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Abstract 
This paper presents a new approach of Forward-Backward Time-Stepping (FBTS) utilizing Finite-

Difference Time-Domain (FDTD) method with Overset Grid Generation (OGG) method to solve the inverse 
scattering problems for electromagnetic (EM) waves. The proposed FDTD method is combined with OGG 
method to reduce the geometrically complex problem to a simple set of grids. The grids can be modified 
easily without the need to regenerate the grid system, thus, it provide an efficient approach to integrate 
with the FBTS technique. Here, the characteristics of the EM waves are analyzed. For the research 
mentioned in this paper, the ‘measured’ signals are syntactic data generated by FDTD simulations. While 
the ‘simulated’ signals are the calculated data. The accuracy of the proposed approach is validated. Good 
agreements are obtained between simulation data and measured data. The proposed approach has the 
potential to provide useful quantitative information of the unknown object particularly for shape 
reconstruction, object detection and others. 
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1. Introduction 

Microwave inverse scattering technique is generally used to determine the location, 
shape and dielectric properties of unknown objects that are scattered by the objects [1].  The 
original geometrical features can be reconstructed from the scattered data received by the 
antennas and by numerically time reversing the scattering process. This technique is generally 
used for the reconstruction of early breast cancer due to its non-destructive effect on healthy 
tissue [2], military radar imaging [3], and tumour detection [4] and through the wall imaging [5-6].  
In general, the inverse scattering techniques are developed in frequency-domain and time-
domain for the microwave imaging [7-9]. The single frequency-domain scattering data is usually 
used in most of the microwave inverse scattering techniques to investigate the inverse  
problem [10-12]. However, frequency-domain scattering data is often ill-posed due to the 
nonlinearity and limited measurement parameters available enforced by the problem  
geometry [13]. In contrast, time-domain has the potential to reconstruct the dielectric properties 
more accurately [14]. It is therefore imperative to investigate different approaches to decrease 
the level of ill-conditioning inherent in the inverse problem.  

The Forward Backward Time Stepping (FBTS) technique using broadband microwave 
signals is proposed to formulate the inverse scattering techniques in time-domain. This 
technique is an alternative approach to microwave imaging [15]. It is a nonlinear inverse 
scattering computation formulated in the time-domain utilizing Finite-Difference Time-Domain 
(FDTD) method. The FDTD method, original proposed by Kane Yee [16], proved to be a simple 
and efficient tool in solving Maxwell’s equations. Generally, it is used to improve the detection 
and reconstruction of the objects [17-19]. The FDTD method contains more information 
compared to a single-frequency scattering data which would lead to improvements in detection 
rates.  However, there are two major drawbacks to a classical FDTD method [20].  The first one 
is related to a situation when a two-scale problem occurs. This situation can be caused by a 
presence of object which is much smaller than the size of the problem.  Here, the FDTD need to 
refine the computational domain globally to solve the problem. However, this method will 
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increase memory consumption and CPU time [21]. The second drawback is its efficiency with 
respect to curved boundaries. This method was formulated on tensor product grids and the only 
way to a curve object is by staircase approximation. Several sub-gridding techniques have been 
reported in the literature to overcome this limitation by solving the problem separately.  First 
solve the problem in the whole domain on a coarse grid, then part of the FDTD grid is replaced 
with a finer grid called the sub-grid to solve the sub-problem on finer grid and combine the 
results [22-25]. With such techniques, it will reduce the overall computational cost but the fine 
region is restrictive by the Courant-Friedrichs-Lewy (CFL) stability condition [26]. In recent 
years, many researchers had applied the FDTD method for the inverse scattering technique but 
all of the above researchers only used a single grid FDTD. To the best of our knowledge the 
study about the sub-gridding FDTD has not been yet reported with the application of microwave 
inverse scattering technique. 

This paper presents a new computational sub-gridding scheme combining the 
advantages of FDTD method and Overset Grid Generation (OGG) method is considered to 
solve the inverse scattering problems for EM waves [27-29]. A system of relatively simple 
meshes which consists of a static main mesh and static sub-mesh are used for the proposed 
grid method. These meshes are overlapped on each other in an arbitrary manner to form a 
single grid [30]. It will reduce the geometrically complex problem to a simple set of grids. Here, a 
new algorithm will be formulated by integrating the FBTS technique utilizing FDTD method with 
OGG method for a finer grid.  First, the analysis is carried out for direct problem with empty 
grids and in stationary case for transverse magnetic (TM) mode for two-dimensional (2-D) 
cases.  Several EM pulses are lunched to illuminate the unknown scatterers. The characteristics 
of scattered EM fields between both meshes are measured and analyzed. The measured 
signals are syntactic data generated by OGG-FDTD simulations. The numerical results are 
compared to an equivalent simulation. Then, a simple object reconstruction is carried out by 
using the new approach to solve the inverse problem. This analysis attempts to validate that the 
proposed approach can be applied to reconstruct unknown objects. 
 
 
2. Methodology 
2.1. Forward-Backward Time-Stepping Technique  

The Forward-Backward Time-Stepping (FBTS) technique has the potential to 
reconstruct images that provide useful quantitative information about the location, shape and 
the electric properties of the scatter or object.  The electric properties include the permittivity  
( ), permeability (  ) and conductivity ( ). Figure 1 shows a typical configuration of an active 

microwave tomography setup for FBTS inverse scattering problem in two-dimensional field.  
The unknown object is assumed to be embedded in a free space. The electrical properties of 
the unknown object are reconstructed from the transient field data measured at several 
antennas for each illumination.  The errors between the measured and simulated microwave 
scattering data are compared in the time-domain by using the FBTS technique.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Configuration of FBTS technique in 2-D view 
 
 

Initiating the FBTS technique, the optimization problem is formulated in the form of cost 
functional to be minimized [31]. 
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where p is an electric parameter vector, t),(p;rv r
nm   and )t,(~ r

nm rv   are the simulated EM fields 

for an estimated medium parameter vector p and the measured EM fields at the receiving 
position n due to a pulse radiated by a transmitter m, respectively. 
 
2.2. Overset Grid Generation Method  

In this paper, the main mesh covers the entire of the computational domain while the 
sub-mesh is used to model the unknown object. Each of the grid components in the sub-mesh 
can be calculated independently from the overlapped main mesh at any overset boundary.  
Figure 2 illustrates the data transfer between the overlapped meshes by using linear 
interpolation algorithm. 

   
 

 
Figure 2.  Interpolation model 

 
 

The unknown value L , at point L in the main mesh (dashed line) can be determined 

from the existing factors 4321 ,,,  in the sub-mesh (solid line) as in equation (2) [32]:  

 

 
The value at the interpolation point is used to transfer inter-grid information and 

recomputed at each time step. 
 

2.3. Computational Algorithm of FBTS technique utilizing OGG method and FDTD method 
(OGG-FDTD) 

The 2-D FDTD formulations for TM cases are produced by assuming that all partial 
derivatives of the fields with respect to z-direction are equal to zero.  In order to formulate the 
OGG algorithm into the FDTD algorithm, the flow chart of computing is indicated in Figure 3.  
The computation domain is separated into two parts to apply the OGG-FDTD algorithm. One 
part is for the main fields region in FBTS algorithm (System A) and the other is for the OGG-
FDTD algorithm (System A’). The EM fields of the main fields region need to be determined in 
System A’ for every time step. The EM fields of the related grids in System A are updated with 
the corresponding calculated EM fields in System A’ which consists of main mesh and sub-
mesh.  In System A’ the position of the sub-mesh is identified.  The EM field components on the 
main mesh are interpolated to the field components on the sub-mesh through Lorentz 
transformation. The electric field is calculated in both meshes by using the FDTD method.  The 
calculated value of the electric field at the sub-mesh is interpolated back to the main mesh by 
applying Lorentz transformation. Then, the electric field is updated in the main fields region in 
System A where the half time increment is advanced. The same process is iterated to calculate 
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the magnetic field.  The difference between the EM fields for an estimated medium parameter 
vector and the measured EM fields are calculated in System A by using the FBTS technique in 
time- domain.  In this paper, the time component in main fields region in FBTS algorithm is set 

as ttt  . The time step  t is determined by using the Courant-Friedrichs-Lewy (CFL) 

stability condition.  The time component in the OGG-FDTD algorithm is fixed as 2/ttt  , 

so that the time component on the main mesh can be calculated and interpolated to the sub-
mesh. The process continues until the time-stepping is concluded. The proposed procedure is 
the key idea of the approach to apply the interpolation technique into the time component. 

 
 

 
 

Figure 3. Computational OGG-FDTD algorithm 
 

 
3. Numerical Model and Simulation Setup 

Figure 4 illustrates the numerical model for FBTS and FDTD with OGG method. The 
main mesh is set to 190 190mm and the sub-mesh is 50 50mm.  The sub-mesh is located at 
the center of main mesh. There are 16 antennas are utilized in the analysis.  Each antenna will 
become transmitter sequentially to transmit a pulse into the FDTD lattice environment while the 
remaining antennas will become receiver to collect the scattered signal from the FDTD lattice 
environment.  Here, the analysis is carried out with empty grids and in stationary case to validate 
the proposed technique.  The entire FDTD lattice environment is set as free space with relative 
permittivity, εr = 1.0 and σ = 0.0.  The incident wave source is a sinusoidal modulated Gaussian 
pulse with a center frequency, fc= 2GHz is assigned to electric component, zE in the FDTD 

lattice. 
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Figure 4.  Numerical model 
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The boundary is terminated with the convolutional perfectly matched layer (CPML) with 

thickness of 15mm at the borders of the FDTD lattice to reduce the reflection from the 
environment and to reduce the computational domain. The space increment for the main mesh 

is mymx   =1.0mm, and for the sub-mesh is sysx   =1.0mm.  The grid size ratio, R 

between main mesh and sub-mesh is given by ,
mx
sx

R



 where the value of R=1.0.  

 
 
4. Result and Discussion 

The analysis is divided into two parts: The first part is for direct problem where EM 
pulses are launched to the sub-gridding FDTD to illuminate the unknown scatterers and solved 
based on OGG-FDTD method. The second part is for inverse problem where the shape, size 
and location of embedded object are reconstructed by the scattered electric field obtained at the 
receivers.  
 
4.1 Direct Problem – Signal Analysis 

The simulation is carried out by using sub-gridding FDTD without an object for signals 
analysis.  In this analysis, two antennas are used as transceiver.  For the research mentioned in 
this paper, the ‘measured’ signals are syntactic data generated by OGG-FDTD simulations.  
While the ‘simulated’ signals are the calculated data. The electrical fields at the receiving 
antenna is represented as measured signal (RxMEAS) and simulated signal (RxFWD). The errors 
between RxMEAS and RxFWD are measured and compared by using the FBTS technique in the 
time domain. The observed data at the receiving antenna position Rx1 and Rx2 is simulated for 
single-Tx-single-Rx configuration by utilizing the FDTD method and by utilizing OGG-FDTD 
method.  Figure 5 (a) shows the RxFWD at position Rx1 and Figure 5 (b) shows the RxMEAS at 
position Rx1. The solid line represents the implementation of FBTS by utilizing the FDTD and 
the dashed line represents the implementation of FBTS by utilizing the OGG-FDTD method.  
Figure 5 (c) shows the RxFWD at position Rx2 and Figure 5 (d) shows the RxMEAS at position Rx2.  
The solid line represents the implementation of FBTS by utilizing the FDTD and the dashed line 
represents the implementation of FBTS by utilizing the OGG-FDTD method.    
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Figure 5 (a).  RxFWD at position Rx1 

 
 

Figure 5 (b).  RxMEAS at position Rx1 
 
 

 
 

Figure 5 (c).  RxFWD at position Rx2 

 
 

Figure 5 (d).  RxMEAS at position Rx2 
 
 

The error signals between the RxMEAS and RxFWD between FBTS by utilizing the FDTD 
and FBTS by utilizing the OGG-FDTD method are compared by using the mean-squared error 
(MSE).  The MSE between the signals is given by: 
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where xi is the signals in FBTS by utilizing the FDTD method are set as reference signals, yi is 
the signals in FBTS by utilizing the OGG-FDTD method and N is the number of signal samples.  
The comparison of RxMEAS and RxFWD is shown in the Table 1. 
 
 

Table 1. MSE comparison 

Antenna Position Signal 

MSE 







 1710  

Rx1 
RxFWD 9.7875 

RxMEAS 9.7875 

Rx2 
RxFWD 9.8262 

RxMEAS 9.8262 

 
 

From Table 1, it shows that the signals in FBTS by utilizing OGG-FDTD method gives 
lower MSE value. This indicates the signals obtained by utilizing OGG-FDTD method produced 
less error and nearer to the reference signals. It proves that the proposed approach can be 
applied to reconstruct unknown objects. 
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4.2. Inverse Problem - Reconstructions of the Object 
For the inverse scattering problem, a simple circular object embedded in the region of 

interest (ROI) is conducted by using the proposed new approach as in Figure 4. The size of the 
ROI is set with the diameter of 50mm while the size for the object is set to 15mm in diameter.  

The dielectric properties of ROI is fixed with 98.9r   and  0.18.  The ROI is surrounded by 

16 antennas which are used to transmit Gaussian pulse.  The embedded object is located at the 

center of ROI with the dielectric properties is set with 45.21r  and 45.0 . The initial guess 

for r and  values for the simulation are 13.7 and 0.10 respectively which nearer to the actual 

profiles. Figure 6 illustrates the actual profiles of the circular model used for the simulation.  
Figure 7 shows the reconstructed profiles by employed the FBTS technique utilizing FDTD 
method only. The embedded objects can be detected and reconstructed. Figure 8 shows the 
preliminary results of the new approach for reconstructions of the object. The reconstructed 
object has been carried out for 100 iterations. The results shows that the new approach has 
been successfully detected and reconstructed the object with the MSE value of the 
reconstructed dielectric properties are 0.14052 for relative permittivity and 0.00016 for 
conductivity in both techniques.  It is the same with the reconstructed object by employed the 

FBTS technique utilizing FDTD method because the grid size ratio, 0.1R  . 

 
 

  
(a) Relative Permittivity (b) Conductivity 

 
Figure 6. Actual Profiles 

  
 

  
(a) Relative Permittivity   (b) Conductivity 

 
Figure 7.  FBTS with FDTD method: Reconstructed Profiles        
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(a) Relative Permittivity       (b) Conductivity 

 
Figure 8. FBTS with OGG-FDTD method: Reconstructed Profiles 

 
 

5. Conclusions and Future Work 
For direct problem, the characteristics of the simulated signal and measured signal for 

the development of the FBTS algorithm by utilizing OGG-FDTD method are presented. The 
results show good agreements are obtained with the reference signals.  For inverse problem, 
the proposed approach is proven that has the potential to reconstruct the simple circular object 
embedded with the quantitative information regarding the shape, size and location of the object.  
Future work will include the analysis of difference size circular object embedded in free space.   
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