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Abstract 

This paper proposes the important issues in signal segmentation. The signal is disturbed by 
multiplicative noise where the number of segments is unknown. A Bayesian approach is proposed to 
estimate the parameter. The parameter includes the number of segments, the location of the segment, and 

the amplitude. The posterior distribution for the parameter does not have a simple equation so that the 
Bayes estimator is not easily determined. Reversib le Jump Markov chain Monte Carlo (MCMC) method is 
adopted to overcome the problem. The Reversib le Jump MCMC m ethod creates a Markov chain whose 
distribution is close to the posterior distribution. The performance of the algorithm is shown by simulation 
data. The result of this simulation shows that the algorithm works well. As an application, the algorithm is 
used to segment a Synthetic Aperture Radar (SAR) signal. The advantage of this method is that the 
number of segments, the position of the segment change, and the amplitude are estimated simultaneously. 
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1. Introduction 

Signal processing with additive noise has been investigated by several researches, for 

example Gustafsson et al. [1]. In many applications it is often found that signal is disturbed by 
multiplicative noise. Some researches have also discussed signal with multiplicative noise, such 
as Ullah et al. [2], Osoba and Kosko [3], Tian et al. [4], and Dong et al. [5]. Ullah et al. [2] used a 

variational approach to restore images with multiplicative noise. Osoba and Kosko [3] used the 
noisy Expectation-Maximization Algorithm for multiplicative noise injection. Tian et al. [4] used 
an adaptive fractional-order method to eliminate multiplicative noise. Dong et al. [5] proposed a 

method using a sparse analysis model for signal with multiplicative noise. In signal 
segmentation with multiplicative noise, generally the number of segments is unknown and must 
be estimated based on the data. This paper proposes the segmentation of signal with 

multiplicative noise when the number of segments is unknown. 
Let N be the many pixels contained in a line from the SAR image. The equation of the 

line can be expressed in the following form (Suparman et al. [6], Tourneret et al. [7]) : 

 
 

ttt
zry 

 
N,,2,1t    (1) 

 

with yt is the intensity of the measured SAR image, rt is SAR intensity, and zt is a multiplicative 
noise. In various SAR images, including agricultural images, the properties of rt and zt can be 
defined as follows (Oliver and Quegan [8]) : 

a. (

a

) 

SAR intensity rt is a step function. The equation can be written as :  

Kt
hr   1KK

ntn


  

with K = 0, 1, …, Kmax. Here, nK is the position of the height change of K
th

 step. (with 
agreement n0 = 0 and nK+1 = N) and hK is the height of K

th
 step, and K is the number of 

steps.  
b. (

b
Multiplicative noise z t is given in the form of a random variable that follows the gamma 
distribution with the mean L and variance 1/L, written z t ~ G(L, L), 
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Here, L is the number of measurements. The value of L is known. 
Based on the data yt (t = 1, 2, ..., N), then the value of the parameter 
 

K, n
(K) 

= (n1, n2, …, nK+1) and h
(K+1)

 = (h0, h1, …, hK).  
 

will be estimated. To estimate the value of these parameters, a hierarchical Bayesian approach 

is used. 
 
 

2.    Research Method 
2.1. Hiearchical Bayesian 

The Bayesian approach [9] is a method for estimating parameter values

)h,n,K( )K()K(  
which is based on the information from the data yn (expressed in the 

probability distribution )y(f  ) and information from the parameter  (expressed in the prior 

distribution )( ). Due to a multiplicative noise )L,L(G~zt , then the probability distribution 

for yt can be written as : 
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with ab)b,a(  ,  

b

1an n
y)b,a,y( , and symbol “” means "proportional to". 

 To use the Bayesian approach, the prior distribution for the parameter  should be 

determined. Prior distribution for parameter  is taken the same as in Suparman et al. [6]. 

Suppose Kmax is the maximum number of steps. The K is assumed to follow a Binomial 
distribution with parameter . The prior distribution for K can be written as 

 
   KKK
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K = 0, 1, …, Kmax.  (3) 

    

For the value of K given, n
(K)

 is assumed to follow the following distribution :  
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and h
(K)

 follows the inverse gamma distribution with parameters   dan  . Prior distribution for 

h
(K

 can be written as 
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 The problem that arises is the presence of hyperparameter ),,(  in the above 

prior distributions. To simplify the problem, in Suparman et al. [6] value   is known. In this 

paper, as in Tourneret et al. [7] hyperparameter   is seen as a random variable with a given 

distribution, here   follows a uniform distribution at interval (0,1) and   follows Jeffrey 

distribution. The value   is taken relatively small. 

Suppose that )y,(  is a posterior distribution for  . By using Bayes's theorem, the 

posterior distribution )y,( 
 

can be expressed as the multiplication of the probability 

distribution for yi and prior distribution for ),(   :  

 
     yfy,    

 
  (6) 
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The estimation of the parameter   will be based on the posterior distribution. Because 

the shape of the posterior distribution )y(
 

is very complex, it is difficult to estimate 

parameter value  . To overcome this problem, the Reversible Jump MCMC method is adopted. 

 

2.2. Reversible Jump MCMC Method 
Suppose that ),(M   is a Markov chain. The MCMC method is a sampling method. 

This sampling method makes a homogeneous Markov chain 
m21

M,,M,M   which satisfies 

periodic and irreducible properties such that 
m21

M,,M,M   can be considered as a random 

variable that follows the distribution  y,
 
[10]. The chain Markov 

m21
M,,M,M   can be 

used to estimate the parameter M. To realize it, Gibbs algorithm is adopted which consists of 

two stages: 

a. Simulate the distribution )y,(   

b. Simulate the distribution )y,(   

The Gibbs algorithm is used to simulate the distribution )y,(  . Hybrid algorithm is 

used to simulate the distribution )y,(  . This hybrid algorithm combines the Reversible 

Jump MCMC algorithm [11] to simulate parameter )y,n,K( )K(   and algoritma Gibbs to 

simulate parameter )y,h( )K(  . Reversible Jump MCMC algorithm is an extension of the 

Metropolis-Hastings algorithm. 
 

2.2.1.Distribution Simulation )y,(   

Suppose that )y,( 
 
is a conditional distribution of parameter   given  and y. The 

distribution )y,(  can be expressed as 
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This distribution is the multiplication of distribution )1KK,1K(B
max

  and 

)h/1,1)1K((G
i

K

0i  . The Gibbs algorithm is used to simulate it. 

 

2.2.2. Distribution Simulation )y,(   

Suppose that )y,(  is a conditional distribution of   given )y,( . This conditional 

distribution can be expressed as 
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where )b,a(L  

and ).b,a,y(L)b,a,y,L,(   

The conditional distribution )y,(   is integrated against )K(h , it will be obtained 
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On the other hand, we have 
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 The distribution )y,( 
 

as the multiplication of the distribution )y,n,K( )K( 
 

and 

distribution )y,,n,Kh( )K()K(  , that is : 

 
 )y,(  = )y,n,K( )K(  )y,,n,Kh( )K()K( 

 
 

 

To simulate the distribution )y,(  , a Gibb algorithm is used. This Gibb algorithm consists of 

two stages : 

a. Stage 1 : Simulate the distribution )y,,n,Kh( )K()K(   

b. Stage 2 : Simulate the distribution )y,n,K( )K(   

To simulate the distribution )y,,n,Kh( )K()K(  , the Gibbs algorithm is used. On the other 

hand, distribution )y,n,K( )K(   is not explicitly so that the MCMC Reversible Jump algorithm 

is used to simulate it. 
 

 
3. Results and Analysis 

As an application, this method is applied to segment simulation multiplicative and real 

multiplicative signals. As in [12], a simulation study was undertaken to confirm the performance 
of the Reversible Jump MCMC algorithm whether it works well or not. The Case studies are 
given to provide examples of application of research to solve problems in everyday life.To 

segment the multiplicative signals of simulation and real multiplicative signals, the Reversible 
Jump MCMC algorithm is implemented as much as 25 thousand iterations with a 5 thousand 
burn-in period. 

 
3.1. Multiplicative Signal Simulation 

Figure 1 is a simulated multiplicative signal created according to the Equation (1) with  

N = 250 and L = 5. The value K = 3, vector value n
(3)

 = (75, 125, 200) and vector value  
h

(4)
 = (1,7,3,5). 

 

 

 
 

Figure 1. Multiplicative Signal Simulation 

 



TELKOMNIKA  ISSN: 1693-6930  

 

Bayesian Segmentation in Signal with Multiplicative Noise Using Reversible ... (Suparman) 

677 

Based on the simulation multiplicative signal in Figure 1, the parameter is estimated. 

The number of segments K, vector n
(K)

 and vector h
(K)

 are estimated by using the Reversible 
Jump MCMC algorithm. Estimator of K, n

(K)
 and h

(K)
 are 

 

,3K̂  ),196,125,75(n )K̂(   and )1.5,1.3,3.7,9.0(h )K̂( 
 

 
The histogram for K is given in Figure 2.  

 

 
 

Figure 2. Histogram for K 

 
 
The signal segmentation generated by the algorithm is presented in Figure 3. 

 
 

 
 

Figure 3. Result of Multiplicative Segmentation of Simulated Signal 
 
 

If the true parameter value of K, n(K), h(K) is compared against the estimated value of 
parameter K, n

(K)
, h

(K)
 obtained by algorithm, it appears that the algorithm can work well. 

 

3.2. Real Multiplicative Signal 
Now, algorithm is used to segment a line on the real image. The real image used is 480 

x 640 as shown in Figure 4. The image taken using the Nokia 3220 mobile phone is a natural 

scene around the Imogiri Tomb, Yogyakarta Indonesia. 
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Figure 4. Images of the Natural Scene around the Imogiri Tomb, Yogyakarta 
Indonesia 

 

 
The 198

th
 column of the real image is presented in Figure 5. The 198

th
 line will be called a real 

signal. 

 
 

 
 

Figure 5. The 198
th

 Column of the Real Image 
 
 

The Reversible Jump MCMC algorithm is implemented in this real signal. An estimation for the 
value K, n

(K)
 dan h

(K)
 is given as follows :  

 

,3K̂  )394,213,145(n )K̂(  and ).139,107,217,151(h )K̂( 
 

 
The histogram for K is given in Figure 6. Because the mode of the histogram is 3, the estimator 
of the number of segments is 4. 
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Figure 6. Histogram for K 
 
 

The results of its segment are presented in Figure 7. 
 
 

 
 

Figure 7. Results of Real Multiplicative Signal Segmentation 
 

 
4. Conclusion 

The above description was a theoretical study of Reversible Jump MCMC algorithm and 

their applications for segmenting signal models with multiplicative noise. From the simulation 
results showed that Reversible Jump MCMC algorithm can segment the signal well.  

As an algorithm implementation, real signal was drawn from columns in a natural scene 

around the Imogiri Tomb, Yogyakarta Indonesia. If the Reversible Jump MCMC algorithm is 
implemented on each row or column of the image it will generate segmentation of the image.  
The advantage of this method is that the number of segments, the position of the segment 

change, and the amplitude are estimated simultaneously. The development of a Reversible 
Jump MCMC algorithm to segment images directly will be an interesting research topic.  
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