is creating and developing the 
intelligent monitoring software using VB.NET. The last step is designing and developing the 
alert system. The bridge monitoring system in the study has several components to support the 
primary function which includes data acquisition module, intelligent engine module, an alert 
system module, and monitoring module.  

The modules use the VB.NET which is provided in two versions involving local and 
remote monitoring from the server. The local monitoring is located in the bridges whereas the 
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remote tracking accesses the data from any places via the internet. The testing using dummy 
data indicates that the developed intelligent monitoring could perform its functions including 
monitoring, predicting, and alerting. The monitoring system in the study is illustrated in Figure 6. 

 
 

 
 

Figure 5. The procedure of a bridge monitoring system in the server 
 

 

 
 

Figure 6. The bridge monitoring system is developed in this study 
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4. Results and Analysis 
The neurons in input layer consist of time and displacement while the output layer is a 

damage levelinto four levels. The levels are 0 (zero) for safety level (B), 1-indexstate for IO, 2-
index for LS and 3-index for CP level.The parameters of training to indicate the end of 
thetraining are the Mean Square Error (MSE). An acceptable MSE in this study has 
performance goal 0.005. The maximum number of epochs is 50000, and learning rate is 0.15.  
The training process used the Intel Core i5-2410M computer specification. The power of the 
processor is 2.30 GHz with turbo boost up to 2.90 GHz and memory 4 GB. Input data based on 
the time history of bridge response which, consists of the displacement on the top of the piers.   

The Neuro-Genetic Hybrid used 70% data for training, 15% data for testing and 15% 
data for the validation process. The performances of Neuro-Genetic Hybrids for damage level 
prediction based on Finite Element analysis dataare shown in Figure 7, Figure 8 and Figure 9. 
These figuresshowregression value (R) for training, testing, and validation process. Value (R) 
for training processis 0.986, the testing process is 0.989, and validation process is 0.975 on 
50000

th
 epoch. The best performances of Neuro-Genetic Hybrid depend on the selection of 

suitable initial weight, network architecture model, and activation functions. The R-value 
denoted the damage values from the data domain has been predicted more than 97% closer to 
the actual damage values.   

 
 

 
 

Figure 7. Regression (R) Training of damage level prediction through finite element analysis 
data 

 
 

 
 
Figure 8. Regression (R) Testing of damage level prediction through finite element analysis data 
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Figure 9. Regression (R) Validation of damage level prediction through finite element analysis 
data 

 
 
The best performance of the Neuro-Genetic hybrids conducted the optimal weight of the 

system. The optimal-weightwas applied in the bridge monitoring system. This method can be 
used to predict the responses of bridges due to an earthquake load. The menus of the 
monitoring system consist of general monitoring and sensors monitoring. The public monitoring 
displays the global monitoring of bridge and the record of the acceleration graph in 3 directions, 
transversal (X), longitudinal (Y) and vertical (Z) direction respectively.  

A neuro-genetic hybrid has embedded in the software with the alert system. The alert 
system denotes minor damage (IO), moderate (LS) andsevere damage (CP). If the sensors 
record the data over the reasonable limit, then the alert system will detect the damages.The 
alert system contains the reasonable prediction that predicts three such levels based on the 
accelerometer data. It will activate the blink color of IO, LS, and CP and also the alarm sound if 
the result of prediction indicating to IO, LS, and CP level. 

The bridge structural monitoring system, including anaccelerometer data, displacement 
data, and alert system as shown in Figure 10. In general function, this software reads all the 
sensor data, display in numerical or charts and predicts the level of bridge damage showing in 
IO, LS, and CP. Toolbar sensor menus consist of the accelerometer and displacement datafrom 
a sensor which representing in numeric of X, Y, and Z axis. Figure 10 illustrates the bridge 
displacement sensor data. It shows the location of each sensor on the bridge, the sensor data, 
and the result of an alert indicator of safe representing as a green color, moderate (orange), and 
severe damage (red).  Based on the data collected by displacement sensors. 

The intelligent software has been resulted using VB.NET. Menus of software include the 
data inputs from sensors such as accelerometers, feeding forward the inputsNeural Networks, 
predicting the output as bridges damage level and providing the alert warning as shown in 
Figure 10. The alerts are divided into four formats namely the alert bars which are shown in 
different color (S: Green, IO: Yellow, LS: Orange, and CP: Red), alert sound/alarm, and alert-
mail sent to the user. The software has a primary function prediction of damage level when an 
earthquake occurred. After the prediction output indicated, either IO, LS, or CP, the alert system 
would then notify the user that the condition of the bridge is not secure. 
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Figure 10. The structural bridge monitoring system 
 
 

5. Conclusion 
The best performances of Neuro-Genetic Hybrids (NGH) based on the initial weight and 

networks architecture model. The neurons of NGH for input layer consist of time, acceleration 
and displacement have been obtained from finite element software.The output layer is a 
damage level of the bridge which is categorized intofour indexes based on FEMA 356. This 
study used the Back Propagation Neural Network (BPNN) and Genetic Algorithms (GA) for 
prediction the optimum weight and damage levels. According to the results, the Neuro-Genetic 
Hybrids method based on the sensor recording data in the system can produce the best 
performance for prediction of damage level of bridge structure due to earthquake loads. The 
prediction rate value is 97% closer to the actual damage values.Therefore, this quick method 
can be applied to the monitoring system and predict bridge performances during and after the 
earthquakes. 
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