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Abstrak 
Tulisan ini menjabarkan penerapan arsitektur jaringan syaraf modular untuk kegunaan identifikasi 

orang menggunakan citra iris mata sebagai ukuran biometrik.  Database iris mata manusia diperoleh dari 
Institut Automasi Akademi Ilmu Pengetahuan Cina (CASIA). Hasil simulasi ditunjukkan dengan 
menggunakan pendekatan jaringan syaraf modular, optimasinya menggunakan algorima genetik dan 
penggabungannya dengan metode lain seperti metode jaringan gerbang, integrasi fuzi tipe-1 dan 
penggabungan fuzi teroptimasi dengan algoritma genetik. Hasil simulasi menunjukkan tingkat indetifikasi 
yang bagus saat mengggunakan integrator fuzi dan struktur terbaik dimiliki oleh algoritma genetik. 
 
Kata kunci: algoritma genetik, biometrik iris, fuzi, jaringan syaraf tiruan, optimasi 

 
 

Abstract 
This paper describes the application of modular neural network architectures for person 

recognition using the human iris image as a biometric measure. The iris database was obtained from the 
Institute of Automation of the Academy of Sciences China (CASIA). We show simulation results with the 
modular neural network approach, its optimization using genetic algorithms, and the integration with 
different methods, such as: the gating network method, type-1 fuzzy integration and optimized fuzzy 
integration using genetic algorithms. Simulation results show a good identification rate using fuzzy 
integrators and the best structure found by the genetic algorithm. 
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1.  Introduction 

The recognition of persons using biometrics is a problem that has been considered by 
many researchers [1-4]. Biometrics plays an important role in public safety and to accurately 
identify each individual to distinguish them from each other [5]. This problem has been studied 
more thoroughly in recent years thanks to advances in computational power that have allowed 
the implementation of more complex algorithms using different techniques [6], [7]. Biometric 
identification systems are those based on physical characteristics or morphology of human 
beings to perform some kind of recognition [8], [9]. 

Traditional systems used in accessing control are based on magnetic cards, card 
systems with bar code systems capture key or a combination. These systems involve the use of 
a card that must be carried always and which is not exempt from being lost, damaged, be stolen 
or forged, thus security is more vulnerable to failure. For this reason, systems that are more 
robust and with higher reliability are needed to avoid the problems mentioned above. Pattern 
recognition systems based on neural networks have been given recently considerable interest 
[10-15].  

There are different techniques and methods that can be used for feature extraction, and 
today it is easier to recognize a person by the existing biometric methods. For example, a 
person can be recognized for its iris, fingerprints, and face, recognizable by his voice, signature, 
hand geometry, ear, vein structure, retina, facial thermography and others that exist [16-19]. At 
this moment, biometric methods have been implemented using different devices to create 
patterns and generate the code that identifies the persons [20-23]. 

Biometrics refers to an identification and authentication technology that is transforming 
a biological, morphological, or behavioral characteristic into a numerical value. Its aim is to 
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attest to the uniqueness of a person from far irrepressible immutable part of the body [5]. 
Another definition mentions that biometrics is based on the premise that each individual is 
unique and has distinctive physical traits or behaviors, which can be used to identify or validate 
[24]. 

Within the large field of biometrics where one can highlight, fingerprint recognition, 
retinal and voice, among others, we can highlight the iris recognition as a biometric tool for 
person recognition in a unique and highly accurate fashion [1], [2].  

This paper presents research work on integrating results of a modular neural network 
using the CASIA database, and obtaining the best identification when using type-1 fuzzy logic 
integrators developed by the genetic algorithms. Optimization of the neural networks was 
performed with genetic algorithms (GAs), which are essentially a method that creates a 
population of individuals to find the most appropriate one by simulating evolution [25-28]. This 
process is based on natural selection by using operators such as the crossover and mutation to 
create new individuals. The modular neural network architectures and the chromosomes 
produced by the genetic algorithms with the best parameters found for the network were tested 
for their performance and operation, and the results of the different integrators, such as the 
gating network and type-1 fuzzy logic integrators, were compared for this problem.  
 
 
2.  Research Method 

Neural networks are composed of many elements (Artificial Neurons), grouped into 
layers that are highly interconnected (with the synapses), which are trained to react (or give 
values) in a way you want to input stimuli. These systems emulate in some way, the human 
brain. Neural networks are required to learn to behave (Learning) and someone should be 
responsible for the teaching or training (Training), based on prior knowledge of the environment 
problem [7], [5]. 

A neural network is a system of parallel processors connected together as a directed 
graph. Schematically, each processing element (neuron) of the network is represented as a 
node. These connections provide a hierarchical structure trying to emulate the physiology of the 
brain for processing new models to solve specific problems in the real world. What is important 
in developing neural networks is their useful behavior by learning to recognize and apply 
relationships between objects and patterns of objects specific to the real world. In this respect 
neural networks are tools that can be used to solve difficult problems [29], [8], [30]. Artificial 
neural networks are inspired by the architecture of the biological nervous system, which 
consists of a large number of relatively simple neurons that work in parallel to facilitate rapid 
decision-making [24]. 

Fuzzy logic was proposed for the first time in the mid-sixties at the University of 
California Berkeley by the brilliant engineer Lotfi A. Zadeh [31], [32]. Who proposed what it’s 
called the principle of incompatibility:  "As the complexity of system increases, our ability to give 
precise instructions and build on their behavior decreases to a threshold beyond which the 
accuracy and meaning are mutually exclusive characteristics." Then introduced the concept of a 
fuzzy set, under which lies the idea that the elements on which to build human thinking are not 
numbers but linguistic labels. Fuzzy logic can represent the common knowledge as a kind of 
language that is mostly qualitative and not necessarily a quantity in a mathematical language by 
means of fuzzy set theory and the characteristic functions associated with them [32]. 

Fuzzy logic has gained a great reputation for the variety of applications, ranging from 
control of complex industrial processes to the design of artificial devices for automatic 
deduction, through the construction of household electronic appliances and entertainment as 
well as diagnostic systems [33-38].  

Fuzzy logic is an area of soft computing, which allows one computer system to the 
reason for the uncertainty [31]. This corresponds, in the real world, to many situations where it is 
difficult to decide unequivocally whether or not something belongs to a specific class [39-42]. 
Fuzzy logic is a useful tool for modeling complex systems [43-48]. However, it is often difficult 
for human experts to define the fuzzy sets and fuzzy rules used by these systems [36]. This is 
particularly true for type-2 fuzzy systems that use uncertain membership functions and that have 
recently been applied to many real-world problems [49-57]. 

Genetic algorithms were introduced by the first time by a professor of the University of 
Michigan named John Holland [31], [5]. A genetic algorithm, it is a mathematical highly parallel 
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algorithm that transforms a set of mathematical individual objects with regard to the time using 
operations based on evolution. The Darwinian laws of reproduct
be used, and after having appeared of natural form a series of genetic operations between 
(among) individuals that stand out for the sexual recombination [
one generation to another a serie
operators are selection, crossover
being a chain of characters (letters or numbers) of fixed length that adjust to the model of the 
chains of chromosomes, and one associates to them with a certain mathematical function that 
reflects the fitness. 

There exists a diversity of
voting method, fuzzy integration, and gating networks [
section (for illustrative purposes) on the gating network method.

Integration by Gating Network
tasks learned through the modules
Gating Network are: best overall performance
classifiers, need not be the same type

There are several implementations of the
important is by nature of using 
neuron to evaluate the performance
gating network is based on a
networks of experts [5]. In Figure

 

Figure 1. Representation of the gating network integration method

2.1. Iris Image Preprocessing
Due to the unique, stable 

identification based on the iris
The idea of using iris patterns
ophthalmologist Frank Burch.
Safir, American ophthalmologists, patented the 
system, led to contact with John
he developed the necessary algorithms
[7]. These algorithms, patented by 
of all iris recognition systems 

Various studies carried out for
which uses neural networks and
identifier is perhaps one of the most
appearance of the iris. This identifier

The database of human
China [58]. This institution has several
the database, which consists of
people the total database. The
8 images were used for training
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algorithm that transforms a set of mathematical individual objects with regard to the time using 
operations based on evolution. The Darwinian laws of reproduction and survival of the fittest can 
be used, and after having appeared of natural form a series of genetic operations between 
(among) individuals that stand out for the sexual recombination [25], [26]. For the

a series of genetic operators are applied. The most commonly used
selection, crossover and mutation [15]. Each of the individuals is in the habit of 

being a chain of characters (letters or numbers) of fixed length that adjust to the model of the 
chains of chromosomes, and one associates to them with a certain mathematical function that 

here exists a diversity of methods of integration or aggregation of
voting method, fuzzy integration, and gating networks [25]. However, we concentrate in this 
section (for illustrative purposes) on the gating network method. 

Gating Network: in this case decomposition of a learning task
the modules of cooperation is performed. The benefits

best overall performance, reuse of existing patterns heterogeneity
same type; different features can be used for different

implementations of the modular neural network
of using the gating network. In some cases, this corresponds
performance of the other modules of experts. Other embodiment of the 

on a neural network trained with a different data set
Figure 1 a scheme of the gating network integrator is presented

 

Representation of the gating network integration method
 
 

Iris Image Preprocessing 
, stable and accessible characteristics of iris patterns
iris pattern has become one of the most reliable

patterns to identify people was first proposed 
Burch. However, it was not until 1987, when Leonard

ophthalmologists, patented the concept of Burch. His interest
John G. Daugman, then a professor at the University of

the necessary algorithms for biometric recognition through the pattern
, patented by Daugman in 1994 and partly published in [

 that exist today. 
carried out for iris recognition, as the work of M. Ahmad

neural networks and the cosine transform for iris-based identification.
of the most foreign to people, as among us do not

This identifier is one of the most accurate among biometric systems
human iris is from the Automation Institute of the Academy

has several databases of iris, and we used in this work
which consists of 14 images per person (7 of each eye), we used 

The image dimensions are 320x280 pixels, the format is 
for training and 6 for testing. 
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algorithm that transforms a set of mathematical individual objects with regard to the time using 
ion and survival of the fittest can 

be used, and after having appeared of natural form a series of genetic operations between 
For the passage from 
most commonly used 

Each of the individuals is in the habit of 
being a chain of characters (letters or numbers) of fixed length that adjust to the model of the 
chains of chromosomes, and one associates to them with a certain mathematical function that 

of information, like 
]. However, we concentrate in this 

learning task into sub 
benefits of working with 

heterogeneity expert 
different classifiers. 

neural network, but the most 
corresponds to a single 

Other embodiment of the 
data set for training the 

network integrator is presented. 

Representation of the gating network integration method 

patterns, personal 
most reliable techniques [1-4]. 

 in 1936 by the 
Leonard Flom and Aran 

His interest in developing the 
at the University of Harvard so 

he pattern of the iris 
published in [14], are the basis 

Ahmad Sarhan [7], 
based identification. The iris as an 

us do not recognize the 
biometric systems [7]. 

of the Academy Sciences of 
and we used in this work version 3 of 

), we used only the first 77 
, the format is JPEG, and 
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In the pre-processing stage, 
noise removal, in order to extract
filters on it, this in order to help
images (see Figure 2). 
 
 

Figure 2. General

Figure 3 shows the resulting image,
maximum and minimum. As shown 
outer parts of the circle, leaving them 
of the iris, and the other way 
the image for the network. 

 
 

Figure 3. Result of applying different techniques of

Once we have all the
the modular neural network, we compressed the 
transform 2D rate with “symmlet”

We proceed to vector
another array of vectors with 
(67-99). 
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processing stage, different methods were applied for feature extraction and
in order to extract the region of interest (iris) of the captured image

to help the modular neural network, to obtain a high recognition

General diagram of pre-processing for the CASIA database
 

  
the resulting image, after making a cut to the image,
. As shown in the image this can be done in 2 ways:

, leaving them in black and giving us a better appreciation of the
 is to let the image with their property and leaving more

applying different techniques of vision to the center of the
 
 

we have all the database with pre-processing and before putting
, we compressed the images to 320 x 280 (25x25) using a 

rate with “symmlet” of order 8, with 2 levels of decomposition (see Figure
vectorize each image within a matrix containing the
with the following 33 (34-66), and the last 33 persons in
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feature extraction and 
of the captured image, apply some 

a high recognition of the 

 

CASIA database 

to the image, according to the 
2 ways: one is filling the 

better appreciation of the center 
leaving more features in 

 

 

the center of the iris 

before putting each image into 
25x25) using a wavelet 

decomposition (see Figure 4). 
containing the first 33 persons, 

33 persons in the same way 
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Figure 

In the first 33 persons we have
samples of the right eye and 7 samples
training and 6 images to validate
then you have two arrays of vectors,
validation matrix, with (8 * 33)
shown in the validation matrix
the modules of the modular neural network

 
2.2. Statement of the Problem and Proposed Method

We studied several methods
networks for person recognition
methods for response integration of
the winner takes all. Figure 5 shows

 

Figure 5. General

The modular neural network
multilayer perceptron, which 
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 4. Application of the wavelet transform in 2D 
 
 

persons we have 14 samples, which means that there are 7
and 7 samples of the left eye, of which we took 8 sample 

to validate that the images will be recognized according to
of vectors, the first containing the training images 
33), 264 vectors in the matrix of training and (6 *

validation matrix. The same was done for persons (34-66) and (67
the modules of the modular neural network. 

Statement of the Problem and Proposed Method 
methods of fuzzy integration that can be applied 

recognition using biometric iris images as well to develop
for response integration of the modular neural network, such as the gating

5 shows the general architecture that was used in this work

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

General architecture of the modular neural network
 
 

neural network consists of 3 modules, each module 
 is an artificial neural network (ANN) consisting 
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there are 7 pictures or 
sample images for 

according to the 8 above, 
 and the other the 

(6 * 33), 198 images 
66) and (67-99), for each of 

 to modular neural 
develop alternative 

network, such as the gating network and 
this work. 

neural network 

, each module consists of a 
of multiple layers, 
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and this allows you to solve problems
matrix to represent neural networks
binary vector) to a single output value

The first module is specialized
33 for the second module and
network, and training is conducted
parameters of the (MNN) are shown on Table 1

In this case each module
for each of the 3 modules, a study
are appropriate for the ANN
training used. This will depend on
learn faster or slower and therefore
adapt to the learning method 
second and third, module, unlike
each module are powered by
uniform. The main advantage
which can be helpful because
on the outcome of the integration, which takes
results. The network consists of
step of the network, and once 
connections of the layers of 
network with the gating network
(the result of the integration of
 
 

Table 1
M. Training 

Trainscg: Scaled conjugate 
Traingda: Gradient descent with momentum and 
adaptive learing 
Traingdx: Gradient descent with adaptive learning 
factor 

 

Table 2. Results of the

 

Table 2 shows results obtained from
modules, the best methods that obtained a
trainscg, which achieved a recognition
with a time of 3minutes and 30 seconds
8000, 5000, and 8000 epochs
trainings were performed without
results were not satisfactory, because there are 
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solve problems that are not linearly separable. The perceptron
networks and it is a tertiary discriminator that traces

output value f (x) (a single binary value) through the matrix
specialized for the first 33 people who were vectorized

and the last 33 for the third module, forming 
conducted according to the sequence of modules 1st

are shown on Table 1. 
module is fed with the same information, to find a suitable

a study in an empirical way was done to know how many
ANN to have a learning that is acceptable according

will depend on the number of neurons used for such training
therefore have a good or bad learning, for this reason is 

along with the epochs. To know which structure is right
unlike ensemble neural networks, modular neural networks

by vectors of different data, leading to architectures that
advantage of this method is that each module produces 

because the training is not leaved to one expert module. This 
integration, which takes into account that each module

consists of three modules, the weight distribution is random
, and once this is completed the network will adjust the weights

 the neural network. The results of each module
network integrator and arbitrary parameters, without

the integration of the 3 modules), are shown in Table 2. 

1. Parameters of the modular neural network 
Error Epochs #Neurons

Traingda: Gradient descent with momentum and 

Traingdx: Gradient descent with adaptive learning 

0.0001 5000 y 8000 Undefined

the modular neural network without preprocessing in the

results obtained from various trainings performed in
that obtained a high recognition percentage were traingda

a recognition above 90%, with 90.18, 90.91 and 90.40
3minutes and 30 seconds, 3 minutes 15 seconds and 3 minutes 

epochs respectively, and a target error of 0.00001 for the
without pre-processing and with an uncompressed

, because there are parameters that have very large
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The perceptron uses a 
traces its input x (a 

the matrix. 
vectorized, the following 

a modular neural 
st, 2nd and 3rd. The 

suitable architecture 
how many neurons 

according to the type of 
training, which may 

reason is that neurons 
is right for the first, 
networks (MNN) in 

architectures that are not 
 a different result, 

. This has an effect 
module has different 

random for the first 
weights in each of the 

module of the modular 
without pre-processing, 

#Neurons Learning Rate 
Undefined 0.01 

in the image 

 

performed in each of the 
traingda, traingdx, 

90.40 % respectively 
3 minutes 26 seconds, with 

for the ANN. These 
uncompressed image. These 

very large values, such 
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as the neurons. For this reason
rate of recognition, and thus obtain the appropriate 
hidden layers, and once we get
many times the genetic algorithm
module of the modular neural network with gating network integration and with pre
(the result of the integration of the 3 modules) are shown in
 
 

Table 3. Results of the

  
 

Table 3 shows the results
compression, which can be seen
same parameters of the training
traingda, traingdx, trainscg with
50 seconds, 3 minutes 36 seconds and
epochs respectively, and a goal error of

 
 

Figure 6. General 
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neurons. For this reason it was chosen to use a genetic algorithm to find
obtain the appropriate type of training, the number of neurons and

we get these parameters take the mean and standard deviation
the genetic algorithm can find a high percentage of recognition. The results of each 

ural network with gating network integration and with pre
(the result of the integration of the 3 modules) are shown in Table 3. 

of the Modular Neural Network in the image with preprocessing

shows the results of the trainings conducted, pre-image 
can be seen that the rates increased by almost 4% of recognition with

of the training carried out previously, the methods with high percentage
with 95.89, 94.97 and 93.33% respectively with a time of

36 seconds and 4 minutes 22 seconds, with 8000
and a goal error of the ANN of 0.00001. 

General architecture of optimized modular neural network
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find an appropriate 
number of neurons and 

and standard deviation of how 
of recognition. The results of each 

ural network with gating network integration and with pre-processing 

preprocessing 

 

image processing and 
of recognition with the 
high percentage were 

with a time of 4minutes 
with 8000, 5000 and 5000 

 
modular neural network 
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2.3. Optimization of the Architecture
To optimize the modular neural network a genetic algorithm was used to find the 

optimal architecture and an appropriate recognition rate. The general scheme of the MNN 
indicating the three modules and

Once it was verified that the GA found a good optimization result, it was decided to run 
the GA 10 times to find the standard deviation and average of the results for the neurons, 
methods, and the number of layers. The summary of the training behavior for the GA was 
obtained with the results of the 10 experiments and this forms the basis of possible comparisons 
with other optimization approaches. The parameters of the chromosome tha
GA are shown in Table 4. 

The real chromosome
250 neurons, which varied over a range
training methods are shown on Table 5.
 
 

Table 4
Modul 

M1 
M2 
M3 

Trainscg 
Traingdm 
Traingdx 
Traingda 

 
3.  Results and Analysis 

The results of executing 10
are shown in the following Tables: 
Table 8. The results for the optimization of 
shown in Table 6. 
 
 

Table 6. Results of

The results for the optimization of 
shown in Table 7. The results for the
algorithm are shown in Table 
performed with the genetic algorithm
the average in each generation
better error (B /E /GA) found by the
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2.3. Optimization of the Architecture 
To optimize the modular neural network a genetic algorithm was used to find the 

optimal architecture and an appropriate recognition rate. The general scheme of the MNN 
ndicating the three modules and the integrator is shown in Figure 6. 

Once it was verified that the GA found a good optimization result, it was decided to run 
the GA 10 times to find the standard deviation and average of the results for the neurons, 
methods, and the number of layers. The summary of the training behavior for the GA was 
obtained with the results of the 10 experiments and this forms the basis of possible comparisons 
with other optimization approaches. The parameters of the chromosome that were used

chromosome is composed of 3 layers {1, 2, 3}, and each layer is
over a range from 0 to 250 values and 4 training methods

are shown on Table 5. 

Table 4. Parameters of the chromosome for the GA 
Layer 1 

(neurons) 
……. Layer 3 

(neurons) 
Method 

0….250 ……. 0….250 1:4 
0….250 ……. 0….250 1:4 
0….250 ……. 0….250 1:4 

 
 

Table 5. Training for the GA 
Selected Methods 

Scaled conjugate 
Gradient descent with momentum 
Gradient descent with momentum and adaptive learning factor
Gradient descent with adaptive learning factor 

 

executing 10 times the genetic algorithm (GA) for each of the modules 
are shown in the following Tables: Module 1 in Table 6, Module 2 in Table 7

optimization of Module 1 for 10 runs of the genetic algorithm are 

of the genetic algorithm run by generations for module 

optimization of Module 2 for 10 runs of the genetic algorithm are 
The results for the optimization of Module 3 for 10 runs of the

algorithm are shown in Table 8. In Tables 6, 7 and 8 we show the results
genetic algorithm, with 20 generations, 10 individuals and 

each generation run and the standard deviation of each generation
found by the genetic algorithm (GA), better training method
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To optimize the modular neural network a genetic algorithm was used to find the 
optimal architecture and an appropriate recognition rate. The general scheme of the MNN 

Once it was verified that the GA found a good optimization result, it was decided to run 
the GA 10 times to find the standard deviation and average of the results for the neurons, 
methods, and the number of layers. The summary of the training behavior for the GA was 
obtained with the results of the 10 experiments and this forms the basis of possible comparisons 

t were used in the 

layer is composed of 
training methods. The 

Gradient descent with momentum and adaptive learning factor 

GA) for each of the modules 
7 and Module 3 in 

genetic algorithm are 

for module 1 

 

genetic algorithm are 
runs of the genetic 

the results of the trainings 
 10 runs, showing 

each generation and run, 
training method and 
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execution time of the 10 runs.
architectures of the different training
 
 

Table 7. Results of

Table 8. Results

As comparison of results, we can mention that in [47] a 93.33% recognition rate was 
achieved, while in this work we were able to obtain recognition rates of 99.76%. This fact shows 
that the proposed approach can outperform similar neural approaches in the literature for iris 
recognition. 
 
 
4.  Conclusion 

The best result for person recognition
obtained through a set of modular
with 116 and 117 neurons in
112 to 114 neurons in the third
genetic algorithm run is as follows: for the first module,
average error of 0.0152, for the 2nd
the third module of 98.59% with an 
integration architecture the average
membership functions, the validation of this
fuzzy integrator with Gaussian membership
average a recognition of 99.52
MFs the average recognition was 
average recognition was 99.76
satisfactory, it was decided 
functions of this response integrator of the modular neural network.
chosen to optimize this integration system was a
algorithm a better recognition rate was achieved
integration system were obtained in the modular neural network.
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10 runs. Once the 10 runs of the GA were achieved, we obtained 
training (150 per run).  

of the genetic algorithm run by generations for module

Results of genetic algorithm run by generations for module 3

As comparison of results, we can mention that in [47] a 93.33% recognition rate was 
while in this work we were able to obtain recognition rates of 99.76%. This fact shows 

that the proposed approach can outperform similar neural approaches in the literature for iris 

for person recognition using the iris biometric measurement
modular neural network architectures with 3 layers in each

neurons in the first hidden layer, 116 and 113 in the 2nd 
the third hidden layer. The average percentage in each generation
is as follows: for the first module, a recognition rate of 

the 2nd module of 97.98%, with an average error of
% with an average error of 0.0141. For validation of the 

architecture the average was 98.48%, for the fuzzy integrator with 
, the validation of this integrator was on average 99.37

Gaussian membership functions, the validation of this integrator
99.52%. In the optimized cases, for the validation with

MFs the average recognition was 99.64%, and for the validation with Gaussian
99.76%. Since initially the results with fuzzy integration were not 

, it was decided to apply an evolutionary approach to optimize
ponse integrator of the modular neural network. The evolutionary method 

integration system was a genetic algorithm. After applying the
recognition rate was achieved, because better results with

were obtained in the modular neural network. 
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, we obtained the best 

module 2 

 

module 3 

 

As comparison of results, we can mention that in [47] a 93.33% recognition rate was 
while in this work we were able to obtain recognition rates of 99.76%. This fact shows 

that the proposed approach can outperform similar neural approaches in the literature for iris 

biometric measurement was 
layers in each module, 

 hidden layer, and 
each generation of the 

a recognition rate of 98.48%, with an 
average error of 0.0202, and for 

or validation of the gating network 
with Triangular type 

99.37%, and for the 
this integrator was on 

for the validation with triangular type 
Gaussian type MFs the 

integration were not 
optimize the membership 
The evolutionary method 

After applying the genetic 
results with the optimized 
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