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Abstract 
This research conducted experiments on population-based heuristic parallel algorithms, which are 

inspired by the clonal selection, called Clonal Selection Algorithm (CSA). Course-grained parallelism 
model applied to improve execution time. Inter-process communication overhead is addressed by 
adjusting communication frequencies and size of data communicated. Experiments on six parallel 
computing models represent all possible partitions and communications and using data of NP-Problem, 
Traveling Salesman Problem (TSP). The algorithm is implemented using model of message passing 
libraries MPJExpress and ran in a cluster computation environment. Result shows the best parallelism 
model is achieved by partitioning initial population data at the beginning of communication and the end of 
generation. Communication frequency can be up to per 1% of a population size generated. Using four 
dataset from TSPLib, experiments show the effect of communication frequency that increased best cost, 
from 44.16% to 87.01% for berlin52.tsp; from 9.61% to 53.43% for kroA100.tsp, and from 12.22% to 
17.18% for tsp225.tsp. With eight processors, using communication frequency will be reduced execution 
time e.g 93.07%, 91.60%, 89.60%, 74.74% for burma14.tsp, berlin52.tsp, kroA100.tsp, and tsp225.tsp 
respectively. We conclude that frequency of communication greatly affects execution time, and also best 
cost. It improved execution time and best cost.  
 
Keywords: clonal selection algorithm, parallel clonal selection algorithm, parallel heuristic model, data 
partition, coarse-grained communication, traveling salesman problem, message passing interface, 
MPJExpress 
 
 
1. Introduction 

CSA (Clonal Selection Algorithm) is one of the population-based heuristic search algo-
rithms. This algorithm has been able to solve combinatorial problems [1],[2], from classical 
problem the Traveling Salesman Problem (TSP) [2],[3] to particular optimization problems in 
Iterative Learning Control (ILC) [4]. CSA is part of the Artificial Immune System (AIS), a bio-
inspired computing approach to solve complex problems [5],[6]. This approach, like other 
population approaches, requires significant amount of computation time. Many ideas attempt to 
address this problem by adopting parallel computation paradigm. As the initiators, Watskin [7] is 
not specific to the CSA and applied to pattern recognition problems. Hongbing et al. [8] apply 
the CSA parallelism for protein structure prediction using Open-MPI. Dabrowski and Kobale [9] 
using the parallel-CSA computation for graph coloring problem.  

In this research, parallel computing models will be developed to exploit the available 
parallelism potential on the clonal selection and CSA. In addition to considering the characteris-
tics possessed by the immune system on the clonal selection events, models built refers to the 
principles and concepts of parallel computation design, taking into account many aspects: 
partitioning, communication, agglomerations, and mapping [10] 

Based on the principle of communication, there are two groups of models of computa-
tion, the master-slave model with a processor acts as a communications controller, and others 
acting as slave processors are governed by the main processor/master. Other computational 
model is called multi-communication model or coarse-grained communication, where all 
processors communicate with each other without any centralized control processor [11],[10].For 
a population that has been set, the multi-communication model shows better computation 
speed. However, this has yet to be showed the linkage between computing speed performance 
and CSA’s parameters, i.e. population size, number of the selection, and the amount of data 
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communicated between the whole processes. On the other hand, one of the other drawbacks is 
the need for inter-processor communication. We need to minimize the effect of this 
communication overhead. 

This research will be focused to search for patterns of relations between parameters of 
CSA and its relations with parallel computation. The parameters investigated are: size of initial 
population (whether partitioned or not), size of population data that is communicated between 
processes, and their relations with computational results (best cost and execution time). This 
study also makes observations on the communication frequencies on multi-communication 
models. The models are implemented on parallel computing with multicore and cluster 
environment using MPJExpress (Java Message Passing Model). MPJExpress is a library that 
implemented with Message Passing Interface (MPI’s) specification library [12]. MPI could 
support parallelizing population based algorithm, such us genetic algorithm [13]. 

The study focuses on the aspects that must be considered in the library application, the 
resulting computational models, as well as the results of the computation itself. Systematically, 
this paper contains: Introduction, The Proposed Method/Algorithm, Research Methods, Results 
and Discussion, and Conclusion. 
 
 
2. The Proposed Method/Algorithm 
2.1. Parallel Clonal Selection Algorithm 

Clonal Selection Algorithm (CSA) is an algorithm that inspired by the immune system, 
especially on the clonal selection events [9]. Clonal selection is an event in the immune re-
sponse, whereby an attack of antigen, B-cells as antibody-producing cells would be multiplied if 
its receptors match with the antigens’ receptor. Cells that do not have matched receptor do not 
participate in the selection. The match calculation is known as affinity maturation. 

CSA is part of Bio-Inspired Algorithm family called Artificial Immune System (AIS) 
[2],[14],[1]. CSA maps antibodies (an immune component) as a population intended to be a 
solu-tion, whereas antigen mapped as an issue (problem). In mapping the problem with a 
solution based on the inspiration of immune system, there is an activity called as immune 
engineering [6] [3]. In the TSP problem; immune response represents a solution whereas 
antigen represents the problem; in this case is a collection of node/city where the salesman 
must visit, the B-cells (antibody) represents a tour that is formed [3]. Details about the CSA can 
be found in [2] and the principles of this parallel algorithm design can be seen in [10].  

Using multicommunication model, which all processes communicate with each other 
without any master control, we then defined population data partition. Referring to the behavior 
of the immune system and clonal selection, there are two ideas, e.g. initial population generated 
by single processor, and each processor independently generating initial population.. 
Communication between processors is done after clonal selection operation, i.e. selection - 
cloning - hypermutation - random replacement. The best population in each processor then sent 
to all processors.  
 
 
2.2. Parallel Clonal Selection Algorithm for TSP 

To apply the clonal selection algorithm into the optimization problem, in this case the 
TSP problem, we need mapping between problem and a clonal selection algorithm scheme. 
This mechanism is called immune engineering. In immune engineering, there are two main 
activities that must be considered, namely representation and affinity maturation. 
Representation is a problem that mapped into populations in the immune system, which is the 
expected optimal individual tour TSP. The affinity maturation is cost calculation between the 
proximity of a tour in each population with the expected best solution. Here's an overview of 
immune engineering in Table 1. 
 
 
3. Research Method 

This study is experimental, started with the construction of computational models, which 
are then implemented by utilizing MPJExpress library in parallel computing environments such 
as multicore and cluster. Research method can be seen in the Figure 1. 
 



TELKOMNIKA  ISSN: 1693-6930  
 

Data Partition and Communication on Parallel Heuristik Model Based on .... (Ayi Purbasari) 

195

Table 1. Immune engineering 
Clonal Selection 

Processes 
TSP Problem 

Population initialization Set of randomly generated tour. There are (n-1)! possibilities that the tours may be raised. 
This population is part of the whole tours. The number of tours is generated by the 
specified population size. 

Affinity evaluation Evaluation of affinity checks each tour that has raised, find the cost required to form the 
tour.  

Selection: affinity 
maturation 

Affinity is how close the cost of a tour with the optimal/best cost. The closer, the higher 
affinity and will be selected.  

Cloning Cloning is process to copy selected tour, number of copies are depends on clone factor: � 
Hypermutation Cloned/copied tour will be mutated according to hypermutation probability mutate factor: � 
Edit receptor/elisitation After mutate, we will have the best tours-that will be replacedthe worst tours in the initial 

population.The number worst tour replaced will be depends on some random size 
replacement d.  

Stop condition Clonal selection process will be repeated until a stop condition obtained. Stopping criteria 
could be the number of generations, or numbers of populations (tours) are evaluated, or 
best cost found. 

Processing element 
communications 

Exchange best tours produced by each of the processing elements to other processing 
elements. 

 
 
Here the description about research method that used in this research: 
 
 

 
 

Figure 1. Reseach method 
 
 

The problems are going to have immune engineered; which are representation and af-
finity maturation.There are parallel clonal selection algorithm called clonal selection inspired 
parallel algorithm (CSI-PA) that has several parameters that has been set. Parameters of the 
clonal selection consists of the population size (N), the number of selection (n), the number of 
generations (g), and the number of nodes (non) from TSP Problem. These algorithms are exe-
cuted in parallel execution environment, e.g multicore and cluster computer. There are several 
procesing elements to process.These executions will result solustion, e.g. the best tour with 
their best cost and time for execution. These algorithms are implemented using single program 
multiple data model, using message passing interface standard (MPI) and libray named 
MPJExpres using Java Programming language. The algorithms will be executed using some 
variant of data partition and communication frequency. 

Experiments conducted on multicore and cluster environment with a headnode and 16 
compute nodes. Eight compute nodes used in these experiments with their specification: 16 x 
2.90GHz CPUs storage of 895.465GB in RAID5 configuration. The head-node is using CPUs 
32x2.90GHz, 126.13GB memory, local disk 895.465GB and Linux 2.6.32-279. The compute-
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nodes are using CPUs 16x2.70GHz, 15.66GB memory, local disk 142.835GB and Linux 2.6.32-
279. Software environments are using Java Message Passing Model, MPJExpress that 
developed using the IDE Netbean 7.2.1 with Java 1.7.0_13 version. Entirely run on Windows 7 
Operating System v6.1. 

To execute it, compiled simulation execution can be seen in Table 2 as follows: 
 
 

Table 2. Experiments scenario 
Dataset Name Burma14, Berlin52, KroA100, tsp225 
Known Best Cost from TSPLib [16] 3.323,7.542,21.282,3.916 
Number of Node 14, 52, 100, 225 
Number of Generation 100,000 

Parameter 
Value 

N, initial population 50  
n, number of selection 10 
Size of population data communicated Number of partition- N 
Clone factor β 0.1 
Mutate factor δ 2.5 

Number of processor 2, 4, 8 
Processing Environment Multicore, Cluster 

 
 

Some parameter values have been defined, such as the value of the initial population, 
the number of selection, clone factor, and mutate factor. Initial population partition was done in 
Figure 2 as follows:  

 
 

 
 

Figure 2. Population partition 
 
 
Description:  
 Number of partition = number of processors (np) 
 Population size in 1st, 2nd… (np-1)th Partition (pp) = N/np 
 npth Number of Population in Partition (pp) = N – (np*pp) 
 Example: N = 50, np = 4. Number of partition = 4, Population size in 1st, 2nd , 3rd partition = 

12, population size in 4th partition = 14. 
Experiment overview can be resumed in Figure 3. Thus we have six models for 

experiment. We do several executions for each experiment, and then get the average result 
from each ex-periment to report in section Result and Discussion. After that, we will check the 
effect of communication frequency to execution time result and the best cost obtained. 
 
 

 
 

 
Figure 3. Experiment scenarios 
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4. Result and Discussion 
Based on the above scenario, conducted experiments on cluster environment with four 

datasets, e.g., burma14.tsp, berlin52.tsp, kroA100.tsp,and tsp225.tsp. Results logged from main 
processor (process 0). For the six models, we observed effects of the number of generations 
and the frequency of communication on the best cost and the execution time. We do with 
100.000 number of generation. There are two result experiments, first result will show the effect 
of partition and the second one is the effect of communication frequency to exe-cution time and 
best cost obtained. Detail of the result will be presented in the following section. 
 
 
4.1.  Result I 

The first experiment was to observe the six models in terms of the number of genera-
tions, best cost, and execution time. Table 3 below shows the results for the six experiments 
based on weight and execution time. Experiments about execution time are summarized in 
Table 4 below. 
 
 

Table 3. Best cost for all dataset 

Number 
of Node 

Number 
of 

Process 

Best Cost 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

14 

2 3.394 3.359 3.323 3.394 3.359 3.323 
4 3.371 3.323 3.323 3.371 3.323 3.323 
8 3.403 3.336 3.336 3.323 3.438 3.413 

Average 3.389 3.339 3.327 3.363 3.373 3.353 

52 

2 17.079 19.226 17.573 17.079 19.226 17.573 
4 20.028 20.341 20.325 20.028 20.341 20.325 
8 19.353 20.124 19.070 20.856 19.437 19.453 

Average 18.820 19.897 18.989 19.321 19.668 19.117 

100 

2 109.807 124.267 124.241 110.579 114.163 113.407 
4 108.539 122.320 122.265 116.127 113.717 121.420 
8 127.794 125.157 121.283 119.702 116.325 121.233 

Average 115.380 123.915 122.596 115.469 114.735 118.687 

225 

2 32.309 34.333 32.283 33.411 33.543 34.193 
4 34.440 32.047 33.814 33.344 33.883 33.913 
8 34.321 33.392 33.823 32.281 34.556 33.731 

Average 33.690 33.257 33.307 33.012 33.994 33.946 

 
 

Table 4. Execution time for all dataset 

 Number 
of Node  

Number 
of 

Process 

Execution Time 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

15 

2 71.039 65.484 55.213 64.205 72.257 60.230 
4 105.511 96.915 102.549 93.889 102.149 92.042 
8 186.131 203.690 180.388 186.855 174.511 179.612 

Average 120.894 122.030 112.717 114.983 116.306 110.628 

52 

2 186.928 156.777 202.463 181.735 168.952 210.396 
4 298.612 340.347 340.399 291.097 316.998 349.252 
8 347.178 456.233 477.473 435.925 464.344 459.695 

Average 277.573 317.786 340.112 302.919 316.765 339.781 

100 

2 382.329 412.065 395.405 396.022 380.500 378.781 
4 584.470 684.217 664.053 674.349 671.874 667.572 
8 572.945 855.017 845.576 864.971 849.929 872.740 

Average 513.248 650.433 635.011 645.114 634.101 639.698 

225 

2 1.441.560 1.400.791 1.393.369 1.430.928 1.408.072 1.535.162 
4 1.854.656 1.908.771 1.975.035 1.912.938 1.952.451 1.876.631 
8 1.649.006 2.430.180 2.456.985 2.404.307 2.436.130 2.381.234 

Average 1.648.407 1.913.247 1.941.796 1.916.058 1.932.218 1.931.009 

 
 

As we can see, each models gain their best cost differently for each dataset and num-
ber of processing elements. For dataset burma14 that has number of node = 14, the best cost 
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was obtained by several models, with 2 and 4 number of processing elements. Their best costs 
are 3323 which is same as best known best cost from TSPLib for burma14.tsp dataset. But 
increasing number of node made different results, as we can see model number 1 gained better 
best cost for dataset berlin52, kroA100, and tsp225 with 2 number of processing elements, 
close to model number 2 with 4 number of processing element. Table above shows that number 
of processing elements has no direct impact for best cost obtained for all dataset. It because, 
best costs obtained are more depend on.cloning and hypermutation mechanism that result 
random tour. Tabel 4 shows experiment results for execution time. If we use more processing 
element, then we will need more time to execute. There are communication overheads between 
processing elements. Except model 1, that if we use 8 number of processing elements, we will 
have better execution time than if we use 4 number of processing elements. Averagely, model 
number 1 has better execution time than others for all datasets.  
 
 
4.2. Result II 

In this experiment, we carried out some reductions of the frequency of communication 
between processors. The ultimate goal is to get the execution time as possible, but does not 
reduce the quality of the final result, i.e. best cost. Table 5 shows summary of the best cost after 
we controlled the communication frequency. 
 
 

Table 5. Best cost for all dataset after controlled communication frequency 
Number of 

Node 
Number of Process 

Execution Time after controlled Comm. Frequency 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

14 

2 13.965 13.876 13.101 12.822 13.064 14.593 
4 13.695 13.488 14.166 14.059 15.296 15.936 
8 12.905 16.469 15.904 13.848 17.521 17.213 

Average 13.522 14.611 14.390 13.576 15.294 15.914 

52 

2 48.347 49.279 48.468 47.233 51.105 47.659 
4 48.690 54.209 52.884 51.390 55.027 52.415 
8 39.501 55.954 53.954 36.604 55.549 53.125 

Average 45.513 53.147 51.769 45.076 53.894 51.066 

100 

2 118.584 119.178 122.385 116.806 118.913 118.218 
4 116.400 117.955 122.642 123.459 121.134 121.325 
8 90.327 124.685 125.294 89.993 122.733 127.565 

Average 108.437 120.606 123.440 110.086 120.927 122.369 

225 

2 788.580 786.276 782.141 789.671 793.007 787.424 
4 777.486 798.155 787.218 790.475 794.047 781.497 
8 620.036 794.198 803.693 607.228 797.229 793.964 

Average 728.701 792.876 791.017 729.125 794.761 787.628 

 
 
Table 6 shows the best execution times after we controlled communication frequency. 
 

Table 6. Execution for all dataset after controlled communication frequency 

. 
Number of 
Process 

Best Cost after controlled Comm. Frequency 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

14 

2 3.371 3.323 3.394 3.359 3.359 3.346 
4 3.323 3.336 3.388 3.323 3.369 3.336 
8 3.323 3.336 3.323 3.323 3.371 3.336 

Average 3.339 3.332 3.368 3.335 3.366 3.339 

52 

2 13.887 13.938 12.437 12.896 13.026 13.289 
4 9.034 12.988 12.904 8.735 12.888 13.795 
8 9.303 12.399 12.582 8.668 10.997 11.892 

Average 10.741 13.108 12.641 10.100 12.304 12.992 

100 

2 49.952 55.588 54.893 62.895 58.913 53.916 
4 39.830 47.974 52.386 41.524 44.997 47.142 
8 46.211 43.555 46.905 46.971 51.436 43.100 

Average 45.331 49.039 51.395 50.463 51.782 48.053 

225 

2 24.384 24.646 25.364 25.231 25.456 25.911 
4 22.793 23.861 24.283 23.146 24.474 24.621 
8 23.811 23.661 23.978 23.856 23.725 23.557 

Average 23.663 24.056 24.542 24.078 24.552 24.696 
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After we controlled communication fre-quency, we gained execution times 12.822ms 
(M4; np2), 36.604ms (M4; np2), 89.993ms (M4; np8), and 607.228ms (M4; np8) for bur-
ma14.tsp, berlin52.tsp, kroA100.tsp and tsp225.tsp respectively. Compare to Table 4 above, the 
execution time reductions are 93.07%, 91.60% , 89.60%, 74.74% respectively. The average 
execution time shows that Model 1 gained the best execution time.  
We can see that controlled frequency greatly affects the execution time, and also the best cost. 
It improved execution time and also best cost. 
 
 
4.3. Result III 

This section shows comparison the result from section 4.2 with another approach from 
another researcher. Since another researchs using different case and different parallel pro-
gramming environment, we need to do re-created algorithm and program and apply it to the 
same case, TSP problem, with some assumption. Since model 1, with single population and 
partition shows the best result, we choose it and compare to algorithm from [8]. Figure 4 de-
scriribe parallel computing model from Hongbing, using ring communciation; compare to model 
1 from section 4.2, using mesh communication, can be shown in Figure 5 below: 

 

 
 

Figure 4. Single-population with ring communication 
 

 
 

Figure 5. Single-population with mesh communication 
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Figure 6 shows best cost comparison for all dataset with number of processing element 
2, 4, and 8 and Figure 7 show execution time comparison for all dataset with number of 
processing element 2, 4, and 8. As we can see, from best cost, there are some differences 
results from each dataset. But over all, result from researcher gain better best cost than other 
researcher. From execution time point of view, result from researcher gain significant improve-
ment than result from other researcher. We conclude that our approaced lead to better result.  
 
 

 
 

Figure 6. Best cost comparison for all dataset with several number of processing element 
 
 

 
 
Figure 7. Execution time comparison for all dataset with several number of processing element 

 
 
5. Conclusion  

Experiment results showthat all the models, produce best weight relatively close to 
known-best-cost for burma14 dataset. However, for other dataset need more generation to 
obtain best know result. Before and after controlled communication frequency, there are some 
models that obtained 100% known best cost e.g:Model 2 wih np=4 (M2; np4),M4; np8,M5; 
np4,M6; np2 np4,M1; np4 np8,M2; np2,M3; np8,M4; np4 np8. The execution time significantly 
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differs for each model, increases with the number of gener-ations and the number of processors 
used. It appears that the amount of processing affects the execution time but does not affect the 
best cost. Frequency of communication greatly affects the execution time, and also the best 
cost. It improved execution time and best cost. Communication frequency can be up to per 1% 
of a population size generated. Using four dataset from TSPLib, experiments show the effect of 
communication frequency that increased best cost, from 44.16% to 87.01% for berlin52.tsp; 
from 9.61% to 53.43% for kroA100.tsp, and from 12.22% to 17.18% for tsp225.tsp. With eight 
processors, using communication frequency will be reduced execution time e.g 93.07%, 
91.60%, 89.60%, 74.74% for burma14.tsp, berlin52.tsp, kroA100.tsp, and tsp225.tsp 
respectively.  

We conclude that with six models, to obtain best cost the best model is M1, e.g single 
population with partition in initial population and its best population; and to obtain best execution 
time, the best model is M4, e.g single population with partition at the end of generation. For the 
average execution time we can see Model 1 gained the best cost and the execution time. These 
conditions are best if the communication frequency is controlled. After compare to another 
approach from another researcher, from execution time point of view, result from researcher 
gain significant improve-ment than result from other researcher. We conclude that our 
approaced lead to better result 
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