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Abstrak 
Analisis kualitas daya atau power quality (PQ) telah menjadi keharusan terutama bagi konsumen 

untuk menghindari biaya besar akibat kualitas daya yang buruk. Pengenalan PQ secara akurat masih 
merupakan pekerjaan yang menantang sedangkan metode untuk pengindeksannya belum banyak 
dilakukan. Makalah ini menguraikan sistem yang mencakup pembangkitan pola unik yang disebut tanda-
tanda gangguan PQ menggunakan transformasi wavelet kontinyu atau continuous wavelet transform 
(CWT) dan pengenalan tanda-tanda menggunakan umpan maju jaringan syaraf tiruan. Hal ini juga 
dikuatkan bahwa ukuran tanda gangguan PQ bersifat proporsional sehingga fitur ini digunakan untuk 
indeks tingkat gangguan PQ dalam tiga sub-kelas, yaitu tinggi, sedang, dan rendah. Lebih lanjut, juga 
dianalisis efek jumlah neuron yang digunakan jaringan syaraf tiruan dalam pengenalan kualitas. 
Keefektifitasan sistem yang diusulkan memiliki akurasi substansi pengenalan hampir 100%. 

 
Kata Kunci: jaringan syaraf tiruan umpan maju, kualitas daya, pengenalan, transformasi wavelet kontinyu 

 
 

Abstract 
Power quality (PQ) analysis has become imperative for utilities as well as for consumers due to 

huge cost burden of poor power quality. Accurate recognition of PQ disturbances is still a challenging task, 
whereas methods for its indexing are not much investigated yet. This paper expounds a system, which 
includes generation of unique patterns called signatures of various PQ disturbances using continuous 
wavelet transform (CWT) and recognition of these signatures using feed-forward neural network. It is also 
corroborated that the size of signatures of PQ disturbances are proportional to its magnitude, so this 
feature of the signature is used for indexing the level of PQ disturbance in three sub-classes’ viz. high, 
medium, and low. Further, the effect of number of neurons used by neural network on the performance of 
recognition is also analyzed. Almost 100% accuracy of recognition substantiates the effectiveness of the 
proposed system.   

  
Keywords: continuous wavelet transform, feed forward neural network, power quality, recognition 
  
 
1. Introduction 

The continuous monitoring of power quality (PQ) has become imperative as 
occurrences of PQ disturbances are relatively sporadic and mostly unscheduled. Further, when 
something goes wrong and the source of the problem needs to be investigated, whether 
upstream or downstream of the issue, PQ data is an absolute necessity. The analysis of PQ 
disturbances can be done in two ways, that is online and offline analysis. The offline PQ 
analysis is done when immediate analysis and communication of analysis results are not 
required but it plays rudimentary role in system performance evaluation, problem 
characterization and just-in-time maintenance. On the other hand, online analysis is done within 
the instrument itself or instantly upon occurrence of any of the PQ disturbance at the central 
processing location.  

According to IEEE standard 1159-1995 [1], the PQ disturbances include wide range of 
PQ phenomena namely transient (impulsive and oscillatory), short duration variations 
(interruption, sag and swell), power frequency variations, long duration variations (sustained 
under voltages and sustained over voltages) and steady state variations (harmonics, notch, 
flicker etc.) with time scale ranges from tens of nanoseconds to steady state as shown in    
Table 1. The main task of PQ analysis involves detection, identification, recognition and 
classification of the various types of PQ disturbances. This facilitates in identifying the underline 
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cause behind it so that mitigation actions can be initiated. This is a challenging task [2], as it 
requires effective and new signal processing techniques for analyzing the PQ disturbances [3] 
along with good knowledge of power system and application of advanced mathematical tools 
and artificial Intelligence techniques. Literature survey in [4] shows that research in the area of 
analysis of PQ disturbances has been increasing from last many years and it is still a most 
sought after area with bounty of scope for innovations by developing new tools and techniques. 

 
 

Table 1. IEEE Std. 1159-1995 

 
 
Since, most of the PQ disturbances are transient in nature; they can be better analyzed 

by methods which deploy time-frequency representation (TFR) of the signals. The short time 
fourier transform is the simplest TFR but it suffers from the problem of fixed length of the 
window function, which results in the problem of resolution i.e. narrow window gives good time 
resolution but poor frequency resolution and wide window gives good frequency resolution but 
poor time resolution. Whereas, for PQ analysis, we need high time resolution for the high 
frequency range and low time resolution for the low frequency range. The continuous wavelet 
transform (CWT) overcome this problem of resolution. In CWT analysis, width of window 
function is changed so that it can analyze the low frequency content of signal with longer time 
intervals and high frequency content of signal with shorter time intervals. Wavelet transform 
based analysis of PQ disturbances engenders a multi-resolution decomposition matrix, which 
contains time domain information of the signal at different scales. This property has made 
wavelets a expectant tool for detecting and extracting the features of various types of PQ 
disturbances [5]-[8]. As such, discrete wavelet transform is popular for signal processing due to 
its less computational burden along with quite a good speed but still importance of CWT cannot 
be ruled out for analysis of PQ disturbances CWT [9], [10]. S-Transform can also be used as 
TFR of a signal and important features can be extracted using this transform [11]. Further, the 
artificial intelligence techniques [12]-[15] along with various signal processing techniques are 
effectively employed in classification of PQ disturbances. 

Based on the work presented in reference [16], signatures of various power quality 
disturbances namely sag, swell, transient, harmonics, and flicker were obtained using CWT. It 
was corroborated that these signatures are unique in shape for a particular type of PQ 
disturbance and their size is proportional to the amplitude of the PQ disturbance.  Hence, these 

Category Typical 
Duration 

Typical 
Amplitude 

Transitory 
Impulses ns to ms - 

Oscillation 3 µs to 5 ms 0 to 8 pu 

Short- 
time Duration 

Instanta- 
neous 

Interruption 0.5 to 30 cycles < 0.1 pu 
Sag 0.5 to 30 cycles 0.1 to 0.9 

Swell 0.5 to 30 cycles 1.1 to 1.8 

Momentary 
Interruption 30 cycles to 3 s < 0.1 pu 

Sag 30 cycles to 3 s 0.1 to 0.9 
Swell 30 cycles to 3 s 1.1 to 1.4 

Temporary 
Interruption 3 s to 1 min. < 0.1 pu 

Sag 3 s to 1 min. 0.1 to 0.9 
Swell 3 s to 1 min. 1.1 to 1.2 

Long-Time Duration 
Interruption > 1 min. - 

Undervoltage > 1 min. 0.8 to 0.9 
Overvoltage > 1 min. 1.1 to 1.2 

Voltage Unbalance steady-state 0.5 to 2% 

Waveform Distortion 

DC offset steady-state 0 to 0.1% 
Harmonics steady-state 0 to 20% 

Inter- 
harmonics steady-state 0 to 2% 

Notching steady-state - 
Noise steady-state 0 to 1% 

Voltage Fluctuations (flicker) steady-state 0.1 to 7% 
Frequency Variations < 10 s - 
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signatures are used for recognition of different PQ disturbances as well as for indexing the level 
of PQ disturbance as high, medium, and low. The signatures obtained using the approach as 
mentioned above are then used for recognition of the PQ disturbances using the feed forward 
neural network.  
 
 
2. Research Method 

The schematic block diagram for the complete system for generation and recognition of 
signatures of PQ disturbances is shown in Figure 1. The system has three main components. 
First is the generation of the synthetic waveforms of different PQ disturbance namely sag, swell, 
transient, harmonics, and flicker for different magnitudes. Second is the generation of signatures 
of these disturbances using CWT. Third is application of neural network for recognition of PQ 
disturbances.  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure  1. Block diagram for generation and recognition of signatures of PQ disturbances 
  
 
2.1 Neural Network Model 

Neural networks are good at recognizing patterns and they are extensively applied for 
the analysis of PQ disturbances [12]-[16]. One of the most basic and well-known architecture in 
neural networks is the Multiple Layer Preceptorn (MLP). Figure 2 depicts this architecture with 
two layers of neurons, which is implemented in this paper. The theorem of Hornik-Stinchcombe-
White states that “a neural network with two layers is sufficient to make a precise and desirable 
approximation of a continuous mapping marked with a finite dimensional space to another, 
provided the sufficiency of neurons in the hidden layers”. In our case, this holds true; as only 
two layers give excellent results. The neural network toolbox of MATLAB provides the graphical 
user interface (GUI) based neural network pattern recognition tool “nprtool”, which is employed 
in this work for recognition of various signatures of PQ, as generated above. The two-layer feed-
forward network architecture as shown in Figure 2, comprised of sigmoid hidden and output 
neurons (newpr).  

64 neurons are taken in input layer because size of each input signature matrix is 64x1. 
Since, 05 types of PQ disturbances divided in 15 class of PQ disturbances are considered for 
recognition purpose in this work; so, there are 15 neurons in the output layer. The number of 
neurons opted for hidden layer are based on hit and trial. First, 05 neurons are taken for hidden 
layers and the performance of neural network is evaluated and then the number is increased in 
increment of 05 neurons up to maximum 30 neurons. Since, we want to confirm the outputs of 
neural network between 0 and 1 for recognition purpose, so sigmoid transfer function at output 
layer is most appropriate in this case. 
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Figure  2. Architecture of the two layer feed forward neual network 
 
 
3. The Proposed Algorithm 
3.1 CWT based Algorithm for Generating Signatures of PQ Disturbances 

The Continuous Wavelet Transform (CWT) is a time-frequency representation of 
signals. It is convolution of a signal s(t) with a set of functions, which are generated by 
translations and dilations of a main function. The main function is known as the mother wavelet 
and the translated or dilated functions are called wavelets. Mathematically, the CWT of a signal 
x(t) is given by (1):  
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Here, b is the time translation and a is the dilation (scale) of the wavelet and both are real 
numbers. 

As shown in Figure 3, the CWT coefficients of pure signal are calculated and taken as 
reference and the CWT coefficients of PQ disturbance signal are subtracted from it, which gives 
the difference coefficient matrix (DCM). On careful investigation of DCM, it reveals that the 
scale/row wise value of coefficients of DCM follow a particular pattern for a particular PQ 
disturbance according to the location of the disturbance. Therefore, the coefficients of each row 
of DCM are summed, which gives a matrix named as the unique feature matrix (UFM).  

It is shown that the UFM posses a unique feature for a particular PQ disturbance. This 
feature on plotting gives unique pattern for a particular type of PQ disturbance. These unique 
patterns can be treated as signatures of their respective PQ disturbance. it is also observed that 
the size of this pattern varies in proportion to the magnitude of the disturbance but the shape 
remains the same for one particular type of PQ disturbance. 
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Figure 3. Algorithm for generating signatures of PQ disturbances 
  
 

3.2 Generation of Signatures of PQ Disturbances 
In this section, the generation of signature of sag is explained in length, whereas other 

PQ signatures are obtained after replicating the same process. Although, the sag and 
interruption are the two different types of PQ disturbances but they are characterized as a singly 
type of disturbance in this paper owing to their akin stance of producing signature of similar 
shape as both are associated to voltage dip. 

Pure sinusoidal signal is generated synthetically and shown in Figure 4 and can be 
visualize as matrix P of dimension of 1x512 is obtained for the pure signal. Similarly, the 
disturbance signals of sag with different magnitude (i.e. sag-0.2 pu, sag-0.6 pu., sag-0.8 pu. and 
interruption) are generated by programming in MATLAB as shown in Figures  5(a), 5(b), 5(c) 
and 5(d) and accordingly matrixes of dimension of 1x512 are obtained for each of the 
disturbance signal of sag with different magnitude. CWT coefficient matrix of pure sinusoidal 
signal and each disturbance signal of sag is obtained as mentioned in algorithm. The 
dimensions of these matrixes are 64x512. Then, the DCM is obtained by subtracting CWT 
coefficient matrix of each of the disturbance signal of sag from corresponding matrix of pure 
sinusoidal signal, which gives dimension of 64x512 for DCM. Thereafter, UFM is calculated by 
summing coefficients of each row of DCM, which gave UFM of dimensions of 64x1. These 64 
data’s are plotted with respect to their row number (i.e. scales of CWT) and the patterns as 
shown in Figures  5(e), 5(f), 5(g) and 5(h) are obtained for their respective disturbance signals 
(i.e. sag-0.2 pu, sag-0.6 pu., sag-0.8 pu. and interruption). 

It is clear, that the shape of all the patterns is same as shown in Figures  5(e), 5(f), 5(g) 
and 5(h). These patterns are plotted on a single graph as shown in Figure 6 and it reveals that 
the shape of all the patterns is exactly same. This unique shape, as shown in Figure 7 can be 
taken as the signature for the sag and interruption disturbance of PQ. 
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Figure 4. Pure sinusoidal signal 
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Figure 5. The disturbance signals of sag with different magnitude; (a) sag - 0.2 pu, (b) sag - 0.4 

pu, (c) sag - 0.6 pu, (d) interruption, (e) pattern of sag - 0.2 pu, (f) pattern of sag - 0.4 pu, (g) 
pattern of sag - 0.6 pu, and (h) pattern of interruption. 

 

0 10 20 30 40 50 60 70
-5

0

5

10

15

20

Scale of CWT

D
at

a 
of

 U
F

M

 

 
Interruption 

Sag 0.8 pu
Sag 0.6 pu

Sag 0.2 pu

 

Figure 6. Patterns for interruption and sag - 0.2, 0.6 and 0.8 pu. 
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Figure 7. Signature for sag 
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The signatures of five types of PQ disturbances are generated after replicating above 
algorithm and shown in Figure 8. 
 
 

 
Figure  8. (a) Signature for sag and interruption, (b) signature for swell, (c) signature for 

transient (d) Signature for harmonics, and (e) signature for flicker. 
 
 
Figure 6 reveals that the size of the signature of PQ disturbance is proportional to the 

magnitude of the disturbance. This feature makes this algorithm unique because it is capable of 
giving information about the level of disturbance. Hence, each of these five disturbances is 
further divided in three sub classes of disturbance depending on their magnitude i.e. high, 
medium, and low. The level of PQ disturbance is decided by dividing the range of magnitude of 
PQ disturbance as mentioned in Table 2 into three categories. 
 
 

Table 2. Indexing of PQ disturbances 
No. PQ Disturbance Indexing Name Typical Magnitude 

1 
Sag: 
0.1 to 0.9 
 

S1:   High Sag 0.1 ≤ amplitude < 0.3 pu 
S2:   Medium Sag 0.3 ≤ amplitude < 7 pu. 
S3:   Low Sag 0.7 ≤ amplitude ≤ 0.9 pu 

2 
Swell: 
1.1 to 1.8 
 

S4:   High Swell 1.1 ≤ amplitude <1.3 pu 
S5:   Medium Swell 1.4 ≤ amplitude <1.7 pu 
S6:   Low Swell 1.7 ≤ amplitude <1.8 pu 

3 
Transient: 
0 to 8 pu. 
 

S7:   High Transient 0 ≤ amplitude < 2 pu 
S8:   Medium Transient 2 ≤ amplitude < 6 pu 
S9:   Low Transient 6 ≤ amplitude < 8 pu 

4 
Harmonics: 
0 to 0.2 pu. 
 

S10: High Harmonics 0 ≤ amplitude < 0.5 pu 
S11: Medium Harmonics 0.5 ≤ amplitude < 1.5 pu 
S12: Low Harmonics 1.5 ≤ amplitude < 2 pu 

5 
Flicker: 
0.001 to .07 pu 
 

S13: High Flicker 0.001 ≤ amplitude < 0.01 pu 
S14: Medium Flicker 0.01 ≤ amplitude < 0.1 pu 
S15: Low Flicker 0.1 ≤ amplitude < 0.7 pu 
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4. Results and Discussion 
The formulated network was trained with 45 samples of PQ signatures consisting of 03 

samples per disturbance class for total 15 disturbances classes formed from different 
magnitudes of sag, swell, transient, harmonics, and flicker. The three samples taken for training 
for a particular type of PQ disturbance belong to one from each sub-class of high, medium and 
low level of indexing. The number of samples for training, validation and testing were chosen 
randomly as given in Table 3. 

 
 

Table 3. The number of samples for training, validation, and testing 
Mode Samples in % Number of Samples 

Training 70  33  
Validation 15  06  
Testing 15  06  

 
 

The network was trained with scaled conjugate gradient backpropagation training 
algorithm. It is shown in Figure 9 that there is perfect hug in ROC curves to the left and top 
edges. Further, 100% recognition performance given in confusion matrix of training, test and 
validation shows good performance of training. 

 
 

 
 

Figure  9. Receiver operating characteristic (ROC) 
 
 
The neural network was tested with new signatures of PQ disturbances, which were not 

used in training. One by one testing of more than 30 such signatures was performed with this 
network and it identified all the signatures correctly, giving 100% accurate identification. 
Besides, when the network was tested to recognize 100 different signatures at a time then it 
gave recognition accuracy of 98.9%. The network reached to its best validation performance, 
when generalization stops improving after some iteration and then there is an increase in the 
mean square error of the validation samples. The effect of variation of number of neurons on the 
performance of the network is shown in Figure 10. The results of testing are shown in Table 4. It 
is evident that the effective recognition of the PQ signatures isn’t proportional to the number of 
neurons used by the neural network. So, it is not necessary to have large number of neurons in 
hidden layer. Therefore, the ideal solution may also be achieved with only 05 neurons. Less 
number of neuron will also increase the computational efficiency. 
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Figure  10. Performance Plots for (a) 5 neurons, (b) 10 neurons, (c) 15 neurons,  
(d) 20 neurons, (e) 25 neurons, and (f) 30 neurons 

 
 

Table 4. Performance of neural network based on number of neurons 
S. No. No. of neurons 

in hidden layer 
Best validation performance Overall 

accuracy 
(%) 

Mean squared error  
(mse) 

epochs 

1 5 0.077737000 19 98.9 
2 10 0.002959980 44 98.9 
3 15 0.000383900 35 97.8 
4 20 0.000000291 111 97.8 
5 25 0.000000238 152 98.9 
6 30 0.098506000 19 97.8 
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5. Conclusion 
A system for recognition of power quality disturbances with its indexing using neural 

network is presented in this paper. The proposed system of generation and recognition of 
signatures of various PQ disturbances is capable of recognition of various PQ disturbances i.e. 
sag, interruption, swell, transient, harmonics, and flicker along with its indexing with almost 
100% accuracy. The diminutive error may be due to some PQ disturbance, which is at threshold 
with other type of PQ disturbances. It is also shown that the overall accuracy is nearly 98% 
irrespective of number of neurons in the hidden layer. The effect of change in location of PQ 
disturbance on shape and size of the signatures is not examined in this work and it is a matter 
to contemplate it in future. 
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