
ISSN: 1693-6930 � 293

A Video Streaming Application Using Mobile Media Application …. (Ary Mazharuddin Shiddiqi)

A Video Streaming Application Using Mobile Media
Application Programming Interface

Ary Mazharuddin Shiddiqi, Henry Pratama, Henning Titi Ciptaningtyas
Dept. of Informatics, Fac. of Information Technology, Sepuluh Nopember Institute of Technology

Jl. Raya ITS, Kampus ITS, Sukolilo, Surabaya, Telp 031-5939214, Fax 031- 5913804
e-mail: ary.shiddiqi @cs.its.ac.id, henry_p@cs.its.ac.id, henning@its-sby.edu

Abstrak
Dewasa ini perkembangan teknologi telepon selular berkembang dengan pesat.

Perkembangan ini mengarah pada lahirnya mobile multimedia phone yang mendukung koneksi
Wireless Local Area Network (WLAN). Akan tetapi penggunaan teknologi WLAN pada telepon
seluler untuk mengakses video secara streaming sangat jarang ditemui. Sedangkan Symbian
S60 saat ini sebagai sistem operasi mobile multimedia phone sangat handal dalam menangani
berbagai macam media seperti video. Pembahasan dalam penelitian ini menyajikan pembuatan
aplikasi video streaming pada mobile phone melalui koneksi WLAN dengan menggunakan
teknologi JSR 135 atau lebih dikenal dengan Mobile Media API (MMAPI). MMAPI digunakan
untuk mengontrol proses video streaming dan fitur-fitur pendukungnya. Aplikasi ini akan
menggunakan 2 pilihan protokol yaitu RTSP dan HTTP. Hasil uji coba menunjukkan bahwa
penggunaan MMAPI pada telepon seluler berbasis Symbian 60 untuk melakukan video
streaming dapat diterapkan dan mempunyai kehandalan yang baik. Hal ini ditunjukkan dengan
nilai paket loss 0% pada koneksi yang reliable dan waktu yang dibutuhkan untuk memutar file
multimedia tidak terpengaruh oleh besar file yang dibuka.

Kata kunci: Video Streaming, WLAN, Symbian S60, MMAPI.

Abstract
Recently, the development of mobile phone technology is growing rapidly. These

developments led to the emerging of a multimedia mobile phone that supports Wireless Local
Area Network (WLAN). However, the use of WLAN technology on mobile phones to access the
streaming video is very rarely employed, while the current S60 Symbian operating system as a
multimedia mobile phone is very reliable in handling a video. This study presents the making of
a video streaming application in mobile phone via a WLAN connection using JSR 135
technology or the Mobile Media API (MMAPI). MMAPI is used to control the process of video
streaming and its features. The application uses the two protocols; RTSP and HTTP.
Experiment results show that the use of MMAPI on Symbian 60 based mobile phones to do
video streaming is feasible and has a good reliability as 0% packet loss on connection. In
addition, the times required to play multimedia files are not affected by the size of video
streaming files.

Key Words: Streaming Video, WLAN, Symbian S60, MMAPI.

1. Introduction

In this modern era, mobile phone technology has been growing rapidly. The current
trend of the development is on multimedia mobile phones. Most mobile phone manufacturers
use Symbian operating system for their products. The latest Symbian version of the multimedia
mobile phones is Symbian version 60. The Symbian 60 has the editions according to features
being added on starting from S60 First Edition, S60 Second Edition, S60 Third Edition and the
most recent version is S60 Fifth Edition [1], [2], [3].

As the growing demand for multimedia quality, the growing in the multimedia technology
is also balancing. In the S60 Third Edition and Fifth Edition, the phone has been equipped by a
variety of connection options to support multimedia flexibility [2].

 � ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 3, December 2010 : 293 – 300

294

However, the use of streaming technology in mobile phones with the S60 operating
system is very rare. Though it has been known that mobile phones with that type already has
the feature of Wireless Local Area Network (WLAN). Video streaming technology enables
mobile users to watch videos without having to have the video files on a cell phone or download
it first from other devices. It can be imagined if the video file with the size of 100MB should be
downloaded to a mobile phone, then it will take a long time to finish and a large storage. By
utilizing streaming video technology on mobile phones, this problem will not happen [2]-[8].

J2ME or Java 2 Micro Edition has a mobile library media API (MMAPI) or JSR (Java
Specification Requests) 135 used to handle multimedia files [9]. This study developed a video
streaming application on mobile phones based on Symbian OS via WLAN using a Mobile Media
API (MMAPI).

2. Research Method

This research built an application called Pocket VidStream used to play streaming
videos on mobile devices. To run the video streaming, the software on a mobile device that acts
as a client should connect to a server that functions as a provider of video streaming services.
We used Mobile Media API (MMAPI) of Java 2 Microedition to handle data transmission
protocol (protocol handling) and handling the contents of the data (content handling). The
handling protocol reads data from source (such as files, streaming servers, captured device)
and then processes them in the media processing system. While the content handling
processes the media data (such as parsing or decoding) and then renders to output devices
such as audio speakers or video displays. At the API, there are two high-level objects used;
they are data source and player. Each object represents one of the multimedia processing. Data
source object represents the protocol handling, while the player object represents the content
handling.

In this application, video streaming uses on-demand streaming concept. The protocol
used in on-demand streaming protocol is HTTP and RTSP. On-demand streaming is activated
by user request and can be presented at any time in accordance with requests from the client.
In other words, on-demand streaming is similar to seeing video tapes where we can pause and
play the video.

The concept of client server used is as follows. Server: a computer that is used as a
server streaming (RTSP servers and HTTP servers), and client: a mobile device that performs
requests to a Server.

The device used to run this application has to support the necessary infrastructure and
support the type of media files to be played. To play a media, it takes two objects, namely:
DataSource and Player. DataSource handles details of how to obtain data from sources that
are available. Source comes from servers that provide streaming service. Player need not be
too concerned about where the data originated from or how to get it. The player only needs to
read data from DataSource, processes, displays and plays media playback on the output
device. There is a third party in this scenario, i.e. the Manager. The manager creates Player
from the DataSource. It creates a Player from the media source location (URL), DataSource and
InputStreams.

Figure 1 and Figure 2 show the general system of Pocket VidStream. Firstly, users
must establish a connection to the WLAN network via wireless access point. Then, client
applications will perform XML parsing to the server in accordance with the protocol and the type
of video selected by the user. At the client, the XML parsing is done to obtain data title and the
URL of the video that is stored in XML files on the server. When the XML parsing is complete,
the client application will display a list of video titles available at the server which then the user
can select.

In this application, users can stream both by HTTP and RTSP protocols. Both protocols
have their own advantages. The HTTP protocol downloads video files at the content server
(HTTP server) and then save it into a buffer before being posted, so it takes longer for large
sized files. While the RTSP protocol streams the video in a real time fashion. By using RTSP
protocol, when the client request to the server, the server will direct its response by sending
streams of video files in sequence, and the client can immediately play the video stream.

HTTP protocol is better used if the file is small, and broadcasters wants to send a file
with a higher quality of streaming media (RTSP Server). The advantage of using the HTTP

TELKOMNIKA ISSN: 1693-6930 �

A Video Streaming Application Using Mobile Media Application …. (Ary Mazharuddin Shiddiqi)

295

protocol is high video quality. This is because the file is completely transferred before being
played. In addition, the client application is still able to watch the video because the video file
has been downloaded and stored in a buffer. However, the disadvantage of using HTTP
protocol is the users have to wait longer and if the connection is lost or dies the users can only
play part of the video file that has been stored in the buffer.

Figure 1. Object Manager interactions,
DataSource and Player

Figure 2. Object Manager interactions,
DataSource and Player

On the other hand, with the RTSP protocol, users do not have wait too long to play the
video because the video playback process performed in real time while the server keeps
transferring the video streaming until the whole file is completely transferred.

3. Results and Analysis

Experiments are conducted to observe the system's functionality, compatibility, and
performance.

3.1. Functionality Experiment

This experiment was conducted to test the basic functions of this software to run
properly. Figure 3 shows the process configuration settings to determine the server's IP
address, protocol options and the type of video content that will be used. The results indicated
in Figure 3a. Then, after performing the configuration process, the client will do the parsing of
XML to display a list of video titles that will be selected for the video stream as shown in
Figure 3b.

a.

b.

Figure 3. The process configuration of the systems,
(a). The configuration settings, b. Video title list

When a title is selected by user, the application streaming process will open a
connection to the server. Once the connection is built, the process of transferring data between
servers to the Pocket VidStream application starts as shown in Figure 4.

 � ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 3, December 2010 : 293 – 300

296

Figure 4. Video Streaming Processes

Figure 5. Mute Sound Experiment

Figure 6. Unmute Sound Experiment

Figure 7. Volume Adjustment Experiment

Figure 8. Pausing Video Streaming

Figure 9. Playing Back Video Streaming

Figure 10. Full Screen Viewing

Figure 11. Normal Screen Viewing

During the transfer process of the streaming video, this application can hold the

broadcast; this process is called a mute. Figure 5 shows this experiment. To restore the sound
that has been done previously muted we can do unmute process as shown in Figure 6. During
the delivery of streaming video is in progress, this application can perform voice settings in the
menu features. This function is shown in Figure 7.

TELKOMNIKA ISSN: 1693-6930 �

A Video Streaming Application Using Mobile Media Application …. (Ary Mazharuddin Shiddiqi)

297

The process to hang on and resume the video streaming delivery process that is
underway called the pause and resume process. The pause and resume of the video is shown
in the Figure 8 and 9.

This application has a feature to display streaming video with a maximum screen size.
Experiment of full-screen view is shown in Figure 10. To return to the previous viewing
streaming video, users simply need to press the button on the menu screen to normal as shown
Figure 11.

3.2. Compatibility Experiment

 Compatibility testing is done to observe the compatibility of the system to other devices
that uses the same application. This experiment also observes the maximum range of mobile
devices that can be reached. Compatibility is measured by the functioning of all the features and
functionality of the system. This compatibility test measured the functions of the system in
running the protocol and playing video content over the WLAN connection. There are two
protocols used in this experiment, i.e. HTTP and RTSP. This experiment is shown in Table 1.
Table 2 shows that this system runs well on mobile phones with Symbian operating system 5th
Edition. However, this application cannot run the RTSP protocol over a WLAN connection.

Table 1. Mobile Phone Specifications
 Handphone Nokia

5800 N97 E71 E52
MIDP 2.1 2.1 2.1 2.1
CLDC 1.1 1.1 1.1 1.1

Symbian OS v9.4 v9.4 9.2 9.3
WLAN Wi-Fi 802.11 b/g,

UPnP technology
Wi-Fi 802.11 b/g,
UPnP technology

Wi-Fi 802.11 b/g Wi-Fi 802.11 b/g,

Table 2. Compatibility Test Results
No Protocol Content Type 5800 N97 E71 E52
1 HTTP 3GP O O O O
2 MPEG4 O O O O
3 RTSP 3GP O O x x
4 MPEG4 O O x x

 o = compatible , x = not compatible

3.3. Performance Experiments
Performance testing was conducted to observe the effect of several scenarios on

system performance. System performance can be observed from execution time. This
experiment is still using HTTP and RSTP protocols.

3.3.1 RTSP

The RTSP performance testing scenario is to measure the ratio of packets sent by the
distance from the center of a WLAN access point. This scenario is used to observe the quality of
video streaming with WiFi coverage from nearest to farthest.

Table 3. Scenario 1 RTSP Performance Testing
Video duration

(Second)
Bit Rate
(Kbps)

Bytes Sent
(KB)

Packet Loss
(%)

1 90 11 0
7 81 51 0
12 66 93 0
30 67 233 0
43 66 327 0
64 67 496 0
109 62 846 0
149 69 1.126 0
193 69 1.449 0

 � ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 3, December 2010 : 293 – 300

298

In this scenario, the performance testing is conducted using WiFi with the best signal
(excellent or WiFi signal contains 3 bars or full) to the distance from the access point is ± 6
meters. This scenario used a large video file (Pocoyo 2MB with 3GP video content type). The
result is shown in Table 3. As Seen at Table 3, the average bit rate is 70.7 Kbps. During the
experimen, there is no packet loss during data transmission because the signal quality is
excellent.

In the second scenario, the performance test was conducted using a Wi-Fi signal with 2
bars signal, and the distance from the access point is ± 20 meters. The result of Scenario 2
RTSP test performance is shown in Table 4. As Seen at Table 4, the average bit rate of the
system is 68.167 Kbps. During the performance experiment in scenario 2, there is small packet
loss during data transmission, this happens because the signal quality is moderate.

In the scenario 3, the performance tests are conducted using Wi-Fi with poor signal
(Low or Wi-Fi signal contains 1 bar) with distance from the access point is ± 36 meters. This
scenario uses the same file with scenario 1. RTSP test performance scenario 3 results are
shown in Table 5. Table 5 shows the average bit rate is 82.08 Kbps. The performance
experiment in scenario 3 shows that almost entirely contained packet is loss during data
transmission, this happens because the signal quality is not good or bad.

Table 4. Scenario 2 Performance Testing RTSP
Video Duration

(second)
Bit Rate
(Kbps)

Bytes Sent
(KB)

Packet Loss
(%)

1 67 11 0
12 66 84 0
23 65 167 30
33 66 250 33
44 66 329 50
54 63 412 55
76 71 580 9
107 61 827 0
128 75 981 25
149 72 1.116 0
170 61 1.274 0
201 85 1.508 0

Table 5. Performance Test Scenario 3 RTSP

Video Duration
(Second)

Bit Rate
(Kbps)

Bytes Sent
(KB)

Packet Loss
(%)

6 113 37 59
16 104 117 0
27 95 199 91
38 99 328 45
59 68 446 0
71 61 544 0
91 102 714 42
102 61 870 14
144 65 1.048 69
164 68 1.163 19
186 63 1.394 15
227 86 1.709 33

3.3.2 HTTP

The HTTP protocol performance experiment compared the size of the video file with the
data transfer time. Data transfer time is the time needed by the application to completely
download files on request by the client to the content server.

Table 6 and Figure 12 show that the greater size of the video files requested the longer
time required to download the file before running at the client side. The use of the HTTP pr
otocol is not influenced by the bandwidth when streaming video delivery process is underway. It
still works the same way as when using RSTP protocol.

TELKOMNIKA ISSN: 1693-6930 �

A Video Streaming Application Using Mobile Media Application …. (Ary Mazharuddin Shiddiqi)

299

Table 6. Performance Testing Using HTTP Protocol

No File Size
(Byte)

Data Transfer Time
(Second)

1 1086681 2
2 2228424 3
3 8460023 6
4 9008493 7
5 9872333 8
6 11444337 10

7.3.3 RTSP vs. HTTP
This experiment compares the performance between RTSP and HTTP. This experiment

will compare the size of video files, which will be streamed, to playing time of RTSP and HTTP
protocols. Play time is the time needed by the request and response mechanism to get the
video running. Table 7 shows the performance comparison test of RTSP and HTTP.

Table 7. Comparison of Performance Testing RTSP and HTTP

File Video No Size file (Byte) Time Play HTTP
(second)

Time Play RTSP
(second)

1 8460023 6 5
2 9008493 7 5
3 9872333 8 5
4 11444337 10 5
5 15776834 15 5
6 18843122 18 6

Figure 13. Comparisons of RTSP and HTTP

Based on the Figure 13, it can be seen that the use of HTTP protocol, the larger the
size of video files then the longer time required performing Play action. This is because the
HTTP protocol must first download the video file from content server completely. On the other
hand, the RTSP protocol plays the file as soon as part of video file downloaded. Therefore, the
process to deliver streaming video on the average has the same time for each size of different
file video. This is because by the use of RTSP protocol, RTSP server manages all the data
transmission process in the form of an input stream to the client. The process of data
transmission in bits and pieces is what causes the process Play the RTSP protocol run faster
than the HTTP protocol.

4. Conclusion

Based on the experiments conducted, it can be concluded that in the process of video
streaming, RTSP is better if the streamed video files are very large, while HTTP is used if a

 � ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 3, December 2010 : 293 – 300

300

small sized files. This is because the RTSP works by running piece by piece of large file,
therefore it does not take longer to play streaming video files. In addition, the use of RTSP
protocol gives benefits for mobile phones, because it does not need large storage media to play
large video files.

References
[1] Sangok K, Kanghee L, Zhefan J, Hyunchul B, Sangwook K. Streaming Player Support

Protocol Adaptation and Independent Operating System. Fourth Annual ACIS International
Conference on Computer and Information Science. Jeju Island, South Korea. 2005: 194-
197.

[2] Min Q, Zimmermann R. An Adaptive Strategy for Mobile Ad Hoc Media Streaming. IEEE
Transactions on Multimedia. 2010; 12(4): 317-329.

[3] Vazquez M, Vincent P. A Mobile Audio Messages Streaming System. Proceedings of the
Euro American conference on Telematics and information systems (EATIS). Faro, Portugal.
2007: 1-4.

[4] Baumgart AS, Knapp H, Schader M, Mill S. A Platform-Independent Adaptive Video
Streaming Client for Mobile Devices. The 7th IFIP International conference on Mobile and
Wireless Communications Networks. Marrakech, Morocco. 2005: 11-15.

[5] Brandt J, Wolf L. Adaptive Video Streaming for Mobile Clients. Proceeding of the 18th
International Workshop on Network and Operating Support for Digital Audio and Video
(NOSSDAV). Braunschweigh, Germany. 2008: 113-114.

[6] Goyal V. Pro Java ME MMAPI Mobile Media API for Java Micro Edition. Second Edition.
New York: Apress. 2006.

[7] English R, Schweik CM. Identifying Success and Tragedy of FLOSS Commons: A
Preliminary Classification of Sourceforge.net Projects. First International Workshop on
Emerging Trends in FLOSS Research and Development (FLOSS). Minneapolis, MN. 2007:
11-14.

[8] Shiow-yang W, Jungchu H, Chieh-Ming C. Headlight Prefetching and Dynamic Chaining for
Cooperative Media Streaming in Mobile Environments. IEEE Transactions on Mobile
Computing. 2009; 8(2): 173-187.

[9] Moxian L, Tsekleves E, Cosmas JP. Semi-automatic creation of graphically-rich mobile
Television services and applications using an XHTML browser and J2ME. IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB).
Shanghai. 2010: 1-7.

