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Abstract 
Higher proportion wind power penetration has great impact on grid operation and dispatching, 

intelligent hybrid algorithm is proposed to cope with inaccurate schedule forecast. Firstly, hybrid algorithm 
of MS-PSO-BP (Mathematical Statistics, Particle Swarm Optimization, Back Propagation neural network) 
is proposed to improve the wind power system prediction accuracy. MS is used to optimize artificial neural 
network training sample, PSO-BP (particle swarm combined with back propagation neural network) is 
employed on prediction error dynamic revision. From the angle of root mean square error (RMSE), the 
mean absolute error (MAE) and convergence rate, analysis and comparison of several intelligent 
algorithms (BP, RBP, PSO-BP, MS-BP, MS-RBP, MS-PSO-BP) are done to verify the availability of the 
proposed prediction method. Further, due to the physical function of energy storage in improving accuracy 
of schedule pre-fabrication, a mathematical statistical method is proposed to determine the optimal 
capacity of the storage batteries in power forecasting based on the historical statistical data of wind farm. 
Algorithm feasibility is validated by application of experiment simulation and comparative analysis.  
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1. Introduction 

Due to instability generation and inaccurate scheduling forecast of wind power, high 
proportion grid affects the stability of power system operation, it should maintain an optimal 
balance between the power and the load from time to time [1]. Hence, wind power prediction 
systems are developed based on the numerical weather prediction, incorporated with statistical 
model or some other advanced research methods, such as the artificial neural network, support 
vector machines, Kalman filter, grey relational analysis, fuzzy logic methods, wavelet 
transformation, as well as physical methods [2-9]. Rasit Ata affirmed artificial neural network on 
wind power prediction and schedule forecast by comparing with other intelligent algorithms 
within 30 years [10]. However, due to the randomness of wind power fluctuations, the existing 
prediction algorithms are difficult to reflect the characteristics of the power fluctuations  
perfectly [11].  

In addition, European countries, such as Germany, Denmark and Spain, punishment 
mechanism is drawn up to deal with the overrun error of schedule forecast. Northern Europe, for 
example, may be subject to an average tariff of 12% penalty for poor schedule forecast. Indian 
government also issued a decree in 2013 that wind power projects of installed capacity higher 
than 10MW must provide ultra-short-term wind power prediction. If the difference between 
actual output and schedule forecast is more than 30%, the wind farm is required to pay the fine. 
Hence, some researchers are still working on the hybrid optimization algorithm to improve the 
accuracy of wind power prediction.  

In practical application, the accuracy improvement of schedule forecast can also be 
achieved by external means, such as releasing positive or absorbing negative estimated energy 
errors, which can be realized by an energy buffer device [12]. Batteries have flexible charge-
discharge characteristic and relative mature energy storage technology, which can be used to 
absorb the redundant power, correct unforeseen owed power supply, reduce wind power 
schedule forecast errors and improve the accuracy of wind power schedule forecast. At the 
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same time, it may achieve a fast power regulation to improve the stability of the wind power 
system and the reliability of the power supply by a small storage capacity [13-18]. 

In this paper, a wind power schedule forecast error correction method is proposed by 
means of a hybrid algorithm integrated with a physical technique. Firstly, back propagation (BP) 
neural network in power pre-fabrication is proposed not only containing Mathematical statistics 
(MS), but also considering artificial neural network integrated with particle swarm algorithm 
(PSO-BP). Secondly, analysis and comparison of several intelligent algorithms (BP, RBP, PSO-
BP, MS-BP, MS-RBP, MS-PSO-BP) are done to verify the availability of the proposed prediction 
method. Finally, an improved wind power schedule forecast correction system based on storage 
batteries is used to improve schedule forecast accuracy, optimal capacity of the storage battery 
is studied, practical operating data are used in MATLAB simulation. 
 
 
2.   Power Prediction Technique Based on MS-PSO-BP 
2.1. Mathematical statistics (MS) sample data pretreatment 

In theory, a single wind turbine output power can be obtained by formula (1) [19], while 
in actual wind farm, because of the influence of the external environment and different wind 
turbines characteristics, error exists on the actual power curve distribution, as shown in  
Figure 1.  

 

32

2

1
wpm VRC•P                                                                                       (1) 

 
 

  
 

Figure 1. Normal wind speed-power curve 
 
 

Due to numerical weather prediction error, wind farm actual power output does not quite 
coincide with the prediction. In neural network training and prediction process, numerical 
weather prediction data are essential, so it is necessary to study the relationship between 
numerical weather forecast and the actual power output. 

In this paper, the sampling period used for numerical weather forecast is 10 min, mainly 
including wind speed, wind direction and temperature data. According to the formula (1), the 
wind speed is the most important factor that influences the turbine power output, so the 
research is mainly on the relationship between wind speed and wind power. Figure 2 is shown 
the relationship between wind farm power output and the forecast wind speed. 

It is seen from which that relationship is not accord completely with the wind power 

curve in Figure 1. To the same forecast wind speed，the actual power output may be different. 

The training sample of neural network as such historical statistical data will influence the training 
effect, lower convergence rate. For large amount data, mathematical statistics is an effective 
analysis method. To analyze and predict the relationship more precisely between the actual 
output power and wind speed of wind farm, probability statistics method is used. Wind speed 
partition is done to realize convenient analysis, partition statistics is referred to IEC61400-12 
standard. The wind speed data collected should cover range from -1m/s (cut into the wind 
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speed) to 1.5 m/s multiplied by 85% of the rated wind speed. According to Bin methods [20], 

wind speed range collected is adopted 2 m/s to 20 m/s, divided by 1 m/s，the center value of 

each bin is the integer times of 1 m/s, each bin will contain a lot of wind speed scatters. 
 
 

 
 

Figure 2. 100MW wind farm power output and wind speed forecast relations 
 
 

By this means, the wind speed data from the numerical weather prediction are divided 
into several partitions. In each BIN interval, wind farm actual power output are more dispersed. 
To get a detailed analysis of each BIN range of power distribution, taking the 9.5 m/s ~ 10.5 m/s 
wind speed range as an example, kernel density estimation algorithm is used to compute 
density distribution characteristics of the power output [21], the calculation formula is shown in 

formula (2), where f is probability density correspond to iP , P is power output point of BIN 

range(9.5 m/s ~ 10.5 m/s). According to the formula (2), wind farm output power distribution can 
be calculated among the wind speed range, as shown in Figure 3. 

 

 ,
i

f P KSDE P                                                                                               (2) 

 
 

 
 

Figure 3. 9.5m / s ~ 10.5m / s wind speed-power output distribution of wind farm 
 
 

Similarly, statistics for actual power output correspond to each BIN interval is done, it can 
be seen from the Figure 3 and Figure 4, power distribution presents certain regularity in each 
BIN interval.  
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Figure 4. Power distribution of different BIN ranges confidence low limit 
 
 

   1
Ndown Nup

P P P P                                                                                       (3) 

 
At first, the power output probability distribution of each BIN interval is concentrated on 

the peak probability density, and decreased symmetrically on both sides. Next, along with the 
increased wind speed BIN ranges, probability distribution curve correspond to the peak also 
increases gradually, moving to left. To revise small probability power output, bin estimation 

theory is used to construct an estimated interval ,
Ndown Nup

P P   , making estimation range cover P  

within the probability 1  . The calculation method is as shown in formula (3). NdownP and NupP  is the 

confidence low limit.  

Upper limit of parameters P in the Nth interval, no longer labeled N in the following, downP

and upP  represents same meaning as NdownP  and NupP . Some BINs probability distribution in the 

interval [0, 100000] are not symmetrical completely in Figure 4, divided mainly into three 
conditions in Figure 5, peak to the left (a), peak center (b), peak to the right (c). 

 
 

 
 

Figure 5. BINs probability distribution (left/mid/right) 
 
 

To guarantee larger probability of power points appeared in the estimates range, 
considering the probability symmetry distribution on both sides of the peak, the formula (4) (5) 
(6) are adopted to estimate intervals of above three conditions respectively. 
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When probability integral of left half of peak is less than  
1

1 1
2

  , the probability density curve is 

as shown in Figure 5 (a), it can be seen 0downP ,
upP can be obtained by the formula (4), 

distribution range is as  upP,0 .When probability integral is less than  
1

1 1
2

  , but greater than 

 
1

1
2

 , the probability density curve is as shown in Figure 5 (b). According to the formula (5),
downP  

and
upP can be obtained, the distribution range is  updown PP , . When probability integral is greater 

than  
1

1 1
2

  , the probability density curve is as shown in Figure 5 (c), 100000upP
, 

downP can be 

obtained by the formula (6).  
The distribution range is  100000,downP .Once the confidence level is selected, the confidence 

lower limit and the confidence upper limit of each BIN can be obtained, using these values as 
midpoints of each BIN interval, confidence lower limit curve 

downcurveP and confidence upper limit 

curve
upcurveP can be fitted by the interpolation algorithm, as shown in Figure 6. 

According to the above curves, neural network training data are revised, smaller 

probability data points beyond confidence curve are amended as formula (7).Where 
*P is the 

actual output power of wind farm, P is the corrected power output, which will be served as the 
training samples of neural network. 
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Figure 6. Confidence upper and lower limit schematic 
 
 

2.2. Revised BP Neural Network model 
At present, the representative models of the neural network are BP (back 

propagation) neural network and RBF (radial basis function) neural network [22 ,23]. They 
have some advantages, such as strong robustness and fault tolerance, self -learning, self-
organization, adaptability, and can approach to arbitrary complex nonlinear relationship. 
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The paper used them in wind power prediction, and prediction effects are compared and 
analyzed with each other. 

 
2.2.1. BP neural network model 

The typical BP neural network shows three layers structure, including the input layer, 
middle layer and output layer. Middle layer can be designed as single hidden layer or multi-
hidden layers structure. The core of the algorithm is forward information dissemination and error 
back propagation, the process is done again and again, and the weights of each layer and 
threshold is adjusted continuously, finally the error is reduced to an acceptable level. Assume 

number of input layer nodes is n, the middle layer number p, output layer m, so : n mf R R  is 
completed. The input and output topology structure is as shown in Figure 7. 

 
 

…
…

…
…

…
…

n mq

…
…

WV

j

1X

iX

nX

1z

kz

pz

1y

jy

my

 
 

Figure 7. Three-layer neural network topology of BP 
 
 
The output of the node j of middle layer is as formula (8).Where i along to [1 ,n], j along to [1 ,p], 
the output of the node k is as formula (9).  
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Among formula (8),(9), the k [1 ,m], 1
f  is the transfer function of hidden layer, 2

f is the transfer 

function of output layer, i
x represents each neuron input of the input layer, i j

w is the weight of 

the input layer to the middle layer, j
 is the middle layer node threshold, j k

v is the connection 

weight from the middle layer to output layer, k
 is the output layer thresholds, the initializations of 

weights and thresholds are produced by random, and the random initial value tends to reduce 
the convergence speed, easy to make the training results fall into local minimum value. 

 
2.2.2. RBF neural network model 

The Radial Basis Function Neural Network (Radial Basis Function Neural Network, the 
RBFNN) is a kind of feed forward Neural Networks. Compared with the BP neural network, RBF 
neural network not only has a physiological basis, but a simple structure, concise training and 
fast convergent speed. RBF neural network also has the three layers structure. The weight 
between input layer and hidden layer is fixed to 1, only the weight between hidden layer and 
output layer is adjustable. Number of input layer nodes is n, middle layer p, output layer m, so 

: n mf R R .The input and output model is as shown in Figure 8.The output of the j hidden node 
is as formula (10). 
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Figure 8. RBF neural network structure 
 

 

In the formula (11)， 1 2
,

n
X x x x    is the input vector, 1 2

,
j j j j n

c c c c    is the first j 

hidden node of RBF data center.  j
  is the activation function of the hidden nodes, generally, 

the Gaussian function is taken as  
2

2

u

u e 


 .It can be seen that the key to establish a RBF 

network model is determining the number of hidden layer of RBF network h and data center j
c , 

the width of the radial basis functionσ,the connection weight from output neurons to the hidden 

layer neurons is i j
w .Like BP neural network, the RBF neural network, for key parameters, 

initialization is generated randomly, these random initialization values affect the neural network 
training in a certain extent. 

 
2.2.3. Improved Neural Network under adaptive mutation Particle Swarm Optimization 

(PSO) 
RBF neural network and BP neural network are used widely, also having some 

deficiencies, such as long training time, easy falling into local minimum value, and so on. 
Although RBF neural network is better due to its convergence speed and local minimum value 
problem, but parameter initialization value is generated randomly, so the neural network training 
is affected in a certain extent. In order to be able to solve these problems, the PSO algorithm is 
introduced to improve neural network algorithm.  

PSO basic idea is inspired by the birds swarm behavior regularity, a simplified model of 
swarm intelligence is then established. It is an optimization algorithm based on iterative process. 
The first is to initialize a group of particles, each particle has two characteristics, position and 
velocity. The position of each particle is representative for a possible solution of optimization 
problem, and the velocity of the particle is expressed on the direction and distance of flight. 
Then optimal particle in the solution space is searched through iteration. For each iteration, the 
particle individual position is updated by tracking individual extremum 

best
P and group extremum 

best
G , until the optimal particle is found. Setting a group consisted of m particles and fly at a 

certain speed in D dimensional search space, then the particle swarm can be expressed on

1 2
, ,

D
X X X X    , 

i
X represents the ith particle's position, also represents a possible solution of 

problem, it can be expressed with matrices
1 2
, ,

T

i i i i D
X X X X    .The fitness value of the each 

position of particle can be calculated by the substitution of 
i

X into the objective function. 
best

P  

represents the ith particle speed, it can be expressed on 1 2
, ,

T

i i i i D
V V V V    . Particles update 

speed and position according to formula (12) (13). 
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     1 1
i j i j i j

X t X t V t                                                            (13) 

 
Among formula (12) (13), j = 1, 2,..., d, represents particle dimension, t is the times of 

iteration, 
1

C  and 
2

C  are learning factors,
1

R and
2

R represent random number between 0~1,   as 

inertia weight,  i j
V t  represents the ith particle current speed in the tth  generation,  i j

X t  
represents the ith particle current location in the tth generation. In the general PSO algorithm, 
inertia weight represents the impact of the historical rate on the current speed. Where the larger 
  is, the stronger global search ability particles have. While the lower   is, the stronger portion 

search ability particles have. Once 0  , it means that the particles lose ‘memory’. To give 

attention to both global and local search, take   as linear gradient, in formula (14), i t er is 

current iteration number, 
max

i t er is the maximum number of iterations, 
max

 is inertia weight initial 

value, 
mi n

 represents inertia weight ultimate value. To prevent particles from blind search, the 

particle's position and speed are limited respectively within a certain range[ ]
max max

X ，X  and

[ ]
max max

V ，V . 
 

 max max mi n

max

i t er

i t er
                                    (14) 

 
In order to avoid the ‘precocity’ and low iterative efficiency of PSO algorithm, the mutation is 
introduced to PSO algorithm, the principle is that the population is initialized at certain 
probability after each updating, so expanding search space of the dwindling population during 
the process of iteration, ensure the optimal location be searched before jumping out, thus 
improving the global convergence of the algorithm. 

 
2.2.4. BP Neural Network combined with PSO on prediction model 

The improved PSO algorithm is used to optimize parameters of neural network 
prediction model [24]. The steps are as following. Step 1 Building particle swarm, a neural 
network topology structure is established according to the input and output sample. The 
parameters be to optimize are coded to the individual particles of real vector population. 

Step 2 The initialization of particle swarm parameters, mainly including the size of the 
population, learning factor, particle position and velocity interval, number of iterations, etc.  
Step 3 Calculating the particle fitness value, according to the input and output sample, the 
fitness function value of each particle is calculated, the current position is set to itself optimal 
location, the position of optimal particle in initialization population is set to the global optimal 
position. Step 4 Loop iteration, PSO algorithm formula (12) (13) are used to update particle 
velocity and position. 
 
 
3. Wind/Storage Dynamic Correction of Schedule Forecast  

It can be seen from literatures that prediction error exists inevitably in theoretical 
prediction algorithms due to various complex factors. The storage system can be used to 
absorb the redundant energy, correct unforeseen owed power supply, lower prediction errors 
and improve the accuracy of wind power forecast due to flexible charge-discharge 
characteristic. In Figure 9, the wind/storage system is mainly composed of wind turbines and 
vanadium battery package. The power relationship is as shown in formula (15). Where, 

a
P is the 

actual power output of the wind farm, 
b

P is charging and discharging power of battery energy 

storage system，
d

P  is the whole Wind/Storage system output.  

The key is how to determine 
b

P  dynamically. From the foregoing description, MS-PSO-

BP neural networks has been used to give modified predicted power ' )(
P

P t  firstly, once the actual 

power output is greater than the predicted wind farm output ( ( )
a p

P P t ), then the energy storage 

system is charged to guarantee the accuracy of the forecast wind power ( ( )
d p

P P t ), and
b

P is set 

to a negative value. On the contrary, when ( )
a p

P P t , 
b

P is set to a positive value, the energy 
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storage system is discharged. When ( )
a p

P P t  and '( )
d P

P P t , 
b

P  is set zero, the battery energy 

storage system is kept in holding state. 
e

p  is the prediction error tolerance. ( )
er r or

p t  is the error 

between modified prediction power and real-time power. Algorithm flowchart is as shown in 
Figure 10. If the modified prediction power value from MS-PSO-BP neural network lies in the 
allowed range error, the predictive value is regarded as optimal forecasting power of the 
moment. On the contrary, if the predictive value is out of the range, then the energy storage 
system is triggered to amend the predicted value. 
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Figure 9. Configuration of wind farm combined with storage battery 
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Figure 10. Wind/storage amending algorithm flowchart 
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4.    Simulation and Analysis 
4.1. BP/RBP/PSO-BP prediction without training sample pretreatment 

In order to verify the effectiveness of the proposed method, a real wind farm data 
samples are used to test the validity of the algorithm, the wind farm is located in the coastal 
areas of Jiangsu, and installed capacity is 100 MW. Full-year data of 2014 are used in 
mathematical statistics, the first two months date of 2015 are used as training sample, the data 
of March are used in test, data sampling period is 10 min, mainly including wind speed, wind 
direction, temperature and wind power data, all mathematical operation are performed by 
normalized process. To distinguish the pros and cons of the different algorithms, root mean 
square error (RMSE)and mean absolute error(MAE) are used to measure wind power prediction 
error, and the calculation formula is as (16) (17). 

 

 
2

1

n

Mi Pi
i

P P

RMSE
C n








                                                                                (16) 

 

1

n

Mi Pi
i

P P

MAE
C n








                                                                               (17) 

 

MiP  is the real power of the moment i, 
PiP  is the prediction power of the moment i, C is power 

capacity of the field wind farm, n is as the number of sample. Taking wind power on March 1, 
2015 as prediction object, using BP neural network, PSO-BP neural network, RBF neural 
network respectively to predict 96 wind power points from 0:00 to 24:00. Prediction results are 
shown in Figure 11. The RMSE and MAE results are as shown in Table 1. It can be seen that 
prediction results of three neural network algorithms are improved compared with existing wind 
farm forecast accuracy. 

 
 

 
 

Figure 11. Wind power prediction results of BP/RBP/PSO-BP/actual field 
 
 

Table 1. Error Statistics 
Algorithm RMSE (%） MAE（%） 

Existing wind farm prediction 15.09 12.12 
RBF 14.37 12.18 
BP 14.57 12.21 

PSO-BP 13.52 11.77 

 
 
BP neural network prediction results are similar to RBF neural network, but the 

prediction accuracy of BP neural network algorithm is improved obviously through amendment 
of PSO algorithm. RMSE is reduced by 10.40%, and MAE is reduced by 2.89% compared with 
existing prediction. Considering uncertainty of the neural network algorithm, the above methods 
are tested repeatedly, prediction results are analyzed. The wind farm power output are predicted 
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from March 1 to March 20, and the RMSE and MAE results are as shown in Appendix Table 1 
and Appendix Table 2. It can be seen that RBF neural network, BP neural network and PSO-BP 
neural network prediction results are uncertain for single prediction, so the average prediction 
error are analyzed overall, average prediction error of the 20 days ago on the March are as 
shown in Figure 12.  

Prediction error of RBF neural network prediction system is similar to existing wind 
power prediction. BP neural network overall training effect is better than RBF neural. Its average 
RMSE is reduced by 8.59% compared with RBF neural network and reduced by 7.13% 
compared with existing prediction system of wind farm. Furthermore, PSO-BP neural network is 
2.7% lower than the average RMSE, the same for the MAE, reduced by 8.44% compared with 
the existing wind power prediction system, reduced by 2.83% and 2.83% respectively compared 
with the BP and RBF prediction algorithms.  

 
 

 
 

Figure 12. Comparison chart of the average prediction error on wind power 
 
 

4.2. BP/RBP/PSO-BP prediction with training sample pretreatment 
To verify effectiveness of training data pretreatment for prediction precision and 

convergence speed for the neural network algorithm, the proposed mathematical statistics 
method is used to modify neural network training samples. Selecting confidence level 

95.01   , according to formula (4) (5) (6), the corresponding confidence lower limit curve 

downcurveP  and confidence upper limit curve 
upcurveP are obtained. Using the formula (7) to correct 

training data, the diagram is shown in Fig 13. After correction, data points of small probability 
have been processed, preventing the "mixed" from affecting on neural network training. The 
results of average RMSE and MAE are shown in Table 2.  

 
 

 
 

Figur 13. Data revised schematic diagram 
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Table 2. Prediction Error Comparison Before and After the Training Data Pretreatment 

Algorithm RMSE（%） 
RMSE（%) 
Date revised 

MAE（%） 
MAE（%） 
Date revised 

Existing wind farm 
prediction 

16.40  12.79  

RBF 16.65 16.17 12.91 12.85 
BP 15.23 14.80 12.05 11.70 

PSO-BP 14.83 13.89 11.71 11.54 

 
 
Data show that prediction errors of three algorithms after sample pretreatment are 

decline in various degrees, RMSE of RBF, BP, PSO-BP reduced by 2.90%, 2.82% and 6.34% 
respectively, and the MAE just reduced by 0.4%, 2.90% and 0.4% respectively, it can be seen 
that the accuracy after pretreatment is improved effectively. Another advantage is the training 
speed, some "special points" are prevented from slow convergence or even not convergence. 
Figure 14 and Figure 15 show training effects of the BP neural network and RBF neural network 
under pretreatment or no. It can be seen from Figure 14, under the condition of the same 
training target, training with data pretreatment has better training effect on training speed and 
precision compared with that untreated. RMSE reaches steady state (0.019) only after 28 times.  

 
 

 
 

Figure 14. BP neural network training with and 
without data pretreatment 

 
 

Figure 15. RBF neural network training with 
and without data pretreatment 

 
 

While without data pretreatment, it needs 46 times training and RMSE reaches the 
steady state (0.024). It can also be seen from the Figure 15, under the condition of the same 
training target, RBF neural network training after data pretreatment need only 23 times to reach 
the target value of 0.01. Without pretreatment, no training goals can be arrived even after a 
maximum of 200 times. Comparing Figure 14 with Figure 15, it can also be seen that algorithms 
convergence speed and convergence results of BP are all inferior to that of RBF, showing 
feasibility and effectiveness of the experimental results. 

 
4.3. Wind/storage system physical amending for schedule forecast 

The simulation experiment is done in a wind farm of 100000 kilowatts in eastern coastal 
of China. The historical statistical data are concluded within 4 consecutive days in June, such as 
wind speed, the wind field actual output power. The data during previous two days are adopted 
as training samples for prediction model. The measured data in the next two days are regarded 
as the calibration data, which are used to verify the accuracy and yet the validity of the 
algorithm. 

The results of simulation are shown in Figure 16. Prediction errors simulation are as the 
basis to determine the battery capacity needed. In order to prevent the prediction process from 
the occasional error, experiments are conducted 1000 times, each maximum capacity

max
C of 

battery charge or discharge is stated, and a high level of confidence 
max

C  is selected for  

referenced battery capacity. When certain capacity is supplied in the wind power system, the 
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results of reducing the prediction errors are as shown in Figure 17 and Figure 18. As can be 
seen from Figure 17, the power output Pd of the wind farm is smooth more with battery energy 
storage system, and is close to the prediction curve of wind power. Figure 18 shows that the 
battery capacity can also meet the needs of short-term wind power correction. Meanwhile, it is 
concluded from the experiments that RMSE of wind power forecast has been reduced to 
9.3535e+003W, 10 minutes predictive error integration is reduced to 2.1941e+004Ah, the 
battery energy storage system can minify wind power prediction error effectively.  

 
 

 
 

Figure 16. Modified Power prediction error integration 
 
 

 
 

Figure 17. Power output forecast correction 
with battery energy storage 

 
 

Figure 18. Storage battery SOC change during 
correction 

 
 

5. Conclusion 
This paper combines the mathematical statistics and BP neural network on wind power 

prediction, PSO algorithm is used to improve prediction precision. Based on which, 
Wind/Storage system is used to amend wind farm power forecast. Simulation results show that 
the proposed pretreatment (mathematical statistics method) can improve the neural network 
training speed and precision. In addition, the PSO algorithm can also improve the prediction 
precision of the BP neural network effectively. Compared with the current wind farm forecasting 
strategy, RMSE of PSO-BP can be reduced by 6.34%, and the MAE reduced by 0.4%. 
Moreover, the schedule forecast accuracy can be improved effectively by physical Wind/Storage 
dynamical correction, and experiments show that RMSE of wind power forecast has been 
reduced to 9.3535e+003W, the energy storage system can minify wind power prediction error 
effectively. However, limited by the technical conditions, the battery capacity is still an important 
bottleneck in application all along. The battery capacity can be insufficient for big share on the 
access of large wind farms, but it can be used as a power fine-tuning in large wind power.  
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Appendix 
 
 

Appendix Table 1 . RMSE Contrast of Algorithm Proposed on Paper with on-Site Original 
Forecast 

Date 
Wind Forecasting 

System 
Training data uncorrected Training data corrected 

RBF BP PSO-BP RBF BP PSO-BP 

3.1 15.09 14.37 14.56 13.51 15.46 14.41 14.31 
3.2 11.54 11.73 12.37 9.99 12.44 12.65 9.95 
3.3 24.69 25.32 21.63 20.14 23.18 20.27 20.96 
3.4 24.15 20.36 24.39 23.25 21.60 23.71 21.18 
3.5 10.51 15.30 13.26 18.82 12.36 12.30 12.37 
3.6 8.21 12.44 10.00 11.32 6.22 11.61 9.69 
3.7 7.74 10.88 8.74 10.76 6.96 8.11 9.03 
3.8 33.46 33.20 33.24 32.77 33.73 33.76 30.99 
3.9 21.99 27.73 14.90 12.82 21.86 13.38 13.72 
3.1 36.35 28.47 22.44 19.33 24.02 20.04 22.01 
3.11 4.63 6.93 5.20 3.74 5.79 6.48 5.12 
3.12 14.5 14.44 12.14 12.56 11.70 1045 10.05 
3.13 12.17 12.06 13.27 12.88 25.63 13.44 10.54 
3.14 12.16 12.03 14.35 9.39 12.24 13.11 11.20 
3.15 11.7 14.89 12.67 13.40 13.35 11.51 12.63 
3.16 10.22 10.30 10.31 9.03 10.04 9.04 9.02 
3.17 13.72 14.72 12.60 15.73 11.44 13.33 12.42 
3.18 33.56 28.01 25.24 28.21 29.42 27.59 21.87 
3.19 13.3 12.23 12.91 10.74 11.93 11.70 12.60 
3.20 8.21 7.64 10.25 8.13 13.94 9.08 8.13 

Mean 16.395 16.65 15.23 14.83 16.17 14.80 13.89 

 
 

Appendix Table 2. MAE Contrast of Algorithm Proposed on Paper with on-Site Original Forecast 

Date 
Wind Forecasting 

System 

Training data uncorrected Training data corrected 

RBF BP PSO-BP RBF BP PSO-BP 

3.1 12.12 12.18 11.59 11.46 12.18 12.14 12.42 
3.2 8.94 9.24 9.37 10.05 9.06 8.67 10.25 
3.3 18.56 22.61 16.39 16.67 22.72 15.83 17.47 
3.4 16.81 16.28 22.35 20.71 16.19 18.75 19.47 
3.5 8.22 12.74 10.84 11.22 12.24 11.20 8.52 
3.6 7.07 9.98 7.94 8.81 9.49 8.79 8.98 
3.7 5.41 6.11 7.59 6.06 5.89 6.12 2.35 
3.8 26.20 26.68 26.53 27.36 26.88 24.81 26.78 
3.9 18.80 17.93 11.22 9.82 18.53 11.11 10.55 
3.1 25.01 19.92 9.85 14.44 20.07 15.73 15.47 
3.11 3.37 5.71 5.20 3.71 4.66 3.96 4.84 
3.12 11.44 13.04 9.01 10.74 12.85 7.63 8.35 
3.13 9.91 8.15 14.25 9.12 9.00 10.06 9.92 
3.14 9.71 8.35 9.95 9.37 8.32 11.09 11.16 
3.15 10.05 12.16 12.84 9.95 12.00 11.36 9.54 
3.16 8.23 7.83 7.32 6.85 7.76 6.62 7.17 
3.17 11.67 12.45 9.80 9.44 12.41 9.69 10.83 
3.18 27.87 23.01 23.18 21.52 22.99 23.79 19.09 
3.19 10.66 8.80 9.30 10.45 8.77 10.05 8.90 
3.2 5.68 5.04 6.51 6.47 5.08 6.66 8.82 

Mean 12.79 12.91 12.05 11.71 12.85 11.70 11.54 
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