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Abstract 
 This paper presents a performance evaluation of nonlinear filtering with Interacting Multiple 

Model (IMM) algorithm for implementation on Indonesian coastal radar target tracking system. On this 
radar, target motion is modeled using Cartesian coordinate but target position measurements are provided 
in polar coordinate (range and azimuth). For this implementation, we investigated two types of nonlinear 
filtering, Converted Measurement Kalman Filter (CMKF) and Unscented Kalman Filter (UKF). IMM 
algorithm is used to anticipate target motion uncertainty. Many simulations on radar target tracking are 
developed under assumption that noise characteristic is known. In this paper, the performance of IMM-
CMKF and IMM-UKF is evaluated for condition that radar doesn’t know noise characteristic and there is 
mismatch on noise modeling. Results from simulation show that IMM-CMKF has better performance than 
IMM-UKF when tracking maneuvering trajectory. Results also show that IMM-CMKF is more robust than 
IMM-UKF when there is mismatch on noise modeling. 
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1. Introduction 

Primary objective of radar target tracking is to estimate state trajectories of a moving 
target accurately by using noisy measurement. There are many algorithms for radar target 
tracking. Kalman filter is the most popular method in modern target tracking systems because of 
its simplicity and computational efficiency [1].  

One of the issues in the design of target tracking system is the choice of the target 
motion model [2]. On the simplest approximation, the model is assumed as the true dynamic 
target and a single filter runs based on it. This approach has several obvious flaws because the 
estimation does not take into account a possible mismatch between the real target dynamic and 
the filter model [3]. To solve this problem, H.A.P Bloom introduced a safe adaptation or soft 
switching method that known as Interacting Multiple Model (IMM) [4]. IMM use a bank of filter to 
estimate state variables of dynamic system. Each filter used different model to characterize a 
specific motion of a target, which makes it possible to describe a whole motion. By using more 
than one model, the IMM algorithm is more capable to track targets with motion uncertainty [3]. 

In tracking application, target motion is usually best modeled using Cartesian 
coordinates [5]. When observation is also in Cartesian coordinate, system can be modeled 
using linear model. In this condition, IMM with Kalman filter can be used to track the target. 
Unfortunately, on coastal radar system, the target position measurements are commonly 
provided in polar coordinate, in terms of range and azimuth with respect to the radar location. 
The differences between tracking coordinate and measurement coordinate make nonlinearity of 
the system [6]. This matter makes Kalman filter can’t be used without modification because 
Kalman filter only work on linear system [8]. To solve this problem, there are some alternatives. 
The simplest one is by converting the measurements to a Cartesian frame, and then Kalman 
filter is used as filtering algorithm. This method known as Converted Measurement Kalman 
Filter (CMKF) [5]. Another solution is by using nonlinear filtering based on Kalman Filter. The 
benchmark of nonlinear filtering based on Kalman filter is Extended Kalman Filter (EKF) [9]. In 
EKF, the nonlinear system and measurement models are simply linearized aournd the state 
currently estimated. It is well known that due to the errors introduced by the linearization, the 
EKF is a sub-optimal and biased estimator, and the calculating of the Jacobian matrix is always 
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a very difficult and error-prone process [10]. On 1995, Simon J. Julier and Jeffrey K. Uhlmann 
proposed another algorithm that known as Unscented Kalman Filter (UKF). In their paper they 
said that UKF is more accurate and less difficult to implement than EKF as benchmark on 
nonlinear filtering [7]. 

In this paper, we present the performance evaluation of IMM method using two 
nonlinear filtering algorithms based on Kalman filter; those are IMM-CMKF and IMM-UKF, for 
implementation on coastal radar target tracking system. Evaluation is done to find out the 
performance of these algorithms in condition when radar doesn’t know the real target dynamic 
and real noise characteristic. Execution time is also used as evaluation parameter to know the 
comparison of computational efficiency of the algorithms. Result from this evaluation can be 
used for implementation on Indonesian coastal radar target tracking system.  
 
 
2. Model and IMM Algorithm 
2.1. Basic Model 

 The tracking of the single target is based on the choice of a model to describe the 
dynamic of a target. The simplest target motion model is described in the Cartesian coordinate 
system by linear discrete-time difference equation with additive noise as [5]  

 
ܺ ൌ ିଵܺܣ   ିଵ                                              (1)ݍ
 

where A is the state transition matrix (based on model of target dynamic), ܺ is state vector on 
time index k. The state vector (ܺ) consists of position and velocity or acceleration of the moving 
target on Cartesian coordinate, i.e, ܺ =[ݔ	ݕ	ݒ௫	ݒ௬	ܽ௫	ܽ௬]T. ݍ is process noise that is assumed to 
be white and zero mean Gaussian with covariance Q.  

The target is tracked by ground based radar and provides measurement of range (r) 
and azimuth (θ). The measurement model is given as [5] 

 
ܼ ൌ ݄ሺܺሻ   	                                  (2)ݓ
 

where ݇ is time index, ܼ is measurement, and ݓ is measurement noise. For this case, when 
tracking is done on Cartesian coordinate but measurement on polar coordinate, measurement 
model can be given as [5] 
 

ܼ ൌ ቂ
ݎ
ߠ
ቃ ൌ ቈ ඥݔ

ଶ  ݕ
ଶ

ଵି݊ܽݐ ݕ ⁄ݔ
  ቂ

,ݓ
ఏ,ݓ

ቃ                   (3) 

 
where k is time index,  ݎ is range of the target, ߠ is azimuth of the target, ݔ and ݕ are target 
position on Cartesian coordinate, and ݓ and  ݓఏ are measurement noise on polar coordinate, 
that is assumed to be white and zero mean Gaussian with covariance R. 
 

 ܴ ൌ ݀݅ܽ݃ሺߪଶ, ఏߪ
ଶሻ                   (4) 

 
where ߪ	is range measurement standard deviation and ߪఏis azimuth measurement standard 
deviation. 
 
 
2.2. Interacting Multiple Model 

Interacting Multiple Model (IMM) algorithm is a solution for target dynamic uncertainty or 
to handle a possible mismatch between real target dynamic and filter model. The basic idea of 
IMM is assume a set of models as possible candidates of the real dynamic target, run a bank of 
elemental filters, each based on a unique model in the set, and generate the overall estimates 
by a process based on the results of these elemental filters. On this paper, we used two filters 
with unique model on each filter; one model used constant velocity (CV) and the other used 
constant acceleration (CA) model.  

IMM method consists of four major steps: interaction or mixing, filtering, update model 
probability, and combination. The equations for each step are as follows [8]: 
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Interaction 
The mixing probabilities ߤ

| for each model are calculated as 
 
ܿ̅ ൌ ∑ ିଵߤ


ୀଵ      (5) 

 

ߤ
| ൌ

ଵ

ೕ̅
ିଵߤ

   (6) 

 

Where ߤିଵ
  is the probability of model Mi and ܿ̅ is nomalization factor. Mixed inputs (means and 

covariances) of each filter are calculated as 
 

ܺିଵ
 ൌ ∑ ߤ

|ܺିଵ


ୀଵ   (7) 
 

ܲିଵ
 ൌ ∑ ߤ

| ൈ ቄ ܲିଵ
  ൣܺିଵ

 െ ܺିଵ
 ൧ൣܺିଵ

 െ ܺିଵ
 ൧

்
ቅ

ୀଵ   (8) 

 
Filtering 

As described before on the introduction, for implementation on coastal radar when 
tracking on Cartesian coordinate and measurement on polar coordinate, filter that used on this 
IMM method is nonlinear filtering. Two filtering method has been evaluated, those are CMKF 
and UKF. These methods will be described latter.  
 
Update Model Probability 

In addition to mean and covariance, we compute the likelihood of the measurement for 
each filter as 

 
Λ
 ൌ ܰሺv

 ; 0, S
 ሻ  (9) 

 
and probabilites of each model at time step k are calculated as 
 

ܿ ൌ ∑ Λ


ୀଵ ܿ̅  (10) 
 

ߤ
 ൌ

ଵ


Λ
 ܿ̅                   (11) 

 
where c is normalizing factor. 
 
Combination 

Combination step is to compute state mean and covariance final, and computed with 
these equations 

 
 ܺ ൌ ∑ ߤ

 ܺ


ୀଵ  (12) 
 

 ܲ ൌ ∑ ߤ
 ൈ ቄ ܲ

  ൣܺ
 െ ܺ൧ൣܺ

 െ ܺ൧
்
ቅ

ୀଵ   (13) 

 
 
3. Filtering Algorithms 

The explanation below is about two filtering algorithms that have been evaluated on this 
research. 
 
 
3.1. Converted Measurement Kalman Filter 

Converted Measurement Kalman Filter is an alternative approach for tracking in 
Cartesian coordinate using polar measurements. Polar coordinate measurement is transformed 
to Cartesian coordinate systems, then conventional Kalman filter is applied.  Kalman filter 
consists of two main steps, these are time update and measurement update.  
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Time update [8]:  
 State matrix prediction 

 
ܺ|ିଵ ൌ ܣ ܺିଵ|ିଵ  (14) 
 

 Covariance matrix prediction 
 

ܲ|ିଵ ൌ ܣ ܲିଵ|ିଵ்ܣ   ିଵ  (15)ݍ
 

Measurement update [8]: 
 Innovation (residual) covariance  

 
ܵ ൌ ܪ ܲ|ିଵ்ܪ    (16)ݓ
 

 Kalman gain update 
 
ܭ ൌ ܲ|ିଵ்ܵܪ

ିଵ  (17) 
 

 State estimation update using last measurement ܼ 
 
ܺ| ൌ ܺ|ିଵ  ൫ܼܭ െ ܪ ܺ|ିଵ൯ (18) 
 

 Error covariance update  
 
ܲ| ൌ ሺܫ െ ሻܪܭ ܲ|ିଵ     (19) 

 
With the converted measurement Kalman filter, polar coordinate measurement first converted to 
Cartesian coordinate measurement using these equation. 
 

ݔ
 ൌ ݎ cos       (20)ߠ

 
ݕ
 ൌ ݎ sin    (21)ߠ

 
Next, the measurement error matrix, R, needed to be adjusted since data was measured as 
range and azimuth [9].  
 

ܴ ൌ ݓሼሺܧ
ሻሺݓ


ሻ்ሽ                (22) 

 

ൌ ቈ
௫ଶሺ݇ሻߪ ௫௬ଶߪ ሺ݇ሻ

௫௬ଶߪ ሺ݇ሻ ௬ଶሺ݇ሻߪ
  (23) 

 
When 
 

௫ଶሺ݇ሻߪ ൌ ఏߪଶሺ݇ሻݎ
ଶሺ݇ሻ݊݅ݏଶሺߠሻ       (24)	ሻߠଶሺݏଶሺ݇ሻܿߪ

 
௬ଶሺ݇ሻߪ ൌ ఏߪଶሺ݇ሻݎ

ଶሺ݇ሻܿݏଶሺߠሻ   ሻ     (25)ߠଶሺ݊݅ݏଶሺ݇ሻߪ
 

௫௬ଶߪ ሺ݇ሻ ൌ ቀߪଶሺ݇ሻ െ	ݎଶሺ݇ሻߪఏ
ଶሺ݇ሻቁ  ሻ   (26)ߠሺݏܿ	ሻߠሺ݊݅ݏ	

 
 
3.2. Unscented Kalman Filter 

  Unscented Kalman Filter uses unscented transform to give Gaussian approximation to 
the filtering solutions of nonlinear filtering problem.  In unscented transform, we deterministically 
chose a fixed number of sigma points, which capture the desired moments (mean and 
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covariance) of distribution of a variable exactly. After that we propagate the sigma points 
through the nonlinear function and estimate the moments of transformed variable from them.  

For application on coastal radar, when tracking done on Cartesian coordinate while 
measurement on polar coordinate, time update used equation on Kalman filter time update. 
Unscented transform is used on measurement update because nonlinearity is on measurement 
equation. 

These equations below are measurement update on Unscented Kalman Filter algorithm [8]. 
 Generation of sigma points 

 
χ୩|୩ିଵ
 ൌ X୩|୩ିଵ  (27) 

 
χ୩|୩ିଵ
୧ ൌ 	X  ൫ඥሺn  λሻP୩|୩ିଵ൯୧, i ൌ 1,… , n     (28) 

 
χ୩|୩ିଵ
୧ ൌ 	X െ ൫ඥሺn  λሻP୩|୩ିଵ൯୧ି୬, i ൌ n  						1, … ,2n         (29) 

 
 Map sigma points to measurement space 

 
yො୩|୩ିଵ
୧ ൌ hሺχ୩|୩ିଵ

୧ ሻ , i=0,...,2n         (30)     

 
 Predict Z୩|୩ିଵ, covariance S୩, and cross covariance of state dan measurement P୩

୶. 
 

Z୩|୩ିଵ ൌ ∑ w୫
୧ଶ୬

୧ୀ yො୩|୩ିଵ
୧   (31)  

 

	S୩ ൌ ∑ wୡ
୧ଶ୬

୧ୀ ൣyො୩|୩ିଵ
୧ െ Z୩|୩ିଵ൧ൣyො୩|୩ିଵ

୧ െ Z୩|୩ିଵ൧

 R୩|୩ିଵ    (32)       

                                       
P୩
୶ ൌ ∑ wୡ

୧ଶ୬
୧ୀ ሾχ୩|୩ିଵ

୧ െ X୩|୩ିଵሿሾyො୩|୩ିଵ
୧ െ Z୩|୩ିଵሿ  (33) 

 
 Filter gain  

 
K୩ ൌ P୩

୶  S୩
ିଵ  (34) 

 
 Update  state dan covariance estimation 

 
X୩|୩ ൌ X୩|୩ିଵ  K୩ሾZ୩ିZ୩|୩ିଵሿ  (35)      
 

ܲ| ൌ ܲ|ିଵ െ ܭܵܭ
்  (36) 

 
 
4. Simulation Scenario 

Simulation was done to evaluate the performance of two nonlinear filtering methods 
using IMM algorithms for condition that radar doesn’t know the dynamic of target. Two types of 
trajectory were simulated; those are nonmaneuvering and maneuvering trajectories. 
Nonmaneuvering trajectory is generated using CV (constant velocity) model. Maneuvering 
trajectory is generated using CV model, combined with CA (constant acceleration) model as 
maneuver dynamic.  Sampling interval on simulation is 1 second and a total of 200 seconds. 
The target is tracked by a ground based radar with position on center coordinate (0,0). 
Measurement data are generated by adding Gaussian noise to real trajectory. The values of 
parameters that are considered in the simulation is presented on Table 1. 
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Table 1. Trajectory generation parameters 
        Parameter             Value 
 Initial position [x  y] [-1000  1000] (m) 
 Initial velocity [vx  vy] [4  3] (m/s) 
 Psd of process noise (q_cv = q_ca) 0.1 
 Measurement noise: 

 Range standard deviation  (σr) 
 Azimuth standard deviation  (σθ) 

 
10 (m) 
1 o 

 Time index of maneuvering  1-50 and 71-120 (s) 

 

 
For initial estimation we used one point approach when the first measurement data 

used as first estimation of ݔ and ݕ.  First estimation of velocity ݒ௫ and ݒ௬ on one point approach 
is assigned as zero [9].  The performance is measured by the percentage fit error (PFE) of 
position estimation [11]:  

 

PFE୶ ൌ 100 ∗
୬୭୰୫ሺ௫ೖ

ሺሻି௫ೖ
ೝೠሻ

୬୭୰୫		௫ೖ
ሺሻ   (37) 

 

PFE୷ ൌ 100 ∗
୬୭୰୫ቀ௬ೖ

ሺሻି௬ೖ
ೝೠቁ

୬୭୰୫		௬ೖ
ሺሻ   (38) 

 

ܧܨܲ ൌ ටPFE୶
ଶ  PFE୷

ଶ  (39) 

 
where ݔ

ሺሻ and ݕ
ሺሻ are target position estimation and ݔ

௧௨and  ݕ
௧௨ are real target position. 

Every parameter is simulated using 50 runs monte carlo simulation. For evaluation, in this paper 
we say that performance is good enough for implementation if PFE is under 3%. 

Simulations have done with three scenarios, 
 1st scenario 

First scenario is simulation when there is no mismatch on noise modeling. Its mean that 
noise parameter that is used by filter is the same as real noise that was used on data 
trajectory and data measurement generation as can be seen on Table 1. 

 2nd scenario 
Second scenario is simulation on condition when there is mismatch on noise modeling. Its 
mean that noise parameter that is used by filter is different with real noise that is used on 
measurement trajectory generation. Table 2 shows some parameters for filtering step on 2nd 
scenario. 

 
 

Table 2. Filtering Parameters, 2nd Scenario 
 Parameters            Value 

 Psd of process noise (q_cv = q_ca) 0.01 
 Measurement noise: 

 Range standard deviation  (σr) 
 Azimuth standard deviation  (σθ) 

 
10 m 
40 

 
Probabilities of switching model on IMM ቂ0.95 0.05

0.05 0.95
ቃ 

 Prior probability of IMM [0.9  0.1] 

 
 
 3rd scenario 

Third scenario is simulation when process noise and measurement noise is varied. The third 
scenario is done to evaluate the robustness of the algorithms when there is mismatch on 
noise modeling. we have simulated the filtering algorithms with variation of process noise 
power spectral density (q) and measurement noise standard deviation. On this paper, only 
standard deviation of azimuth (θ) was varied. Table 3 shows the filtering parameters on 3rd 
scenario. 
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Table 3. Filtering Parameters, 3rd scenario 
                 Parameters Value 

 Psd of process noise (q_cv = q_ca) 0.01 until  1 with interval 0.01 
 Measurement noise: 

 Range standard deviation  (σr) 
 Azimuth standard deviation  (σθ) 

 
10 (m) 
0.1 o until  4 o with interval 0.1o 

 
 
5. Simulation Results 

Some figures and tables below are simulation result for two trajectories using three 
simulation scenarios. Each of simulation has done using monte carlo simulation with 50 runs.  
 
 
5.1. Non maneuvering trajectory 

Figure 1 shows performance of CMKF method with IMM algorithm (IMM-CMKF) 
compare with UKF method with IMM algorithm (IMM-UKF) on nonmaneuvering trajectory. 
Figure 1.a is trajectory estimation for first scenario when there is no mismatch on noise 
modeling, and Figure 1.b is trajectory estimation for second scenario, when there is mismatch 
on noise modeling.  

 
 

 
 

               a. 1st scenario                                  b. 2nd scenario 
 

Figure 1. Estimation of non maneuvering trajectory 
  
 
 From Figure 1, the result of simulation using 1st and 2nd scenario nearly the same. A 
target can be tracked by IMM-CMKF and IMM-UKF with good performance. Estimation of non 
maneuvering trajectory almost coincides with real trajectory. To see the differences more 
clearly, we count the PFE as can be seen on Table 4. 
 
 

Table 4. PFE of nonmaneuvering trajectory estimation 
 

 Algorithm 
PFE (%) 

 1st scenario 2nd scenario 
 IMM-CMKF 1.4541 1.7877 
 IMM-UKF 1.3574 1.7413 

 
 

From Table 4 we can see that performance of IMM-CMKF and IMM-UKF on 1st scenario 
is better then performance on 2nd scenario. On all of the scenarios, IMM-CMKF has better 
performance than IMM-UKF. Results also show that on this type of trajectory, performances of 
all scenarios are good with PFE fewer than 3%.  

To see robustness of these filtering methods, simulation using 3rd scenario has done. 
We have simulated variation of noise mismatch on noise modeling. Parameters that used on 
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this simulation can be seen on Table 3. Simulation result for nonmaneuvering trajectory can be 
seen on Figure 2. Figure 2.a is simulation result if process noise is varried, and Figure 2.b is 
simulation if measurement noise is varried.   

 

 

 
 

             a. Process noise variation           b. Measurement noise variation (σθ) 

 

Figure 2. PFE of position estimation on nonmaneuvering trajectory 

 

 
As we can see from Figure 2, no significant differences between all two kinds of the 

filtering algorithms on nonmaneuvering trajectory. Figure 2 shows that on tracking 
nonmaneuvering target, mismatch on noise modeling is not a big problem because the two 
algorithms have good performance, with  PFE is under 3%.  
 
 
5.2. Maneuvering trajectory 

Position estimation using CMKF and UKF with IMM algorithm to track maneuvering 
target can be seen on Figure 3. Figure 3.a is estimation of maneuvering trajectory on 1st 
scenario and Figure 3.b is estimation of maneuvering trajectory on 2nd scenario.  

 

 

 
 

             a. 1st scenario                             b. 2nd scenario 
 

Figure 3. Position estimation on maneuvering trajectory 

 

Target 
maneuvering Target 

maneuvering 
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We can see from Figure 3 that error estimation is large when target is maneuvering. 
Figure 3.b show that mismatch on noise modelling make errors on trajectory estimation 
increase, especially when target is maneuvering. IMM-CMKF filtering makes larger error than 
IMM-UKF on this condition.  The result can see clearer by counting the PFE as can be seen on 
Table 5. 

 
 

Table 5. PFE of maneuvering trajectory estimation 
 

 Algorithm 
PFE (%) 

 1st scenario 2nd scenario 
 IMM-CMKF 1.6475 2.9946 
 IMM-UKF 1.6312 3.0287 

 
 

Table 5 shows that PFE of IMM-CMKF and IMM-UKF almost the same for 1st scenario. 
On 2nd scenario, IMM-CMKF is better than IMM-UKF when target is maneuvering.  

From simulation using 3rd scenario, we have got result as can be seen on Figure 4. 
Figure 4 shows, when there is a maneuver on target dynamic, mismatch on noise modeling 
(process noise or measurement noise) make significant influence to trajectory estimation 
accuracy, especially when filtering using IMM-UKF. From 50 runs monte carlo simulation for 
each parameter, there are some simulations that the trajectory estimation is divergen. On this 
situation, radar can’t track the object. This divergence on some simulations makes mean of PFE 
from 50 runs Monte Carlo simulation using IMM-UKF is more than 3%.  On this condition, 
estimation using IMM-CMKF has better performance. Estimation error (denoted as percentage 
fit error or PFE) from filtering using IMM-CMKF is lower than estimation error using IMM-UKF. 
From this simulation we can say that IMM-CMKF is more robust than UKF  algorithm for 
condition when there is mismatch on noise modeling. 

  

 

 
 

a. Process noise variation                              b. Measurement noise (σθ) variation  

 
Figure 4. PFE of position estimation on maneuvering trajectory 

             
 

5.3 Execution Time 
  Information about execution time is useful for making trade-offs between estimation 
accuracy and computational time when selecting a suitable algorithm for a specific application 
[12]. We count the execution time to evaluate computational complexity of these algorithms. The 
averages of execution times for the two approaches from simulations are given in Table 6. 
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Table 6. Execution time  
 

  Algorithm Execution time (second) 
 
 IMM-CMKF 0.077  
 IMM-UKF 0.285  

 
 

Table 6 shows that execution time of IMM-CMKF is smaller than IMM-UKF. The 
execution time for IMM-UKF is about 3.7 times more than IMM-CMKF. This result shows that 
IMM-CMKF method is simpler than IMM-UKF. IMM-CMKF is simple on this application because 
the main process is only converting measurement from polar to Cartesian coordinate, and then 
the system runs Kalman filter based on it. There is no linearization step on this filtering process. 
On IMM-UKF, there is unscented transformation process that takes more time compare with 
converting the measurement from polar to Cartesian coordinate.  
 
 
6. Conclusion 

Interacting Multiple Model using Converted Measurement Kalman Filter (MM-CMKF) 
and Interacting Multiple Model using Unscented Kalman Filter (IMM-UKF) have been 
considered for implementation on coastal radar, especially for Indonesian coastal radar target 
tracking system. All two types algorithm, when no mismatch on noise modeling, are able to track 
the target with good degree of accuracy. IMM-UKF algorithm is a little better than IMM-CMKF 
algorithm when no mismatch on noise modeling, but with longer execution time. When there is 
mismatch on noise modeling, IMM-CMKF algorithm has better performance than IMM-UKF 
algorithm.  IMM-UKF still has good performance when no maneuver on target dynamic but the 
performance is bad when there is maneuver on target dynamic. IMM-CMKF is more robust than 
IMM-UKF on this condition. Computational complexity of IMM-CMKF is also less than IMM-UKF. 
From this resulls, it can be concluded that IMM-CMKF is better than IMM-UKF for 
implementation on coastal radar target tracking system, and IMM-CMKF is suitable to be 
implemented on Indonesian coastal radar target tracking system.  
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