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Abstract 
As are considered, the body posture is controlled and position cannot control, space manipulator 

system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control 
strategy based on neural network is put forward. Neural network on-line modeling technology is used to 
approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural 
network approximation error and external bounded disturbance are eliminated by variable structure control 
controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need 
to take the training process, globally asymptotically stable of the closed-loop system is proved based on 
the lyapunov theory. The simulation results show that the designed controller can achieve high control 
precision has the important value of engineering application. 
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1. Introduction 

Space robot has different dynamics and constraints with the ground robot: kinetics of 
mechanical arm and the base of the coupling, singular, limited fuel supply and limits of attitude 
control system. These factors lead to space robot show the strong nonlinear dynamics 
properties, as a result the dynamics and control of space robot than fixed ground robot is 
complex, not like ground fixed base of robots controlled by general method. For example, the 
dynamic model of manipulator mass, inertia matrix and load quality cannot be accurately 
acquired, and external disturbance signals have a certain impact on the controller. To eliminate 
these non-linear factors, many advanced control strategies such as robust control ref.[1]-[3], 
adaptive control ref.[4]-[5], fuzzy control ref.[6]-[11] and neural network control ref.[12]-[15] have 
been used in space robot tracking control. Most of the researches focus on joint-space tracking. 
However, in many cases, the desired trajectory is described in task-space and the robot is 
controlled by the torque input in joint-space, this is known as the task-space tracking problem. 

Ref.[16]-[17] bring forward adaptive control methods. In the process of designing, the 
parameters of dynamic equations need be linearized, so complicated pre- calculation is 
required. Ref.[18] proposes an fuzzy-neural control method which does not requires the exact 
model of robot. But much parameter is adjusted, that affects the real-time. Ref.[19] has 
presented a neural network control method, uncertain model can be identified adaptively  by 
neural network, but this control scheme only can guarantee the system uniformly ultimately 
bounded (UUB). 

In this paper, an adaptive neural-network controller is proposed to deal with the task space 
tracking problem of space robot manipulators with uncertain kinematics and dynamics. The 
tracking controller is model-independent; this control method obtains control laws by the neural 
network online modeling technology. The neural network approximation errors and external 
bounded disturbances are eliminated by sliding mode variable structure controller. The control 
method neither requires an estimate of inverse dynamic model, nor requires a time-consuming 
training process. Based on the Lyapunov theory, this control method proves global asymptotic 
stability of the whole closed-loop system. The neural controller can not only achieve higher 
precision without calculating the inverse Jacobian matrix, so it reduces the calculation quantity, 
but also meet real-time requirements. So it has great value in engineering applications. 
Simulation results show that the controller can achieve higher precision. 
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This paper presents a neural network adaptive control method to copy with tracking 
problem of space robot manipulators with uncertain kinematics and dynamics with task space. 
Considering that exact model is difficult to obtain, this control method use the neural network to 
identify system parameters. Robust controller is designed to eliminate the approximation errors 
of neural network and external disturbances. The control method neither requires an estimate of 
inverse dynamic model, nor calculates the inverse Jacobian matrix. Global asymptotic stability 
of the closed-loop system is proved based on Lyapunov theory. Simulation results show that the 
controller can achieve higher precision. 
 
 
2. Dynamic equations of space robot with task space 

The Figure 1 shows the model of one-arm space robot. The coordinate system can be 

defined as follows: 
0

B  : the spacecraft platform, ( 1, , )
i

B i n   : the i st link-rod of manipulator, 

i
J  : the joint which connects 

1i
B


 with iB , 

i
C  : the mass’ center of 

i
B , ia ，

3

i
b R  respectively : 

position vector that is from 
i

J  to 
i

C  and from 
i

C to 1iJ  , 3ik R  : the unit vector of rotative 

direction 
i

J , 3

ir R  : the position vector of the mass’ center  iB , 3

gr R  : the unknown vector 

of the system’s centroid, 3

ep R  : position vector of the manipulator’s end,  3

iI R  : the inertia 

of the link-rod relative to its centroid, 
I

O  : the inertial origin, 
g

O ：  : the centroid of the whole 

system, im  : the mass of iB , M ：
1

n

i

i

M m


  I 、 E 、 B  respectively : the inherits 

coefficient, manipulator’s end coordinates system, the basic body coordinates system. 
 
 

 
 

Figure 1. Parameters of manipulator 
 
 

Free-floating space robot dynamic equation can be written as follow ref.[20]:  
 

( ) ( , )M q q B q q q                                                             (1) 

 

Where , ,   nq q q R  are joint position, velocity and acceleration vectors; ( )  n nM q R is  

symmetric  positive definite inertia matrix; 1( , ) n
Rq q qB    is Coriolis/ centrifugal forces; 1  nR  is 

control torque. 
As the robot in task is generally given by the Cartesian coordinate system. The paper 

can select the displacement of the robot’s end-actuator in Cartesian space as the system output
y . Thus the system’s augmentation output can be written as: 

( )y h q                                                                 (2) 
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Which  ny R  indicates the positions and attitudes of the manipulator end-actuator in 

Cartesian coordinates; for planar two link robot, n = 2. When calculating the derivative of it. The 
paper can get the following equation: 

 
( )y J q q                                                                    (3) 

 

In the aboving equation, ( ) [ ( ) ( )]b rJ q J q J q  represents the Jacobian matrix, 

/b bJ y q   ， /r rJ y q   . 

The paper hypothesizes that rJ  is a non-singular matrix, and then J  is reversible. 

Thus by the equation (3) and equation (1), taking the external disturbance d  into account. The 
paper finally can obtain the dynamic equation of the space robot in task space:  

 
Dy Cy d                                                                         (4) 

 

Where , , . 

The dynamic equation (4) of space robot in task space has the following properties [21]: 
Property1: ( )D q  is reversible and bounded. 

Property2: For any  nZ R , there is
1

2

T T
D CZZ Z . 

 
 
3.  Designed  Controller base on Neural Network 

For the dynamic model (4) of space robot, the paper can define ry  as the reference 

trajectory, dy  as the ideal trajectory, ( )e t  as the position tracking error,  r  as the filtering error 

slip surface, and n nR   as the positive definite matrix, then:  
 

( ) ( ) ( )r dy t y t e t                                                       (5) 

 

( ) ( ) ( )de t y t y t                                                        (6) 

 
( ) ( ) ( )r t e t e t                                                         (7) 

 

Lemma[22]: Let ( ) ( ) ( )e t h t r t  , which   represents convolution, 1( ) ( )h t L H s  and ( )H s  is a 

n n  class transfer function with strictly exponentially stable, if 2 nr L , then 
2

n ne L L


  , 
2

ne L , 

e  is continuous. When t   , 0e  ， 0r  ， 0e  , the error equation of closed-loop system 
of free-floating space robot can be writted as: 
 

r rDr Cr Dy Cy d                                                   (8) 

 
If the robot modeling is accurate, and 0d . The paper can design the following control 

law equation to guarantee the global asymptotic stability of closed-loop system. 
 

r r vDy Cy K r                                                     (9) 

 

Where 
v

K  represents positive definite matrix. 

Proof: to take Lyapunov function as: 
 

1 1 1      T TC J BJ J MJ JJ   T
qJ 1  TD J MJ
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1

2
TV r Dr                                                          (10) 

 
To calculate its differential, the paper can obtain the following equation: 

 
1

2
T TV r Dr r Dr                                                      (11) 

 
To combine the closed-loop error equation (8) and the control law equation (9).the 

paper can get to the following equation: 
 

0T

vV r K r                                                         (12) 

 
However, in practical engineering, the free-floating space robot model ( )D q  and 

( , )C q q  are difficult to accurately obtain, and the external disturbance d  exists in system, these 

nonlinear uncertainties will cause the control performance to degrade.  
Considering that the neural network has good nonlinear approximation ability. the paper 

can adopt RBF local generalization network to approximate the uncertain parts ( )D q 、 ( , )C q q  in 

the unknown system. Thus the learning speed can be accelerated greatly and local minimum 
problems can be avoided. Then the neural network model equation can be written as:  

 

( ) ( ) ( )T

il jl d
l

D q q q     ( ) ( )T

il jl dq q                                      (13) 

 

( , ) ( ) ( )T

il jl c
l

C q q z z     ( ) ( )T

il jl cz z                                     (14) 

 

Where,  ,z q q  ， il ， il  represents weights of the neural network, ( )jl q ， ( )jl z  

represents radial basis function of the input vector. And ( )d q  and ( )c z  respectively 

represents its modeling errors, and is assumed to be bounded. 

Where. The paper respectively define ̂  and ̂  as the estimate value of   and  , 

and   and   as their estimation errors. 
 

ˆ                                                                       (15) 
 

ˆ                                                                      (16) 
 

Then the controller equation (9) should be revised as: 
 

ˆ( ) ( ) sgn( )ˆT T

r r v sy y K r k r                                              (17) 

 

Where || ||sk E ,    D r C rE E y E y d 。  

The adaptive law is designed as: 
 

ˆ { ( )}i i i r iq y r  
�                                                               (18) 

ˆ { ( )}i i i r iQ z y r  �                                                               (19) 
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Where 0   T
i i ， 0 T

i iQ Q . 

To put the equation (13) and (14) into the equation (9), and combine into the equation 
(17) .the paper can get to the following equation: 

 
ˆ ˆ( ( ( )ˆ) )T T T

d c ry y d y             ( ) sgn( )ˆ T

r v sy K r k r                   (20) 

 

Putting   ry y r ，    ry y r into the equation(20), and reducing it. the paper can get to:  

 
ˆ( ( sgn( )ˆ) )T T

d c v sr r K r k r          ( ) ( )T T

r ry y E                         (21) 

 
Putting the equation (8) into the aboving equation to calculate, and the paper can obtain the 
following equation: 
 

sgn( )v sDr Cr K r k r   ( () )T T

r ry y E                                         (22) 

 
 
4. Stability Analysis 

The paper can define the following Lyapunov functions to prove the stability of closed-
loop system. 
Proof: 
 

1 1

1 1

1 1 1

2 2 2

n n
T T T

k k k k k k
k k

V r Dr Q    

 

                                       (23) 

 
Then 

1 1

1 1

1

2

n n
T T T T

k k k k k k
k k

V r Dr r Dr Q    

 

                                       (24) 

 
In the light of the property (1) and property (2), the aboving equation can be revised as: 
 

1 1

1 1

( )
n n

T T T
k k k k k k

k k

V r Dr Cr Q    

 

                                      (25)  

 
Putting the equation (22) into the aboving equation (25).the paper can get to the following 
equation: 
 

1

sgn( ) { }{ ( )}
n

T T T T
v s k k r k

k

V r K r k r r r E z x r 


        

1 1

1 1 1

{ }{ ( )}
n n n

T T T
k k r k k k k k k k

k k k

q x r Q      

  

                                     (26) 

 
To put the adaptive law equation (18) and the equation (19) into the aboving equation, 

|| ||sk E , so the paper can get to the following equation: 

 

0T
vV r K r                                                          (27) 
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From (27), and taking 0 |sk  into account. The paper can get to 2
nr L . From the 

lemma, the paper can derive 2 2
 ne L L ， 2 ne L , in which e  is continuous. So when t ,

0e , 0r   and 0e . 
 

 
5. Simulation Example 

About the free-floating space robot, the table 1 shows two-DOF space robot simulation 

parameters. 
0

500m kg ，
1

12m kg ,
2

10m kg ， 0 1.0b m ， 1 1.0b m ， 2 0.75b m ， 1 1.0a m ，

2 0.75a m ，
2

0 66 .I kg m ，
2

1 1.5 .I kg m ，
2

2 0.5 .I kg m . 

The desired trajectory of the end of space manipulator is: 
 

1
1 0.5 cos( )

d
x t                  

2
1 0.5sin( )

d
tx  

 
 

Base initial value: 0.1
b

q  , desired trajectory:0. 

The external interferences are: f =
1

[ 0.1sinq t ， 2 0.1sin ]Ttq  

The filtered tracking error parameters are: (6, 6)diag  ；  

Controller gain: (10,10)
v

K diag ； 0.6sk   

Neural network initial weights are 0. the width of all basis functions are 10. The center of 
basis function is randomly selected in the input and output domain. Hidden nodes are 40 bits. 
The simulation results are shown in the Figure 2 ~ Figure 4. The Figure 2 shows the tracking 
scenario map of the position of manipulator’s end. The Figure 3 shows desire and real 
trajectories of base. The Figure 4 shows torque of two joints. 

 
 

 
 

Figure 2. Desire trajectory and real trajectory of end 
 
 

As can be seen from the Figure 2, the proposed control method can ensure the actual 
track of the end actuator, and well track the desired trajectory. From the Figure 3, the paper can 
find that the designed neural network controller may effectively approach unknown model within 
t = 2 s, and at the same time doesn’t need great control torque. 

The further simulations show that the stronger the system’s unknown nonlinearity is, the 
greater the required control torque is required to achieve better control precision, it is necessary 
to increase the control torque output. Considering that the space robots usually work under low 
speed condition in order to maintain their postures, the proposed control method can provide 
ample time for learning of neural network, and meet fully the requirement of real-time. 

 

0.4 0.6 0.8 1 1.2 1.4 1.6
0.4

0.6

0.8

1

1.2

1.4

1.6

x/m

y/
 m

 

real
desired
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Figure 3. Desire and real trajectories of Base 
 
 

 
 

Figure 4. Control torque of two joints 
 
 

6. Conclusion 
In this paper, an adaptive neural-network controller is proposed to deal with the task 

space tracking problem of space robot manipulators with uncertain kinematics and 
dynamics.The tracking controller is model-independent, this control method obtains control laws 
by the neural network online modeling technology, The neural network approximation errors and 
external bounded disturbances are eliminated by sliding mode variable structure controller. The 
control method neither requires an estimate of inverse dynamic model, nor requires a time-
consuming training process. Based on the Lyapunov theory, this control method proves global 
asymptotic stability of the whole closed-loop system. the neural controller can not only achieve 
higher precision without calculating the inverse Jacobian matrix, so it reduces the calculation 
quantity, but also meet real-time requirements. So it has great value in engineering applications. 
Simulation results show that the controller can achieve higher precision. 
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