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Abstract 
 A new methodology for the design of adaptive sliding mode control (ASMC) for Asynchronous 

motor control will be presented in this paper. The sliding mode control (SMC) has become one of the most 

active branches of control theory that has found successful applications in a variety of engineering 
systems, such an the electrical motors. The new Adaptive sliding mode control method is compared to 
other existing techniques. The pros and cons of ASMC controller will be demonstrated by intensive 
simulation results.  It will be shown that the presented controller is with fast tracking capability, less steady 
state error, and robust to load disturbance. 
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1. Introduction 

Asynchronous Machine is complex electromechanical devices which are used in most 

industrial applications for converting electrical power to mechanical form. The Asynchronous 
Machine can be energized from adjustable-speed ac drives or from constant frequency 
sinusoidal power supplies.  

Nonlinear control theory has been applied to the control of Asynchronous Motors (AM) 
in much research [1]-[6], such as input–output linearization strategy and nonlinear state 
feedback control [7], since the Asynchronous motor is basically a nonlinearly coupling  

system [8]. For instance, [9] and [10] presented an adaptive feedback linearization tracking 
controller for the Asynchronous motor. Furthermore, [11] utilized the feedback linearization 
approach to design a controller to achieve input–output decoupling, high dynamic performance, 

and high power efficiency. For example, a feedback-linearizable system obtained by an 
integrator addition is presented in [12]. However, the parametric deviation will significantly affect 
the dynamic performance and the stability for practical implementation. Therefore, for the 

nonlinear feedback control of Asynchronous motors, many studies have also presented the 
compensators for the influence of the variation of motor parameters. In these studies , an 
adaptation law to the nonlinear sliding-mode control has been studied, the sliding-mode control 

can offer many advantages, [13]-[15], such as invariance condition, insensitivity or robustness, 
and fast dynamic response. 

Sliding mode  control  (SMC),  as an effective robust  control strategy, has been 

successfully applied to a wide variety of complex systems and engineering [16], including 
uncertain systems  [17], time-delay systems  [18],  stochastic  systems [19],  singular  
systems [20] and Markovian jump systems [21]. The good performance of the proposed scheme 

has been tested using a realistic numerical simulation. The steady -state and the transient 
behavior have been investigated. In both cases (with ASMC and with), the results obtained 
emphasize the effectiveness of the proposed drive system. 
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2. Asynchronous Machine 

The asynchronous machine d-q or dynamic equivalent circuit is shown in Figure 1. One 
of the most popular asynchronous motor models derived from this equivalent circuit is detailed 
in [22]. According to his model, the modeling equations in flux linkage form are as follows:  

a. The stator voltage Equation 
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b. The rotor voltage Equations 
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c. The stator flux Equation 
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d. The rotor flux Equation 
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e. The mechanical Equation 
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Figure 1. Equivalent Circuit of an Asynchronous Motor 

 
 

For the development to follow, the mathematical model of asynchronous motor referred 

to a stationary reference frame, which is denoted by the superscript ―dq,‖ and with d-axis 
attached on the stator winding of phase ―A,‖ is presented as follows [22]. 
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2.1. Sliding Mode Control 

A Sliding mode control (SMC) following a desired linear reference model is designed in 
the following way. Rewriting the Asynchronous Motors model shown in Eq. (6), in a compact 
form as: 
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In order to achieve fast torque response as well as operate in the flux weakened region 

and maximize the power efficiency for the Asynchronous Motors drive, the torque (T) and the 

norm of the stator flux linkage  2 2,sa sb  are assumed to be the system outputs. Hence, on 

the basis of the input–output feedback linearization technique, the following variables are 
introduced; 
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Using Equations (6) and (7), the system model shown in Equation (9) is modified to: 
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where the following notation is used derivative of a function ( ) : .n      along a vector: 
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Using the above notation, one can obtain that: 
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Furthermore, 
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Moreover, from Equation (11), the following control inputs are defined: 
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Linking Equations (11) and (14) gives : 
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Defining a desired second order linear reference model as: m m m m refA B u 
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With 
a
m as design positive constants. At this step, the aim is to design a nonlinear SM controller 

that will be capable of following the above linear reference model. From Eq. (15) and (16), the 
error dynamic between the plant and reference model is obtained as:
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Based on Equation (11), two independent SM switching functions are defined: 
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where 
2 2  is a constant linear matrix so that the inverse of  B   exists for all 


. It will 

be proved that the following nonlinear controller is able to guarantee that the SM reaches 

condition, 
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where ()sig  is the sign function and: 
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The switching surface dynamics are chosen as: 
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Or, Equation (24) guarantees the SM reaches the condition.   

 

 

 

2

2

( )

0

i i i i i i i

i i i i

S S q S sig S k S

q S k S



  

   
 (24) 

 
2.2. A New Methodology of Adaptive-Sliding Mode Control  

Consider Equation (17) with some errors in the stator and rotor resistances  ,s rR R    
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bounded uncertainties. Candidate the following Lyapunov function. 
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where ˆ     and ̂ is an estimate of
i
  and , 0

1 2
     are adaptive input–output controller 

gains. Taking the derivative of V with respect to time (t) and then using Eq. (27), yields 
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From Equation (27), if the estimation laws and inputs are chosen as; 
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Then, Equation (28) is reduced to: 
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Equation (31) guarantees that the state errors ez1, ez2 asymptotically converge to zero if the 
design parameters k1, k2, are chosen to be positive constants. 
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3. Simulation Results 
After concluding the training process the simulations were conducted using the 

Simulink-Matlab. The control system block diagram is illustrated in Figure 2. The descriptions of 

the blocks present in this diagram are: 
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Figure 2. The Overall Simulated Block Diagram of the Proposed New Adaptive Sliding Mode 
Control 
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Motor parameters. : RS=40; RR=15.74; LS=0.103;LR=0.103; LM=0.814. It is considering, in this 

section that the machine parameters can change under various perturbations during the 
operation, this is can drive a change in Lr, Ls and Rr.  

 

  

 
 

Figure 2. Speed Rotor PI Controller 

 
 
Or that, one considers, in the simulation, a change inductances and in the rotor 

resistance. The simulations results are shown in Figure 4 to Figure 8. Comparatively with the 
results of the Figure 3, the Figures widely improved whereas they are superposed with the 
reference. One observes almost no oscillations originate of the commutation system particularly 

for the change of inductances.     
 
 

 
 

Figure 3. Speed Rotor PI Controller (Red) and ASMC Controller (Blue) 
 

 

 
 

Figure 4. Current Waveforms of Phase-a 
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Figure 5. Current Waveforms of Three-Phase 
 
 

 
 

Figure 6. Torque Response with Load Torque Variation 
 

 

 
 

Figure 7. The Phase Voltage 

 
 

However, change for the rotor resistor shows some oscillations particularly for the 

reactive power as shown in Figure 4 but in spite of all the result are good comparatively with the 
PI controller. The simulation results obtained show the robustness of a new methodology of 
ASMC controller address changes in machine parameters compared with PI controller.  

 
 

4. Conclusion 

This paper contributes to the presentation of a new methodology of adaptive-sliding 
mode controller asynchronous motor drive. The new ASMC controller reduces the steady state 
error as compared with PI-type. The Simulation results confirm that the presented controller for 

an asynchronous motor drive provides fast tracking capability, robust to load disturbance, and 
less steady state error, in very wide speed range. The resulting controller proved to have good 
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characteristics in different operating conditions as was verified in the presented results, were 

performed to justify the approach to the control system synthesis.  
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