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Abstrak 
Dalam konteks teori jaringan kompleks, jaringan dunia-kecil adalah terkenal untuk fenomena 

dunia-kecil, yaitu enam derajat pemisahan. Berbeda dengan aplikasi yang luas dalam jaringan sosial, 
analisis jaringan fisik dan teknologi, dapat dikombinasikan dengan algoritma optimasi matematika baru-
baru ini. Pada makalah ini, keterbatasan dari topologi jaringan dunia-kecil untuk aplikasi pada algoritma 
optimasi multi-obyek adalah diusulkan. Algoritma optimasi ini berdasarkan topologi jaringan dunia-kecil 
yang paling cocok untuk memecahkan masalah optimasi obyek-tunggal, tetapi memiliki keterbatasan dan 
efektivitas yang tidak terlalu jelas untuk menangani banyak masalah optimasi multi-obyek. Makalah ini 
menitikberatkan algoritma evolusi non diferensial penyortiran tak dominan (NSDE) berdasarkan topologi 
dunia-kecil untuk memecahkan delapan masalah optimasi multi-obyek (MOPS), sebagai contohya. 
Dibandingkan dengan algoritma NSDE awal, keterbatasan efisiensi topologi dunia-kecil di NSDE divalidasi 
dengan hasil simulasi Matlab untuk delapan uji fungsi MOEA dari awal tahun 2007. Hasilnya membuktikan 
bahwa topologi dunia-kecil memiliki keterbatasan dan tidak terlalu jelas untuk meningkatkan efektivitas 
algoritma optimasi multi-obyek, tidak sebagus untuk meningkatkan algoritma optimasi obyek tunggal. 
 
Kata kunci: jaringan dunia-kecil,  jaringan kompleks, MOP, NSDE, teori jaringan 

 
 

Abstract 
 In the context of complex network theory, the small-world network is famous for the small-world 

phenomenon, namely six degrees of separation. Different from its wide application in the social, physical 
and technological network analysis, it can be combined with the mathematical optimization algorithm 
recently. In this paper, the limitation of small-world network topology for application in multi-objective 
optimization algorithm is proposed. The optimization algorithm based on small-world network topology may 
be suitable for solving a few single-objective optimization problems, but has limitation and unobvious 
effectiveness to deal with many multi-objective optimization problems. This paper takes non-dominated 
sorting differential evolution algorithm (NSDE) based on small-world topology to solve eight multi-objective 
optimization problems (MOPs) for example. Compared with early NSDE algorithm, the limitation of the 
efficiency of small-world topology in NSDE is validated with the Matlab simulation results of eight MOEA 
test functions of early 2007. The results prove that small-world topology has limitation and unobvious 
effectiveness to improve a multi-objective optimization algorithm, not as good as to improve a single-
objective optimization algorithm. 

  
Keywords: complex network, MOP, network theory, NSDE, small-world network 
  
 
1.  Introduction 

The optimization problem can be classified into two categories: the single-objective 
optimization problem as in [1-2] and the multi-objective optimization problem [3]. Many real-
world problems with several conflicting objectives to be optimized at the same time are called 
the multi-objective optimization problem (MOP). The multi-objective evolutionary algorithms 
(MOEAs) have been recognized to be the efficient algorithms to solve the MOP problems. 
Researchers improve the MOEAs aiming to find the most approximate Pareto-optimal front 
close to the true Pareto-optimal front. Some previous MOEAs include the vector-evaluated 
genetic algorithm (VEGA) by Schaffer [4], the multi-objective genetic algorithm (MOGA) by 
Fonseca and Fleming [5], the non-dominated sorting genetic algorithm (NSGA) by Srinivas and 
Deb [6], the niched Pareto genetic algorithm (NPGA) by Horn and Nafpliotis [7], the strength 
Pareto evolutionary algorithm (SPEA) by Zitzler et al. [8] and SPEA2 [9], the Pareto archived 
evolution strategy (PAES) [10] and PESA [11] by Knowles and Corne, the Pareto envelope 
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based selection algorithm (PESA-II) [12], NSGA-II by Deb et al. [13], non-dominated sorting 
differential evolution (NSDE) by Iorio and Li [14] and non-dominated neighbor Immune 
Algorithm (NNIA) by Maoguo Gong [15]. Among them, the last three algorithms attract many 
researchers’ attention. 

The idea of NSDE combines the advantages of Differential Evolution (DE) with 
mechanisms of non-dominated sorting and crowding distance derived from the NSGA-II, 
enabling NSDE a fast convergence toward the true Pareto front [16]. The state-of-the-art DE 
techniques are summarized in [16]. These DE techniques can be classified into two categories 
according to different population topology, namely random topology and small-world topology. 
Despite the good performance and simple design derived from DE, most of the existing works in 
the literature implement DE with panmictic population [17]. The population structure has a major 
influence on the performance of DE algorithms. Small-world topologies were adopted for 
evolutionary algorithm firstly by Giacobini et al. in 2005 [18] in order to show that spatially 
structured populations have distinctive advantages over panmictic ones. The classical DE for 
single-objective optimization with small-world network theory [19] was introduced in [17]. Its 
effectiveness was tested on the single objective optimization problems [20]-[21] with 30 or 50 
decision variables. Even though the performances of all DE algorithms are task-dependent, DE 
based on the small-world topology seems to be one of the best and fastest algorithms for a 
large amount of single-objective optimization cases. However, recently, no paper demonstrates 
whether the small-world topology combined with some MOEAs to solve MOP problem has high 
efficiency. The multi-objective optimization problem is different from the single-objective 
optimization problem. The former aims to find the Pareto-optimal front formed by many non-
dominated solutions, while the latter aims to find only one best solution. If the limitation of a 
technique is not introduced clearly, misuse of this technique may not get an expected effect. 
Due to the discussion of combining the complex network theory with previous mathematical 
optimization algorithm is still seldom seen, this paper takes NSDE based on small-world 
topology to solve eight MOP problems for example. The limitation of small-world network 
topology for application in NSDE is proposed. The optimization algorithm based on small-world 
network topology may be suitable for solving a few single-objective optimization problems, but 
has limitation and unobvious effectiveness to deal with many multi-objective optimization 
problems. In this paper, NSDE algorithm with the small-world topology is called NSDE-SW. To 
test the effectiveness for solving the MOP problems, this paper compares NSDE-SW with 
classical NSDE on eight known MOEA test functions of early 2007 [22], including three low-
dimensional problems, one DTLZ problem and four ZDT problems.  

The paper is organized as follows. In section 2, the design of NSDE-SW is described. In 
section 3, the case studies with the matlab simulation results are taken for example. Section 4 
concludes this paper. 
 
 
2. Research Method 
2.1. Theory Background of NSDE-SW  

The related background and the model of multi-objective optimization problem can be 
found in [14], [22]. In the context of network theory, a small-world network is a type of 
mathematical graph in which most nodes are not neighbors of one another, but most nodes can 
be reached from each other by a small number of steps. According to two independent 
structural features, namely the clustering coefficient and average node-to-node distance (or 
called average shortest path length), the graphs can be classified into three categories, namely 
regular graph, random graph and small-world graph. In 1998, Watts and Strogatz [19] proposed 
a small-world Watts-Strogztz (WS) model which interpolates between regular and random 
graphs. The small-world network can be highly clustered, like regular lattices, yet have small 
characteristic path lengths, like random graphs [19]. The system with small-world network 
characteristics also has a greater depth and wider breadth. This feature makes the population 
individuals from a single-objective optimization algorithm combined with small-world topology 
fast converge to the objective value. Thus, models of systems with small-world topology show 
enhanced computational power and fast spread ability. In this paper, NSDE-SW algorithm is 
based on the small-world WS topology. The regular network with 10 nodes and each node 
having 4 neighbors, changing into the small-world graph and random graph are shown in  
Figure 1.  
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Figure 1. Small-world network construction 

 
 
In Figure 1, the small-world network construction has relation with the rewiring 

probability p. The rewiring probability p of WS model is between regularity (p=0) and random (p 
=1). When p is changed from zero to one, the graph is changed from a regular graph to a 
random graph. When 0<p<1, the graph is a small-world graph. We’ll explain how the network is 
related with the population topology in an evolution algorithm as follows. 

In a network, each node can be seen as an individual. All nodes form a population. The 
amount of nodes is the size of the population. This situation is similar to a population for an 
evolution algorithm. In the initialization step, we need set a population size. In the mutation and 
crossover process, the population size is kept unchanged. A pair or two pairs of parent 
individuals are selected to produce one or two pairs of offspring individuals. How to select the 
parent individuals is a main problem that may influence the performance of an algorithm.   

The common way is to randomly select two parents. The parent individuals are 
represented by the nodes in the network. According to the complex network theory, the random 
selection of parents is similar to forming a random graph for the population. In the random graph 
in Figure 1, we can see that node 1 is linked to three nodes, i.e. nodes 2, 5 and 8. If using this 
random graph in an evolution algorithm, there are three pairs of parents selected to produce the 
offspring individuals, namely parent 1 and parent 2, parent 1 and parent 5, parent 1 and parent 
8. If taking the small-world graph as example, we can see that node 1 is linked to nodes 3, 5 
and 10 in Figure 1. If using this small-world graph in an evolution algorithm, there are three pairs 
of parents, namely parent 1 and parent 3, parent 1 and parent 5, parent 1 and parent 10. 

In Figure1, all three graphs have 20 edges, namely 20 different connections. Due to 
different ways of connection, the graphs having the same amount of nodes and same amount of 
edges have different network structural features. If used in the mutation and crossover 
operators instead of randomly selecting parents, the small-world population topology makes the 
population have two advantages, namely high clustering coefficient and small characteristic 
path lengths. 

 
2.2. Description of NSDE with Small-world 

The description of NSDE can be found in [14]. This approach is a simple modification of 
the NSGA-II. The only difference between NSDE and NSGA-II is in the method for generating 
new offspring individuals [23]. In the NSDE, DE operator replaces of a real-coded crossover and 
mutation operator as in NSGA-II. According to the different DE operators, a survey of the 
previous DE techniques and their variants which have been extended to multi-objective 
optimization is presented in [23], including “DE/rand/1/bin”, “DE/rand/1/exp”, “DE/best/1/bin”, 
“DE/best/1/exp”, et al.. These DE operators and the population structure are two different 
aspects. For example, a basic variant of “DE/rand/m/bin” is given as [23]: 
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Where, x=[x1, x2, …, xn]
T is the vector of decision variables, jr is a random integer number 

generated using a uniform distribution between [0, n], and n is the number of variables of the 
problem. Uj(0, 1) is a real number randomly generated using a uniform distribution between [0, 
1]. m is the number of pairs of parents used to calculate the differences in the mutation operator. 
ui,j is the offspring, xr3,j is the donor solution randomly selected, xr1

m and xr2
m are the “mth” pair to 

calculate the mutation differential. There are two control parameters: the scale factor F and the 
crossover rate CR. 

The elements of vector x are individuals that can be seen as nodes in the network. We 
aim to find several appropriate connections for xr1

m and xr2
m to form the “mth” pair. Thus, each 

DE operator combined with random or small-world population structure has no conflict. In this 
section, we describe the rewiring process of small-world topology combined with NSDE.  

For the mating operator in the classical EAs, the population model that all selected 
parents can interact with one another is known as panmictic. All non-dominated solutions in 
each generation have a close relationship with neighboring non-dominated solutions after the 
non-dominated sorting, because the objective values of the neighbors are closer than those of 
the other solutions. We can deal with this close relationship as neighboring connection in the 
network. In the crossover and mutation operators, different selections of parent chromosomes to 
generate the offspring chromosomes have main influence on the effectiveness of algorithms. In 
order to fast converge to the approximate Pareto front when the population size is large, 
preserving more parent chromosomes with the best fitness seems to enable the algorithm a 
better performance than random selection. However, only selecting neighboring parent regularly, 
similar to a regular network topology, makes the algorithm relatively poor population diversity. 
The matching of the parent chromosomes based on the small-world topology is between the 
randomly selection and regular selection. In the WS model, the random rewiring procedure is 
started from a ring graph with n nodes and k edges. One node of each edge is located 
unchanged, while the other node is rewired at random with the probability p.  

The WS model with a suitable probability p is combined into NSDE algorithm to get fast 
exploration capability. We give its pseudo-code in Figure 2(a). The pseudo-code is the process 
of building the WS model. According to [19], there are two steps to build the WS model. Firstly, 
a regular graph with a ring of n vertices is built. In the graph, every node is connected to its k 
nearest neighbors with the same number (i.e. k/2) of neighbors on both sides by undirected 
edges. An n-by-n state matrix A=[A1, A2,…,An]

T is constructed to represent the regular graph. 
Each row or column in A represents a node. The element aij of the row vector Ai= [ai1, ai2,…,ain], 
i=1,…, n, represents the state of connection. The node i connected with the node j is expressed 
by aij=1, if not, aij=0. Thus, all the diagonal elements are zero because a node can’t be 
connected to its own. Secondly, as shown in the “randomly rewiring process” in Figure 2(a), we 
choose a node and reconnect its edge to another node at random around the entire ring with 
probability p. The duplicate edges are forbidden. Each node and each edge in the original 
regular graph need to be considered once in the rewiring process according to [19]. A vector B 
is formed to locate all off-diagonal zero elements in row vector Ai. The flow chart of NSDE-SW is 
given in Figure 2(b). In Figure 2(b), G is the total evolution generation. 
 
2.3. Performance Evaluation  

The criteria to evaluate the performance of a multi-objective optimization algorithm are 
different from those to evaluate the performance of a single-objective optimization algorithm [14]. 
Because a multi-objective optimization algorithm provides a set of solutions not only one best 
solution, the final solutions need to be assessed in terms of uniform coverage of the 
approximating Pareto-optimal front, convergence to the true front and robustness of the 
algorithm. We use the convergence metric introduced by Deb et al. in [24] and spacing metric 
introduced by Schott in [25].  
(1) Convergence metric 

The convergence metric is used frequently in previous literature and can assess the 
convergence and robustness of the algorithms. The box plots are adopted to display the 
convergence metric. The convergence metric value C for a population with the non-dominated 
set P is calculated as Equation (2). P is the approximating Pareto-optimal front. P* is the true 
Pareto-optimal front. |P| is the number of the approximating Pareto-optimal solutions. |P*| is the 
number of the true Pareto-optimal solutions. The true Pareto-optimal fronts of all test functions 
can be found at (www.cs.cinvestav.mx/~emoobook/).   
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(a) Small-world topology pseudo-code 

 
 

(b) Flow chart of the NSDE-SW  

 
Figure 2. Pseudo-code of small-world topology and flow chart of the NSDE-SW algorithm 
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Where, m is the number of objectives, and fk
max and fk

min are the maximum and the minimum 
values of the kth objective function in P*, respectively. fk

i(x) is the kth objective function value of 
vector of the ith decision variable. The mathematical explanation for the convergence metric is 
the average Euclid distance of the every solution in the approximating Pareto-optimal front 
relative to the closest solution in the true Pareto-optimal front. Generally, the metric C that is 
less than 0.01 represents good convergence.  
(2) Spacing metric 

The spacing metric is used for measuring how evenly the solutions in the approximation 
set are distributed in the objective space. This metric is given by [25]: 
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Where d̄  is the mean of all di, and n is the size of the approximating Pareto-optimal front. 
 
 
3. Case Studies 
3.1. Experiments and Parameter Settings 

To compare NSDE-SW with classical NSDE, experiments were conducted on three low-
dimensional problems, one DTLZ problem and four ZDT problems [22]. The algorithm program 
was written using Matlab platform utilizing an Dual Core 2.71GHz PC with 1.75GB memory. The 
true Pareto-fronts of the eight functions are shown in Figure 3.  
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Figure 3. The true Pareto-fronts of the eight functions 
 
 

Table 1. Eight MOP numeric unconstrained test functions 
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The eight MOP numeric unconstrained test functions are given in Tab. 1. Each 
experiment was run 30 times. The population size is 100 and evolution generation is 500. The 
crossover probability CR is 0.8. The scale factor F is 0.8. For NSDE-SW, the rewiring probability 
p of WS model is 0.05. Based on many times of tests on different DE strategies, we adopt the 
most suitable strategy for all the eight problems, namely “DE/rand/1/bin”, in NSDE and NSDE-
SW. 
 
3.2. Results and Analysis  

 The statistical results about the convergence metric values obtained by NSDE and 
NSDE-SW in solving eight test problems are shown in Figure 4. The computation time for these 
test problems is given in Tab. 2. The notched box plot represents the robustness of the 
uncertainty about the median for box-to-box comparison [15]. Symbol “+” denotes outliers. The 
upper and lower bound represent 25% quantile and 75% quantile, respectively. The middle of 
box plot is the median value, namely 50% quantile. The spacing metric SP using NSDE and 
NSDE-SW are shown in Figure 5. 

With a high precision strictly according to the metric values, we can conclude that: 
(1) In Figure 4, for the three low-dimensional problems (i.e. DEB, SCH, KUR) and five 

high-dimensional problems (i.e. ZDT1, ZDT2, ZDT3, ZDT4 and DTLZ4), NSDE-SW is capable 
of approximating the true Pareto-optimal fronts. 

(2) In Figure 4, for DEB, SCH, KUR, ZDT2, ZDT4 and DTLZ4 problems, NSDE-SW 
does better than NSDE in the aspect of the convergence metric. In the aspect of the mean value 
of the convergence metric, NSDE does better than NSDE-SW for ZDT1 and ZDT3 problems. 

(3) In Figure 5, the spacing metric shows that NSDE-SW can get a little more uniformly 
distributed solution front for DEB, KUR, ZDT2, ZDT3, ZDT4 and DTLZ4 than NSDE. But, for 
SCH and ZDT1, NSDE-SW is no better than NSDE. 

(4) Considering convergence metric and spacing metric, we can find that for DEB, KUR, 
ZDT2, ZDT4, and DTLZ4, NSDE-SW is better than NSDE. Other test functions, NSDE-SE is no 
better than NSDE.  

With a low level of precision, for example, assuming that gap of convergence metric 
less than 0.001 and the gap of spacing metric less than 0.1 is acceptable, we can see that for 
most following functions, NSDE-SW has similar performance as NSDE, namely small-world 
topology has an unobvious effect on improving the performance of NSDE. 

 
 

 
 

Figure 4. Box plots of convergence metric based on 30 independent runs using NSDE and 
NSDE-SW  
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Figure 5. Box plots of spacing metric based on 30 independent runs using NSDE and NSDE-
SW 

 
 
4.  Conclusion 

The small-world population topology can improve the performance of the single-
objective optimization algorithm, but, it has limitation to improve that of a multi-objective 
optimization algorithm. This paper combines the small-world population topology with NSDE to 
form a hybrid algorithm called NSDE-SW. Eight test multi-objective optimization problems are 
taken for examples. The values of convergence metric and spacing metric show the following 
conclusions. (1) If with a high precision, for most cases, small-world population topology can 
improve NSDE a little in the aspects of the convergence and spacing distribution. (2) If with a 
low precision, for example, assuming the gap of convergence metric less than 0.001 and the 
gap of spacing metric less than 0.1 is seen as no difference, small-world topology has an 
unobvious effect on improving the performance of NSDE. It shows that the small-world 
population topology designed for single-objective optimization problem has limitation for applied 
in a multi-objective optimization problem. 
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