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Abstrak 
Sistem tenaga di seluruh dunia mengalami peningkatan pada ukuran dan kompleksitas yang 

diakibatkan oleh pengembangan sistem interkoneksi secara luas. Situasi ini akan membawa sistem 
tenaga lebih sering beroperasi mendekati batas kestabilan steady-state yang berakibat pada peningkatan 
ketidakstabilan tegangan atau voltage collapse. Paper ini menjelaskan perbaikan Steady-state Stability 
Limit (SSSL) pada system tenaga menggunakan kombinasi metode REI-Dimo dan Artificial Neural 
Network (ANN). REI-Dimo equivalent digunakan untuk memperoleh indeks SSSL pada sistem tenaga. 
Selanjutnya hasil dari REI-Dimo akan diajarkan pada metode ANN secara on-line. Studi ini dilakukan pada 
sistem Jawa-Bali 500kV. Dari simulari terlihat bahwa metode yang diusulkan dapat memprediksi SSSL 
pada sistem tenaga secara akurat. Metode melakukan perhitungan lebih  efisien dan cocok digunakan 
untuk memonitor secara on-line kondisi kestabilan steady-state pada sistem tenaga. 

  
Kata kunci: neural network,REI-Dimo,steady-state stability limit, voltage collapse 

 
 

Abstract 
Power systems in all over the world have increased in size and complexity due to rapid growth of 

widespread interconnection. This situation will make power system operated closer to steady-state stability 
limit (SSSL) resulting in higher probability voltage instability or voltage collapse. This paper presents SSSL 
assessment in power system using Artificial Neural Network (ANN) model based on REI-Dimo method. 
The equivalent REI-Dimo is used to determine SSSL index of the power systems. Then, the result of REI-
Dimo will be taught on ANN method via online. Studies were carried out on a Java-Bali 500kV system. The 
simulation showed that the proposed method could accurately predict the proximity to SSSL in power 
system. The method was computationally efficient and suitable for online monitoring of steady-state 
stability condition in the power systems. 

 
Keywords: neural network,REI-Dimo,steady-state stability limit, voltage collapse 
  
 
1. Introduction 

The growth of widely-opened transmission access has a significant side effect for 
modern utilities. Transmission system must accommodate real power transfers that can be quite 
different from those whose transmission networks are originally planned. The conditions as: 
parallel flows, network loadings and low bus voltages may be caused by energy transaction 
across multi area systems of continental or sub continental size. Under such deteriorated 
operating conditions, unstable conditions or blackouts due to instability which becomes possible 
if a major disturbance occurs in system, or if a large amount of real power is transferred across 
a stability of constrained transmission corridor, or even if an insignificant topology change, such 
as a minor line trip, happens in a system already operated near its maximum load ability  
limit [1]. 

Power systems in the modern competitive electric market have increased in size and 
complexity due to the rapid growth of widespread interconnection. More efficient use of 
transmission network has already led to situation in which many power systems are operated 
much longer and closer to steady-state stability limit resulting in a higher probability of  
collapse [2]. 
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The steady-state stability limit (SSSL) of a power system is “a steady-state operating 
condition for which the power system is steady-state stable but an arbitrarily small change in 
any of the operating quantities in an unfavorable direction causes the power system to loose the 
stability". An earlier definition refers to this concept as “the stability of the system under the 
conditions of gradually or relatively slow changes in the load". Voltage collapse, units getting out 
of synchronism, and instability caused by self amplifying small-signal oscillations are all forms of 
steady-state instability [3]. 

Empirically, the risk of steady-state instability is associated with low real or reactive 
power reserves, low voltage levels, and large bus voltage variations for small load or generated 
power changes. Recurring "temporary faults”, i.e. where breakers trip without apparent reason 
and which is disconnected by a protection without being able to identify the fault, might also be 
an indication of steady-state instability. Breaker trips can happen when loads increase due to 
"balancing rotors" of generators that are operated near instability trip and then get back in 
synchronism[1]-[7]. 

Equivalent REI (Radial, Equivalent and lndependent) has also been used to speed up 
and simplify the complex computational algorithms. For example, the rigorous solution of the 
steady-state stability problem is predicated on detailed machine model and entails an alternate 
sequence of load flow and eigenvalues calculating until the point of instability is found. 
However, determining eigenvalues for successively deteriorated load-flow cases is 
computationally intensive and has the inconvenience that load-flow may not converge near the 
instability. The use of equivalent in conjunction with appropriate simplifying assumptions is the 
only way to overcome such difficulties and Dimo's method has been successfully implemented 
and is currently used in several SCADA/EMS installations to compute the system load ability 
limits in real-time and to continuously monitor the distance to instability [8]-[9]. 
 Recently, there has been considerable interest in the application of Artificial Neural 
Network (ANN) to power system [10-14]. ANN has the ability to classify complex relationships 
properly. The relationships classified by ANN are highly non linear and often result from large 
mathematical models. Once trained, the ANN can classify new data much faster than it would 
be possible by solving the model analytically: An integrated based systems, ANN, and 
conventional power system solution methodologies have potential to provide real-time 
optimization and control of power system [10]-[11]. 

This paper presents the application of ANN to provide fast indication of steady stability 
limit with the use of REI-Dimo result as training data. For online steady-state stability monitoring, 
it is essential to identify the maximum power of loading faster calculation so that the ANN 
method can be a alternative solution. 
 
 
2. Research Method 
2.1. REI-Dimo Approach For Steady-State Stability Assessment 

Many references that are available describe the approach to steady-state stability 
assessment developed by Paul Dimo, starting, of course, with the books and papers written by 
Dimo himself. ln order to avoid overlap with already-published material, in this section we just 
briefly discuss just the key aspects of the technique and emphasize the assumptions that 
provide computational speed while preserving precision and accuracy. The theoretically 
oriented reader is directed to review reference [1,6], in which the more subtle aspects of Dimo's 
methodology are addressed in detail, including the generalization of Dimo's formulation of the 
reactive-power steady-state stability criterion.  

A power system consists of a linear sub-system, i.e., transmission lines, transformers, 
reactor, capacitors, and the bus-to-ground admittances to represent line charging and 
transformer taps; and a non-linear subsystem, i.e., generators, loads and synchronous 
condensers. Bus can divided into non-essential buses, which are to be eliminated, and essential 
buses, which are to be retained unchanged[1]. 

Figure 1, which meets the requirement that the generators be radially connected to a 
“nodal point” where the load is located. The topology of this network, in spite of its simplicity, 
reflects a typical radial network of short-circuit impedances (admittances) obtained after 
applying the short circuit current transformation [1]. 
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Figure 1. Radial network of generators connected to the nodal point 
 
 

The generators G1 and G2 the mechanical powers Pm1 and Pm2 equal the electrical 
MW generated powers, which are given by equations (1) and (2): 
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The generated real powers are entirely absorbed by the load Pload, as shown in equation (3): 
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And the reactive power of the load Qload is supplied by: 
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Let us now consider a perturbation Q∆∆∆∆  of reactive power injected into the load bus. 

From(1),(2),(3), and (4) and with 1 0mP∆∆∆∆ = , 2 0mP∆∆∆∆ = , 0loadP∆∆∆∆ = , as well as 
1

0loadQ
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∂ =∂ and 
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∂ =∂ because Qload is a function of V only, we obtain Jacobian matrix of the system [1]: 
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Then, we obtain the determinant D of Jacobian matrix: 
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The solution will get if, and only if, D≠0, in which case we obtain 
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Paul Dimo has shown that, for system of 1,..., m generators and synchronous 

condenser connected radially to a single-load bus (either actual or equivalent) through the 
admittance Y1,...,Yi,...,Y6, the derivative can be computed with formula [1]: 

 

- 2
cos

m m
m load

m mm

Y Ed Q
Y Y V

dV δ
∆  = + 

 
∑ ∑  (8) 

 
in which: 

    =  internal voltages of the machines (assumed to remain constant, unaffected by small 
adjustments made under steady-state stability conditions) 

    =  internal angles of the machines with reference to the voltage V on the load bus (either 
fictitious or actual) 

V      = Voltage in the load center 
YLoad = Load center admittance  
 

 

 
 

Figure 2. Transition from the meshed power system network to radial scheme 
 
 
to simplify, the formula in equation (8) will be separated be two component, such as: 
 

D = m m

m m

Y E
cosδ∑

    and E = m load
m

2 Y +Y V
 
 
 
∑  (9) 

 
To determine the pattern of economic relations to be represented on the stability index value, 
d∆Q/dV is determined by changes in the parameters V and cosδm. The closer the distance load 
to the power plant that supplies the value cosδm, the greater it will be because the difference of 
angle bus that sends and receives is smaller. The result will be worth the value of D and E will 
be smaller and greater value. The small value of D and the greater value of E results in the 
distance to D = E or d∆Q/dV =0 which becomes more distant. Therefore, this method can 
increase the steady-state stability limit [15]. 
 
2.2. Neural Network Algorithm 
 In the backpropagation algorithms, the desired and actual output of the neural network 
aims to adjust the network's weights in order to reduce the learning error. Specifically, a typical 
backpropagation algorithm consists of two passes: in the forward pass, the input vectors are 
presented to the network, and the actual outputs of the network are calculated. Then, the error 
between the actual and desired outputs is calculated. In the reverse pass, the error gradient 
with respect to the network's weights is calculated by propagating the error backwards through 



TELKOMNIKA  ISSN: 1693-6930 � 
 

Steady-State Stability Assessment Using Neural Network Based …. (Indar Chaerah Gunadin) 

415 

the network. Once the error gradient is calculated, the weights are adjusted by using, for 
example, a descent gradient method. 
 In this paper, a backpropagation neural network is utilized to map the highly non-linear 
relationship between network voltage profile of load center from REI-Dimo Equivalent and the 
corresponding steady-state stability limit of power system. First, the simulation starts with 
running the power flow program for Java-Bali system. Then, by using REI- Dimo equivalent, the 
system will be reduced into simple network by reducing all load buses into a representative load 
center buses. Network voltage profile of reduced model is provided by REI-Dimo. 
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Figure 3. Architecture of ANN 
 
 
  The input pattern of steady-state stability is assessed by neural network (SSSANN). The 
number of input neurons of SSSANN is determined based on the size of the reduced model that 
obtained from REI-Dimo. There two output neurons which give the estimated SSSL. The 
number of hidden neurons is determined based on the trial and error. Generally, one of the 
drawbacks of neural network application in power system problems depends on its training on 
the power and load center voltage. Therefore, this dependency necessitates updating the 
training process in the case of any change in network parameter due to the increase of load 
center power. The input pattern of the proposed SSSANN is selected in such ways to obtain the 
representative of system. Therefore, in the case of load power change, network voltage profile, 
including the effect of network topology, load generation pattern, and reactive power 
compensation, remains as representative of system stability. 
   
2.3  Structure of The Proposed Approach 
  Figure 4 shows the structure of the proposed approach. This approach consists of four 
main.  
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Figure 4. Scheme of research 
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The parts of the structure of the proposed approach are as follows: reducing the Java-Bali 
system be a simplify power system using REI- Dimo; determining the index steady-state stability 
limit using REI-Dimo; changing the power in the load center to obtain the parameter of system 
such as: real power and reactive power generation, magnitude and phase of bus voltage, D and 
E constant, and SSSL index. All data obtained from steps (3) will be used to train, validate and 
test the ANN; and evaluating index SSSL using ANN 

 
 

Table 1.  Line Data of 500 kV Java-Bali Power System 
From Bus To Bus R (pu) X(pu) B (pu) 

1 2 0,000626496 0,007008768 0 
1 4 0,006513273 0,062576324 0,01197964 
2 5 0,013133324 0,146925792 0,007061141 
3 4 0,001513179 0,016928309 0 
4 5 0,001246422 0,01197501 0 
4 18 0,000694176 0,006669298 0 
5 7 0,00444188 0,0426754 0 
5 8 0,0062116 0,059678 0 
5 11 0,00411138 0,04599504 0,008841946 
6 7 0,001973648 0,01896184 0 
6 8 0,0056256 0,054048 0 
8 9 0,002822059 0,027112954 0 
9 10 0,00273996 0,026324191 0 
10 11 0,001474728 0,014168458 0 
11 12 0,0019578 0,0219024 0 
12 13 0,00699098 0,0671659 0,01285827 
13 14 0,013478 0,12949 0,024789624 
14 15 0,01353392 0,15140736 0,007276522 
14 16 0,01579856 0,1517848 0,007264438 
14 20 0,00903612 0,0868146 0 
15 16 0,037539629 0,360662304 0,017261339 
16 17 0,00139468 0,0133994 0 
16 23 0,003986382 0,044596656 0 
18 19 0,014056 0,157248 0,030228874 
19 20 0,015311 0,171288 0,032927881 
20 21 0,010291 0,115128 0,022131855 
21 22 0,010291 0,115128 0,022131855 
22 23 0,004435823 0,049624661 0,009539693 

 
 

Table 2.  Operating Condition 
Bus 
No. 

Load Generation Injected 
MW Mvar MW Mvar Mvar 

1 153 45 3332.176 988.564 0 
2 703 227 0 0 0 
3 760 261 0 0 0 
4 544 181 0 0 0 
5 697 215 0 0 0 
6 760 181 0 0 0 
7 646 170 0 0 0 
8 0 0 1470 679.361 0 
9 823 317 0 0 0 

10 680 245 400 484.322 0 
11 0 0 535 1043.085 0 
12 590 351 0 0 0 
13 397 136 0 0 0 
14 329 363 0 0 0 
15 0 0 830 361.87 0 
16 862 317 0 0 0 
17 210 91 810 608.616 0 
18 0 0 0 0 0 
19 277 17 0 0 0 
20 524 244 0 0 -158 
21 358 206 0 0 -193 
22 839 272 2820 895.043 -96 
23 130 193 198 395.97 0 

Total 10282 4032 10395.18 5456.832 -447 
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2.4. Test Power System 
  The Plant as the case for simulation is the 500 kV Java-Bali Power System as shown in 
Figure 5. The data of generator characteristics and cost, line impedances and an operating 
condition are shown at Tables 1-2. 
 

 
 

Figure 5. Single Line Diagram of 500 kV Java-Bali Power System 
 
 
3.  Results and Analysis 
3.1 REI-Dimo Equivalent for Java-Bali System 

 Figure 6, shows the single load REI equivalent of Java Bali system with 8 generator bus 
and one load centre. The Y bus of equivalent system after Gaussian Elimination and REI-Dimo 
parameter are given in Table 3 and Table 4. 
 
 

 
 

Figure 6.  Single Load REI-Dimo of Java Bali System 
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Table 3. Y Bus of REI-Dimo Single Load Equivalent of Java Bali System 
No Gen Bus Bus 9 (Load Center) 

1 -0.2296 - 2.7875i 
8 -0.2282 - 2.5303i 
10 -0.1732 - 1.8221i 
11 0.0657 - 3.0665i 
15 0.1065 - 0.6660i 
17 0.0144 - 1.6252i 
22 -0.0420 - 2.1648i 
23 0.1672 - 0.6704i 
9 0.3178 +15.2987i 

 
 

Table 4. REI-Dimo Parameter  
No Bus Y re G (pu) Y im B (pu) REI MW REI MVAr V (pu) V ang(0) 

1 -.2296 -.7875 3314.2 988.564 1.02 0 
8 -.2282 -.5303 1470 679.361 1 -6.241 
10 -.1732 -.8221 400 484.322 1 -7.029 
11 0.0657 -.0665 535 1043.09 1 -6.663 
15 0.1065 -0.666 830 361.87 1 9.938 
17 0.0144 -.6252 810 608.616 1 9.735 
22 -0.042 -.1648 2820 895.043 1 14.303 
23 0.1672 -.6704 198 395.97 1 11.751 
9 -0.637 -.0341 10264 4032 0.94 -4.267 

   
 
The Java-Bali system changed into reduced model using REI-Dimo Method. Then using the 
equation (1), the steady-state stability limit of Java-Bali system was obtained. Figure 7 shows 
the value of SSSL of Java-Bali system using REI-Dimo. 
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Figure 7. SSSL of Java-Bali System 
 
 

3.2  Steady-state Stability Using ANN for Java-Bali power system 
   All data determined from REI-Dimo such as: active power generation (P Gen), reactive 
power generation (Q Gen), voltage of all bus, active load power and reactive load power will be 
input data and Voltage in the load center (V load center), index of SSSL by REI-Dimo equivalent will 
be output data for ANN method. All data will be trained using backpropagation method with 5 
layer neurons and 2 outputs. 
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Table 5.  A few data that obtained from REI-Dimo 

P1 Q1 V1 Θ1 . . .  P Load Q Load V Load Θ Load D E SSSL 
Index 

1657.62 898.594 1.02 0 . . . 10282 4032 0.95 -26.7 61.07 120.7 -59.657 
1905.77 969.249 1.02 0 . . . 10582 4148.14 0.946 -28.88 61.26 120.6 -59.294 
2149.54 1046 1.02 0 . . . 10882 4265.74 0.942 -31.08 61.46 120.4 -58.895 
2388.82 1128.7 1.02 0 . . . 11182 4383.34 0.938 -33.3 61.69 120.1 -58.458 
2623.35 1217.23 1.02 0 . . . 11482 4500.94 0.934 -35.53 61.94 119.9 -57.98 
2852.83 1311.47 1.02 0 . . . 11782 4618.54 0.929 -37.78 62.22 119.7 -57.456 
3076.92 1411.29 1.02 0 . . . 12082 4736.14 0.924 -40.05 62.53 119.4 -56.883 

      
 

Using REI-Dimo method, maximum voltage obtained in the load center (V load(max)) area 
is 0.781 (pu) and the SSSL is -1.2376. All data obtained from REI-Dimo will be trained to ANN. 
Training process in NN needs epoch is 10, and obtained (V load(max)) is 0.7807 (pu) and SSSL is 
1.3111. 
 
 

 
 

                Figure 8.  Training Performance                             Figure 9.  Regression Plot 
 
 

To illustrate the effectiveness of the proposed ANN steady stability limit, the Java-Bali 
power system, shown in Figure 8 dan Figure 9, is considered. ln addition to training, validating 
and testing errors, another post-training analysis denoted as a regression analysis has been 
performed, relating SSSANN response to the actual values to investigate the performance of 
the trained SSSANN. For this purpose, linear regression between SSSANN outputs and exact 
values is used to determine the accuracy of SSSANN. ln table 6 , the outputs of SSSANN are 
compare with the exact values that, while its Vload(max) errors and SSSL errors are about 
0.00038 and 0.05 respectively which are indicating good performance of SSSANN. Figure 10 
and 11 show the estimated SSSL by SSSANN compared to the exact value of REI-Dimo 
method. 

After training and testing SSSANN, it is used in the working mode of the proposed 
algorithm as shown in Table 7. In this mode, for any given operating point of power system by 
parameter measurement of bus voltages, voltage magnitudes and phase angles are extracted 
as input data to estimate SSSL by SSSANN. 

As a case study, for an operating point with load center is 10640 MW and 4100.32 
MVAR, the value of SSSL in Eq. (1) is taken as -59.4459 and two scenarios are studied in which 
all load center are supposed to be changed with 250 MW and 98 MVAR. Tables 8-9 show the 
result of load center change from 10460 MW to 11460 MW and 4100.32 MVAR to 4492.32 
MVAR and load center voltage change from 0.948 (pu) to 0.934 (pu). The overall error in the 
output values for the given example is less than 0.5% which will be acceptable and the method 
has strong potential for steady-state stability assessment. 



          �          ISSN: 1693-6930 

TELKOMNIKA  Vol. 9, No. 3,  December 2011 :  411 – 422 

420

.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
4

-60

-50

-40

-30

-20

-10

0

P (MW)

S
S

S
L 

in
de

x

 

 

Actual

NN

 
 

Figure 10. Comparation P vs Stability Index between REI-Dimo and ANN 
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Figure 11. The Comparation P vs Stability Index between REI-Dimo and ANN 
 
   

Table 6. The Comparison of REI-Dimo and ANN Result 
No Output REI-Dimo ANN Method Error 

1. VLoad(max) 0.781 
 

0.7807 
 

  0.00038 
 

2. SSSL -1.2376 
 

-1.2265 
 

    0.00897 

   
   

Table 7. A few of Data Testing from REI-Dimo 
P Load 
Center 
(MW) 

Q Load 
Center 

(MVAR) 

V Load 
Center 

(pu) 

Θ Load 
Center 

(degree) 
D E SSSL Index 

10460 4100.32 0.948 -27.993 61.1773 120.6233 -59.4459 
10710 4198.32 0.945 -29.819 61.342 120.47 -59.128 
10960 4296.32 0.941 -31.656 61.521 120.31 -58.785 
11210 4394.32 0.938 -33.504 61.714 120.13 -58.415 
11460 4492.32 0.934 -35.365 61.924 119.94 -58.016 
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Table 8. The Comparison of Data Testing and Target for Index SSSL 
No. Data Data Testing Data Target Error 

1 -59.1794 -59.4459 0.0045 
2 -58.9366 -59.1280 0.0032 
3 -58.6467 -58.7850 0.0024 
4 -58.3024 -58.4150 0.0019 
5 -58.3482 -58.0160 0.0057 

 
Table 9. The Comparison of Data Testing and Target for  Voltage Load 

No. Data Data Testing Data Target Error 

1 0.9457 0.9480 0.0024 
2 0.9428 0.9450 0.0023 
3 0.9398 0.9410 0.0013 
4 0.9366 0.9380 0.0015 
5 0.9364 0.9340 0.0025 

 
 
4.  Conclusion 
  The estimated results obtained from ANN showed that this technique is able to predict the 
steady-state stability limit with a reasonable degree of accuracy. Since ANNs had high 
computation rates, parallel distributed processing, fault tolerance, and adaptive capability, they 
were excellent alternatives for real-time application combined with REI-Dimo method. The result 
showed that REI-Dimo and ANN had overall error in the output values was less than 0.5% which 
would be acceptable and it meant that the SSSANN method had strong potential for steady-
state stability assessment. And by considering the training time and accuracy of the networks, it 
could be safely concluded that SSSANN was well-suited for online steady-state stability 
assessment of power systems. 
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