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Abstract 
 Oscillatory condition on power system (low-frequency oscillation) is one of the important factors 

to determine the quality of the power system. With the increasing number of load demand, this condition is 
getting worse in recent years. Hence, utilizing addition devices to maintain and mitigate the oscillatory 
condition of power system is crucial. This paper proposed a method to mitigate power system oscillation by 
installing one of the flexible AC transmission system (FACTS) devices called solid phase shifter (SPS) and 
energy storage devices called capacitor energy storage (CES). To analyze the performance of power 
system with SPS and CES, the eigenvalue and damping ratio analysis are used. Time domain simulation 
is also investigated to analyze the dynamic behaviors of power system considering SPS and CES. 
Furthermore, increasing number of load demand is carried out to analyze how much load can be increased 
without increasing power to the grid. From the simulation, it is found that SPS and CES can mitigate low-
frequency oscillation on power system indicated by highest damping, smallest overshoot, and fastest 
settling time. It is also found that load demand can be increased significantly when SPS and CES installed 
to the system. 
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1. Introduction 

Human population growth in the last few decades tends to increase significantly. With 
the population growth and development of technology, the electric power demand is increasing 
significantly as well. This increased electric load demand condition could effect the system 
instability. Oscillatory condition/small-signal stability is the stability class that can be effected by 
the increasing load demand. This oscillatory condition may be very troublesome if they are not 
damped. Kundur and .co in [1,2] have investigated that different modes of oscillatations was the 
cause of the blackouts in Canada on 1965, Brazil on 1999, India on July 2012 and Bangladesh 
on November 2014. 

The ability of power system to maintain the stable condition in specific operating 
condition after being excited by perturbation is called small signal stability/oscillatory condition 
[3]. This condition has a frequency oscillation ranging from of 0.1-2 Hz. Generally, the damper 
winding in the generator is one of the ways to handle this oscillatory condition. Another way is 
by installing PSS in the exciter of the generator [2]. The application of PSS to mitigate oscillatory 
condition has been investigated extensively in the last few decades [4-7]. However, PSS alone 
is not effective enough to overcome oscillatory condition because of significant increasing of 
load demand. Hence, additional devices such as storage devices and flexible AC transmission 
systems (FACTS) device can be a prominent alternative. 

There are some energy storages which have been proposed in recent years such as 
redox flow battery and battery energy storage systems [8-12]. Another type is called 
superconducting magnetic and capacitor energy storage [13-16]. Among of storage system 
type, capacitor energy storage is becoming most favorable due to its fast response and large 
capacity. CES is generally uses as a frequency, voltage control, and peak load shaving. 
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However, CES utilized as a small-signal stability enhancement have not been investigated, yet 
due to its capability, it can be one promising solution. 

This paper proposed a novel solution using CES combined with one of FACTS devices 
called Solid Phase Shifter (SPS) to mitigate oscillatory condition in power system. By 
implementing this new method, damping value of the system was intended can be improved 
significantly and the increasing load demand in the system could be handled. The paper is 
organized as follow: Section 2 provides an overview of modelling the power system, CES, and 
SPS. This section also provides a brief explanation of oscillatory stability and how to analyze it. 
Time domain simulation and modal analysis are described in section 3. Section 4 focused on 
the contribution, conclusion and future direction for this research. 
 
 
2. Research Method 
2.1. Dynamic model of power systems 

In oscillatory instability study, two different representation of power system can be 
investigated depending of the research interest. Single-machine infinite bus (SMIB) systems can 
be utilized if the interist only to capture dynamic behavior of local mode. In contrast, a complete 
multi-machine model can be utilized to capture local and inter-area (global) dynamic behaviors. 
In this research, the only local mode is investigated [17]. Hence, a simple model of power 
system called SMIB is used. Figure 1 illustrates the dynamic representation of SMIB [18,19]. 
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Figure 1. A dynamic representation of SIMB [18,19] 
 
 

2.2. Capacitor Energy Storage Model 
In last few decade, the application of energy storage increases significantly due to the 

development of power electronic devices. Capacitor energy storage (CES) is one type of 
storage systems that has become popular to handle frequency fluctuation on the power system. 
CES can store and release power to the grid instantionesly. For small signal stability application, 
dynamic characteristic of CES is crucial. The mathematical model of CES can be described 
using equation (1)-(3) [20-22]. 
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∆𝐼𝑑𝑖
[𝐾𝑐𝑒𝑠∆𝜔−𝐾𝑣𝑑∆𝐸𝑑]
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] ∆𝐼𝑑  (2) 

 
∆𝑃𝑐𝑒𝑠 = (∆𝐸𝑑0 + ∆𝐸𝑑)∆𝐼𝑑  (3) 

 
Where ∆𝐼𝑑𝑖  and ∆𝐸𝑑 are current deviation flowing through the capacitor and DC voltage applied 

to the capacitor. While ∆𝑃𝑐𝑒𝑠 and 𝐶 are active power delivered to the grid and capacitance of the 
capacitors. Several parameters corresponding to resistance on the capacitors (𝑅), gain 

feedback (𝐾𝑣𝑑), gain of the converter (𝐾𝑐𝑒𝑠), and time delay of the converter (𝑇𝑑𝑐) [20-22]. From 
the equation (1)-(3), CES can be modeled into block diagram as shown in Figure 2. 
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Figure 2. Block diagram of capacitor energy storage [20-22] 
 
 
2.3. Solid Phase Shifter Model 

The application of FACTS devices in power system has been increased significantly in 
recent years. FACTS can be used to control and maintaning, voltage, load flow, frequency as 
well as damping performance [23]. One of the FACTS devices type that become favorable as 
one of oscillation damping is solid state phase shifter (SPS). The purpose of SPS is to shift the 
voltage angle by reducing actual angle with angle come from SPS [24]. Hence, oscillatory 
condition can be mitigated by controlling the internal voltage and voltage angle of the power 
systems [24]. Figure 3 shows the representation of SPS for oscillatory instability [24]. 
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Figure 3. Block diagram of solid phase shifter [24] 
 
 

2.4. Oscillatory Condition on Power System 
Oscillatory condition on power system falls under small perturbation rotor angle stability 

[25,26]. Insufficient of synchronizing and lack of damping torques is the root cause of oscillatory 
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instability. The magnitude of the oscillation could potentially growing until the system losses 
synchronization, If this instability is not properly handled [26,27]. This will cause the system 
blackout [26,28]. 

The oscillatory condition can local and inter-area (global) problems. The local problems 
associated with local power plant again in one particular area. The frequency oscillation of local 
phenomena ussualy between 0.7 to 2 Hz [26,27]. Furthermore, Inter-area (global) phenomenon 
related to a large number of system again each other. As reported [26,27] the frequency 
oscillation of inter-area mode is between 0.1 to 0.7 Hz. Eigenvalue analysis is used to analyze 
the oscillatory condition of the power system. To determine the eigenvalue of the system, 
linearized of the system is crucial. Linearized of the investigated system can be represented as 
state space model investigated through (4) and (5) [26,29]. State variables, algebraic variables, 
input vector, plant matrix, control matrix, output matrix and feedfordward matrix are described as 
𝛥𝑥, 𝛥𝑦, 𝛥𝑢, A, B, C and D [26,29]. To determine the eigenvalue of the system matrix A value is 
important. Equation (6) can be used to extract the eigenvalue from matrix A [26,29]. 

 
Δ�̇� = 𝐴Δ𝑥 + 𝐵Δ𝑢        (4) 

 

Δy = 𝐶Δ𝑥 + 𝐷Δ𝑢        (5) 

 

det(𝜆𝑰 − 𝑨) = 0         (6) 

 

The identity matrix and eigenvalue are indicated by I and 𝜆. Moreover, mathematical 

representation of complex eigenvalue can be described as (7) [26,30]. Furthermore, frequency 
oscillation and damping performance of the system can be calculated using equation (8) and 
(9). Real and imaginary parts of eigenvalue can be denoted by (𝜔𝑖) and (𝜎𝑖) [26,30].  

  
𝜆𝑖 = 𝜎𝑖 ± 𝑗𝜔𝑖        (7) 
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3. Numerical Results and Analysis 

For investigated the effeciecy of SPS and CES for mitigating oscillatory condition, two 
different case studies were reported in this work. MATLAB/SIMULINK environment was used to 
simulate all of the study cases in this paper. To investigate the impact of SPS and CES in 
oscillatory instability, the comparison of eigenvalue and damping performance of 
electromechanical mode (EM) were conducted. Furthermore, the increased load demand was 
conducted to understand how much load can be increased after installing SPS and CES on the 
power system. 
 
3.1. Case Study 1 

In this case study, the SMIB work in base case scenario. The SMIB system presented 
as ninth-order model including exciter and governor. While CES and SPS represented as a 
second-order model and fourth-order model. Table 1 illustrates the comparison on eigenvalue 
electromechanical (EM) mode. It was found that by installing SPS in the system, the eigenvalue 
trajectories move to left-half plane moderately. It was noticeable that the movement was more 
significantly when installing with CES. Figure 4 depicts the damping performance EM mode of 
different scenario. It was shown that the damping was increased significantly when CES was 
installed on the system. It was investigated that the best damping performance was a system 
with SPS and CES with damping value was 18%, while the standard was 5% [31]. 
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Table 1. Eigenvalue of EM Mode Under Different Scenario 
Initial condition SPS CES SPS and CES 

-0.2943+9.5328i -0.3722+9.5499i -0.7271+9.6342i -0.8115+9.6539i 

 
 

 
 

Figure 4. Damping ratio of the cases study 
 
 

For verify the modal analys analysis, time domain simulation were then conducted. To 
excite the sensitivity of the eigenvalues, a small disturbance was applied to the system. Rotor 
speed response of the investigated system was illustrated in Figure 5.  
 
 

 
 

Figure 5. The time domain response of rotor speed under different scenario 
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It was noticeable that the initial condition (black lines) has the highest overshoot and the 
longest settling time. It means that the system without controller was not robust enough to 
handle the small perturbation. After SPS was installed (blue lines) in the transmission line, the 
response of the rotor speed was better than the initial condition due to shifted voltage angle of 
the system. Better response was produced when CES was installed in the load bus. It was 
found that CES could gave instantaneously active power to the load when there were load 
changing. Hence this make the burden of the synchronous generator decreased when small 
load perturbation occurs. The best oscillatory condition was system with SPS and CES 
indicated by the overshoot and the settling time (smallest and fastest compared to the others 
scenario). The detailed rotor speed response enhancement shown in Table 2.  
 
 

Table 2. Detailed Value of Rotor Speed Under Different Scenario 
Parameter Initial condition SPS CES SPS and CES 

Overshoot (pu) 0.0004466 0.0004353 0.0003838 0.0003731 
Settling Time (Sec) 22.99 17.12 10.72 8.61 

 
 

The same pattern was found in the rotor angle oscillatory condition when small 
pertubation emerges as shown in Figure 6. It was also monitored that system without SPS and 
CES or the initial condition (black lines) experience the worst oscillation compared to the other 
scenario. Table 3 illustrates the detailed comparison of rotor angle oscillatory condition. System 
in initial condition has overshoot -0.02578 pu and settling time more than 20 second. System 
with SPS has less overshoot than the initial condition which has -0.02566 pu and settling time 
17.76 second. While system with CES has better overshoot and settling time than the initial 
condition and system with SPS (overshoot is -0.0244 and settling time is 10.35). According to 
the Paserba [32], the maximum settling time of small signal stability is around 10 second. 
Hence, only system with SPS and CES was capable to achieved this standard (settling time 
7.73 second). 
 
 

 
 

Figure 6. The time domain response of rotor angle under different scenario 
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Table 3. Detailed Value of Rotor Angle Time Domain Response 
Parameter Initial condition SPS CES SPS and CES 

Overshoot (pu) -0.02578 -0.02566 -0.0244 -0.02429 
Settling Time (Sec) 20.64 17.76 10.35 7.73 

 
 

3.2. Case Study 2 
This case study investigated how much load could be increased if the system was 

installed with SPS and CES. To analyze the impact of increasing load demand on oscillatory 
condition, damping ratio plot of EM mode was carried out. Figure 7 shows the damping value 
fluctuation due to increasing the capacity of the load. It was found that by increasing load 
demand capacity, the damping of the system was deteriorated. It was noticeable found that if 
the system only used CES alone, the load demand could not be increased more than 55%. If 
the load was increased more than 55%, it could exceed the minimum standard of damping ratio 
(5%), and it may lead to the unstable condition. It was also noticeable that by combining SPS 
and CES, the load demand could be increased more than 55%. Hence, by installing SPS and 
CES, it could stabilize the performance even thought there was increasing load demand on the 
system. 
 

 
 

Figure 7. Damping ratio plot due to increasing load demand 
 
 
4. Conclusion 

This paper proposed a method to mitigate oscillatory condition on power system by 
using FACTS devices called solid phase shifter (SPS) and energy storage devices called 
capacitor energy storage (CES). From the simulation result, it was found that by installing SPS 
and CES to SMIB, the damping performamce of the system was increased significantly. It was 
noticeable that SPS and CES could mitigate the oscillatory condition of power system indicated 
by small overshoot and fastest settling time. It was also found that by installing SPS and CES, 
the load demand of the system could be increased. Further research is required to be 
conducted by using larger case study such as two area power system, nine-bus 3 machine 
power system and New England power system. Furthermore, to enhance the performance of 
SPS and CES, optimization method based on metaheuristic algorithm can be used to tune SPS 
and CES parameter. 
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