
TELKOMNIKA, Vol.17, No.5, October 2019, pp.2208~2217
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i5.8222 ◼ 2208

Received January 10, 2019; Revised April 25, 2019; Accepted 13 May, 2019

Hybrid distributed application in banking transaction
using remote method invocation

Agus Cahyo Nugroho*1, Mychael Maoeretz Engel2

1Information System Department, Computer Science Faculty, Soegijapranata University
Pawiyatan Luhur IV/1 Bendan Dhuwur St., Semarang 50234, Indonesia

2Informatics Department, Information Technology Faculty, Ciputra University
UC Town, Citraland, Made, Sambikerep, Surabaya, East Java 60219, Indonesia

*Corresponding author, e-mail: agus.nugroho@unika.ac.id1, mychael.engel@ciputra.ac.id2

Abstract
 Today banks have many branches in big cities of the world. System usually used a central

database in a particular city. Increased of database server performance due to number of users accessing
this application should not degrade performance of application. To keep database server performance
optimally, application must distributed to the network. In distributed applications it takes a remote method
call, that is why we are going to used Remote Method Invocation to develop this system. Based on results
of analysis conducted, author can draw following conclusion of the application, which is once the client get
a reference from the remote object then method of remote object is called like calling method from local
object and methods that we have defined and implemented on remote object can we call or use both on
desktop and web applications so we do not need to work twice. This approach makes more effective and
efficient in application development, allows for better optimization, eliminates the need for processing of
type information at run time and makes a light weight communication protocol possible. We have built a
hybrid application, which supports both compile time and run time generation of marshallers in desktop
and web application.

Keywords: distributed application, hybrid application, remote method invocation

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

At this time various banks have had many branches in major cities of world. System
used usually has a central database in a particular city. Application used allows for open a new
savings account, handle deposits, withdrawals, transfers money between savings accounts at
same bank through desktop applications and website. Prospective customers from different
parts of world will access this application to submit their personal data as a condition for
creating a new account at bank. This personal data must meet various bank policies, such as
prospective customer must be over 18 years of age. According to Boyd et al. [1] the importance
of bank selection criteria in terms of the age of the head of the household. Customers who
already have account savings in bank can also transfer money between account savings at
same bank. The importance of technology and speed has also been confirmed by Coyle [2] who
observed “Future Bank” trade show in Minneapolis (USA) where 250 bank vendors participated.
Coyle reported that the competitive bank of the future is the one which can offer speedy,
technology based services (e.g. ATM, Internet) backed by an effective staff training.

Problem caused by increased database server performance due to large number of
users who accessing this application should not degrade performance of application. Ideal
solution of this scenario is application users access and sending information using client
application. Information submitted will be validated by a component on server component. After
that component on server checks whether data submitted has met bank policy, if fulfilled then
server components make a connection with database server and then transmit data.

To solve above problem, we should keep database server performance optimally,
the ideal solution is that application must be distributed to network. Therefore, we are going to
used three-tier application [3] because three-tier applications support deployment of
distributed-based applications [4] component. In distributed applications it takes a remote
method call, then we are going to used Remote Method Invocation [5] to develop this system.

mailto:agus.nugroho@unika.ac.id
mailto:mychael.engel@ciputra.ac.id

TELKOMNIKA ISSN: 1693-6930 ◼

Hybrid distributed application in banking transaction using remote (Agus Cahyo Nugroho)

2209

2. Research Method
This research is different from other research before because we are trying to create

two different applications which are desktop and web application that are using the same
methods or functions located in desktop application, so everytime we are going to changed
methods or functions we do not have to work twice. We only work once to changed methods or
functions in the desktop application after that both desktop and web application can used or
called that methods or functions. The web application is capable to call methods or functions in
desktop application through servlet. This make the development time more effective
and efficient.

Earlier research [6] stated that unlike previous approaches where only application
services can be invoked, Android RMI allows users to invoke system services as well as
application services between devices using remote parcel format. By reducing the number of
marshalling and unmarshalling steps, the time taken for remote method invocation is shortened
by 148% in 4 KBytes and by up to 432% in 100 KBytes compared to distributed intent where
additional marshalling and unmarshalling steps are needed.

Another earlier research [7] stated that present day's amount of computational
requirements has shifted the processing of data from the regular way to parallel way of
computation. Pipelined processors, array processors can be employed to construct design of
parallel hardware. These systems constructed can be further extended with the help of scalar
and super scalar systems. We provide an efficient way of implementing Winograd's variant of
Strassen's matrix multiplication on parallel systems by making use of RMI (Remote Method
Invocation) which provides us distributed object oriented programming, multithreading
programming. Multithreading approach helps a lot in concurrent, dynamic and
asynchronous programming.

2.1. Remote Method Invocation (RMI)

Remote Method Invocation is a specification that allows a Java Virtual Machine
(JVM) [8] to call methods of that object located on another Java Virtual Machine (JVM). Both
JVM's can run on a different computer or running as a separate process on same one
computer. RMI is implemented in middle-tier [9] of three-tier framework architecture, this
facilitates programmer to invoke distributed components over network. Sun introduced RMI as
an easy to complex alternative in server-socket programming [10]. In using RMI, programmer
does not need to master socket or multi-threading programming [11], as needed just
concentrate on developing business logic [12].

RMI distributed application has two components: RMI Server [13] and RMI Client [14].
RMI Server consists of objects whose methods will called remotely. The server created some
remote objects later create references from those objects in RMI Registry [15]. RMI Registry is
service that runs on RMI Server. Remote objects created by server then listed in this registry
according to unique name of the object. Client refers one or more remote objects from RMI
Registry to see name of object. Then client calls methods on remote object. Once client refers
to the remote object, methods on remote object called as calling method on local object. This
difference can not be identified whether method is called on remote object or called on local
object in client.

RMI architecture consist of three layer: Stub/Skeleton Layer [16], Remote Reference
Layer [17] and Transport Layer [18]. Stub/Skeleton Layer is waiting for remote method call by
client and forward it to the remote RMI Service on server. This layer consists of a Stub and a
Skeleton. To call methods on remote object, request on the client side starts with Stub. Stub is a
proxy on client side representing remote object. Stub is referenced as another local object by
program that runs on client and provide methods of remote objects. Stub communicates method
call on remote object via implementation of skeleton on server. So, Stub on client collects
information consisting of: identifier of remote object to be used, description of method we will
call and parameters that have been marshalled.

Skeleton is a server-side proxy that forwards communication with Stub, by reading
parameters at method call, then make a call to remote service object that is implemented,
receive return value, then write return value to Stub. So Skeleton on server does things below
every time there is a Remote Method Invocation: unmarshals parameters, search for called
object, calling desired method, catch and marshals return or exception value of calling and
submitting a packet consisting of returned value marshalled to Stub on client.

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2208-2217

2210

Remote Reference Layer interprets and manages references of client to remote object
on server. This layer is present both on client and server. RRL on client side receives a request
method from Stubs are sent as marshaled streams from data to RRL on server side.
Marshalling [19] is a process which are parameters passed by client converted to a format that
can be sent over network. RRL on server side unmarshals parameters sent to remote method
through Skeleton. Unmarshaling is a process which are marshaled parameters passed by RRL
on client side via RRL on server side changed to the format which is understood by Skeleton.
When returning value from Skeleton, data marshaled back and communicated to client via RRL
on server side.

Transport Layer is a link between RRL on server side and RRL on client side. Transport
Layer is responsible for setting up new connections and setting up an existing connection.
Transport Layer is also responsible for handling remote object in address space. Below are
steps that explain how client connected to server: when receiving request from RRL on client
side, Transport Layer create a socket connection to server via RRL on server side. Then,
Transport Layer skips connection that already connect to RRL on client side and add remote
reference to connection on connection table.

Based on the RMI specification, steps in developing distributed RMI application: defines
remote interface class, defines and implement various remote method in server class. Defines
and implement client class. Compile source files. Source files include those files contains
definition of remote interface, which server class defines the implementation of remote interface
and client class. Generating Stub and Skeleton. Create a security policy [20]. Run RMI Remote
Registry [21]. Run server. Run client.

In a three-tier architecture, presentation logic is on client-side, access database is
controlled by server-side, and business logic lies between two other layers. Business logic layer
is also known as application server or middle-tier of component-based three-tier architecture.
This type of architecture, too known as server-centric [22], because it allows application
components to path on middle-tier application server then implements business rule, so it
separated between presentation interface and database implementation. This component can
be developed using any programming language that allows component creation. These
components can be created centralized to facilitate the development, maintenance, and
deployment. Because middle-tier handles business logic, workload becomes balanced between
client, database server and server that handles business logic. This architecture leads to
efficient data access. Problem regarding limitations of connection to database is minimized
because database only view business logic layer and not whole client. Unlike in two-tier
application, database connection occurs at beginning and then set as long as it is still access
data, while in three-tier application database connection takes place only when data access is
required and released when data is returned or sent to server.

This various advantages motivated author to use RMI in case of banking transactions.
This method is considered very appropriate for banking transactions that handle large number
of customers and prospective customers. Because of that reasons data access needed
efficiently and minimize limitations of connections to database.

2.2. Servlet

Servlet [23] is a Java program that can be deployed on Java enabled Web server [24] to
make maximum functionality of Web server. Servlet can be used to develop various web-based
applications. Servlet developed using Java so we can use various advantages of Java API, this
is why we can use servlet to access RMI. Therefore, author uses servlet in development of
application that handle banking transactions via browser. Servlet works by client or browser to
send request to server using GET or POST method. Example: servlet can be called as a result
of user pressing user-interface component, such as buttons on web page form. After request
processed by servlet, output is returned to client in form of html page.

Java supports servlet implementation through javax.servlet and javax.servlet.http
package. Interface javax.servlet.Servlet provides general framework in manufacture of servlets.
Servlet can implement equally either directly or indirectly by extend class
javax.servlet.GenericServlet or javax.servlet.http.HttpServlet. GenericServlet class of
javax.servlet package is used to create servlets that can work with various protocols. Package
javax.servlet.htpp is used to create a HTTP servlet generate output in form of HTML pages.

TELKOMNIKA ISSN: 1693-6930 ◼

Hybrid distributed application in banking transaction using remote (Agus Cahyo Nugroho)

2211

Class used to make HTTP servlet called HttpServlet and derived from class GenericServlet.
Complete description about this HttpServlet class/interface can be seen in Table 1.

Table 1. Class/Interface Description
Class/Interface Name Description

HttpServlet class

Provide specific HTTP implementations from Servlet interface.
This class is extended GenericServlet class that provides
framework to handle different types of networks and
Web service.

HttpServletRequest interface Provides methods to process requests from clients.

HttpServletResponse interface
Responding to requests from clients sent back in HTML page
format through object of HttpServletResponse interface.

ServletConfig interface
Used to store start servlets value configuration and initialization
parameters. getServletConfig () method of Servlet interface
used to obtain information about configuration values of servlet.

Servlet is loaded only once in memory and initialized during init () method called.

After servlet is initialized, servlet is ready to accept request from client and process request
through service () method until it is stopped by the destroy () method. Service () method is
called every time there is a request. Life cycle of servlet is described as we can seen in
Figure 1. Table 2 illustrates some of methods used in servlet creation.

Figure 1. Servlet lifecycle

Table 2. Function Method in Servlet Creation
Method Name Function

Servlet.init(ServletConfig config) throws ServletException
Contains all servlet initialization code and called when
servlet is first loaded.

Servlet.service(Servlet Request, Servlet Response)
Receive all requests from client, identify request type,
and dispatch request to doGet () or Post () for
processing.

Servlet.destroy()
Executed only once when servlet is on remove from
server.

ServletResponse.getWriter()
Returns reference to object PrintWriter. Class
PrintWriter is used to write an object that is formatted
as text-output stream in the client.

ServletResponse.setContentType (String type)
Set the type of content that is sent as a response to
client. Example: setContentType ("text / html") is used
to set response type as text.

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2208-2217

2212

2.3. Java 2 Enterpise Edition (J2EE) Server
Java 2 Enterprise Edition (J2EE) [25] is a set of specifications that define standards in

manufacture of distributed objects. J2EE also set up how this technology can be integrated to
provide that complete solution. J2EE is also standard architecture that facilitate to multi-tiered
programming model. J2EE server is used to deploy servlets and JSP [26] files allow users to
access it by applying proper security.

2.4. Data Flow Diagram (DFD)

Data Flow Diagrams [27] are diagrams that describe data process along with flow in
business system. We are going to make two Data Flow Diagrams. The first one is for Web
Application, second one for Desktop Application.

2.5. Data Flow Diagram Web Application

The first one is Data Flow Diagram for Web Application, we can see in Figure 2.
Complete explanation about this Data Flow Diagram for Web Application we can see
below Figure 2.

Figure 2. DFD web application

Explanation of Data Flow Diagram (DFD) Web Application above:
- Customers send their data (customer info) as a registration condition to bank customers.

System stores customer’s personal data on Bank database Registration table.

- After becoming a bank customer, user obtains account number and Personal Identification

Number (PIN) that can be used for login to system. System checks account number and

Personal Identification Number (PIN) user to Bank database Login table, if true then user

can log into system.

TELKOMNIKA ISSN: 1693-6930 ◼

Hybrid distributed application in banking transaction using remote (Agus Cahyo Nugroho)

2213

- On the next page user can transfer to account other customers. This transaction is recorded

on Bank database Account Holder Transaction table. Then there is an adjustment (balance)

both on sender's account and transfer recipient on Bank database Account Holder table.

- Customer receives report that transfer succeeded and their last balance.

2.6. Data Flow Diagram Desktop Application

The second one is Data Flow Diagram for Desktop Application, we can see in Figure 3.
Complete explanation about this Data Flow Diagram for Desktop Application we can see in
Figure 3.

Figure 3. DFD desktop application

Explanation of Data Flow Diagram (DFD) Desktop Application above:
- Officer (Teller) to register data of prospective customers to Bank database

Registration table.

- Officer (Teller) must login to system for using all system facilities.

- Officers (Teller) can perform transactions such as deposits, withdrawals and transfers, all

transactions are recorded as AccountHolderTransaction Info on Bank database table

AccountHolderTransaction.

- After transaction done, made account adjustment (account balance) on Bank database

Account Holder table.

- All transactions that have occurred in branches are recorded at Bank database

CounterTransaction table.

- Lastly adjusted branch balance (counter balance) on Bank database Counter table.

- System gives report that transaction has been successful or failed and last balance.

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2208-2217

2214

3. Results and Analysis
Here is the implementation of system.

3.1. Implementation of Servlet
We are using Servlet to access same method that desktop application used. In Figure 4

is web login page that call method in the firstservlet. We are using Account Server
server=(Account Server)Naming.lookup ("rmi://localhost/ AccountServer"); in Figure 5 to get
reference from remote object implementation. Method lookup using name that we are registered
to the server as parameter. Beside that, we are calling menuservlet not because of button click
but by Request Dispatcher interface. We are sharing account number attribute in Figure 6 using
Servlet Context context=getServletContext(); Object obj=context.getAttribute("accountnumber");
Because account number data type is integer then we need to parsed it to String so we can
compared it. After that checked the session.

Figure 4. Web login page

Figure 5. First servlet

Figure 6. Menu servlet

TELKOMNIKA ISSN: 1693-6930 ◼

Hybrid distributed application in banking transaction using remote (Agus Cahyo Nugroho)

2215

3.2. Desktop Application
Registration menu is menu that appears when teller input customer information for first

time like in Figure 7. If registration is successful system will give output that registration is
successful and inform customer account number as well as initial PIN to login via web
application. A window informing you that registration was successful can be seen in Figure 8.
In Figure 9 we can see login page of desktop application. Teller must insert username and
password for using menus in system.

Figure 7. Registration menu

Success

Your Account Number YG04507
PIN 90945

Tell Customer to change Password through Website.

Ok

Figure 8. Successful information window

Earnest Bank – Login Page _ X

User Name ..

Password ..

 Submit

Figure 9. Desktop login page

3.3. Web Application
Login web page is page that appears when customer already registration through teller

(desktop application) and get PIN to login through web page like in Figure 10. In Figure 11 we
can see main menu of web system. In Figure 12 we can see transfer menu of web system.

Earnest Bank

Enter your account number here ..

Enter your PIN here ..

 Submit

Figure 10. Web login page

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2208-2217

2216

Earnest Bank – Main Menu

Deposit Transfer Update PIN Logout

Figure 11. Web main menu

Earnest Bank – Transfer

Your Account Number YG01507

Recipient Account Number ..

Transfer Amount ..

Description ..

Branches Web

 Submit

Figure 12. Web transfer menu

4. Conclusion
This paper presented a hybrid application to support both compile time and run time

generation of marshallers in desktop and web application. This application can be run as
separate processes on one same computer or run on different computer. For optimization and
light weight communication protocol once client gets reference from remote object then method
of remote object is called as calling method from local object. We have defined and
implemented on remote object can we call or use both in desktop and web application so we do
not need to work twice. If we are going to developed web application, we can used Servlet to
call remote method that we are implemented in desktop application. This make the application
development more effective and efficient.

References
[1] W Boyd, M Leonard, C White. Customer preferences for financial services: an analysis. International

Journal of Bank Marketing. 1994; 12(1): 9‐15.

[2] T Coyle. The bank of tomorrow. Americans Community Banker. 1999; 8(7): 16‐18.
[3] DL White, et al. The Intelligent River©: Implementation of Sensor Web Enablement technologies

across three tiers of system architecture: Fabric, middleware, and application. 2010 International
Symposium on Collaborative Technologies and Systems, Chicago, IL. 2010: 340-348.

[4] RA Kendall, E Aprà, DE Bernholdt, EJ Bylaska, M Dupuis, GI Fann, RJ Harrison, J Ju, JA Nichols, J
Nieplocha, TP Straatsma. High performance computational chemistry: An overview of NWChem a
distributed parallel application. Computer Physics Communications. 2000; 128(1-2): 260-283.

[5] PA Hartmann, P Ittershagen, K Grüttner, F Oppenheimer, A Rettberg. A framework for generic
HW/SW communication using remote method invocation. Analysis. 2011; 3(T5): S0.

[6] H Kang, K Jeong, K Lee, S Park, Y Kim. Android RMI: a user-level remote method invocation
mechanism between Android devices. The Journal of Supercomputing. 2016; 72(7): 2471-2487.

[7] H Kaur, S Bagga, A Arora. October. RMI approach to cluster based Winograd's variant of Strassen's
method. MOOCs, Innovation and Technology in Education (MITE), 2015 IEEE 3rd International
Conference on. 2015: 156-162.

[8] T Lindholm, F Yellin, G Bracha, A Buckley. The Java virtual machine specification. Pearson
Education. 2014.

[9] C Guo, G Lu, HJ Wang, S Yang, C Kong, P Sun, W Wu, Y Zhang. Secondnet: a data center network
virtualization architecture with bandwidth guarantees. Proceedings of the 6th International
Conference. 2010: 15.

[10] M Xue, C Zhu. The socket programming and software design for communication based on
client/server. Circuits, Communications and Systems, 2009. PACCS'09. Pacific-Asia Conference on.
2009: 775-777.

[11] AHS Data. Multi-thread Programming. 2009.
[12] P Ain, R Kothari. Mapping software code to business logic. U.S. Patent 7,640,532. International

Business Machines Corp. 2009.

TELKOMNIKA ISSN: 1693-6930 ◼

Hybrid distributed application in banking transaction using remote (Agus Cahyo Nugroho)

2217

[13] KJ Chou, MIW Huang, T Lee, BN Soetarman, RN Summers, MPT Vo. Architecture and
implementation of a dynamic RMI server configuration hierarchy to support federated search and
update across heterogeneous datastores. U.S. Patent 7,197,491. International Business Machines
Corp. 2007.

[14] D Hou, H Xia. Design of distributed architecture based on java remote method invocation
technology. Environmental Science and Information Application Technology, 2009. ESIAT 2009.
International Conference on. 2009; 2: 618-621.

[15] K Kang, J Lee, H Choi. Extended service registry for distributed computing support in osgi
architecture. Advanced Communication Technology, 2006. ICACT 2006. The 8th International
Conference. 2006; 3: 1631-1634.

[16] MB Juric, I Rozman, B Brumen, M Colnaric, M Hericko. Comparison of performance of Web services,
WS-Security, RMI, and RMI–SSL. Journal of Systems and Software. 2006; 79(5): 689-700.

[17] EH Page, RL Moose Jr, SP Griffin. Web-based simulation in Simjava using remote method
invocation. Proceedings of the 29th conference on Winter simulation. IEEE Computer Society.
1997: 468-474.

[18] P Bajpai, VK Jain, AS Akella. Method and node for employing network connections over a
connectionless transport layer protocol. U.S. Patent 8,750,112. Echo Star Technologies LLC. 2014.

[19] AS Huang, E Olson, DC Moore. LCM: Lightweight communications and marshalling. Intelligent robots
and systems (IROS), 2010 IEEE/RSJ international conference on. 2010: 4057-4062.

[20] J Aarnos, P Pentikainen, Nokia Oy AB. Method for enforcing a Java security policy in a multi virtual
machine system. U.S. Patent Application 11/126,651. 2006.

[21] MB Juric, I Rozman, B Brumen, M Colnaric, M Hericko. Comparison of performance of Web services,
WS-Security, RMI, and RMI–SSL. Journal of Systems and Software. 2006; 79(5): 689-700.

[22] C Guo, G Lu, D Li, H Wu, X Zhang, Y Shi, C Tian, Y Zhang, S Lu. BCube: a high performance,
server-centric network architecture for modular data centers. ACM SIGCOMM Computer
Communication Review. 2009; 39(4): 63-74.

[23] H Cai, W Lu, B Yang, LH Tang. Method for accessing and collaborating between servlets located on
different Java virtual machines. U.S. Patent 7,543,289. International Business Machines Corp. 2009.

[24] N Karapanos. Strengthening Authentication and Integrity in Web Applications (Doctoral dissertation,
ETH Zurich). 2018.

[25] J Pachouly, V Dange. Automating live update for J2EE applications over distributed environment.
International Journal of Advanced Technology and Engineering Exploration. 2018; 5(43): 99-106.

[26] TD Samaranayake, WPJ Pemarathane, B Hettige. Solution for event-planning using multi-agent
technology. Advances in ICT for Emerging Regions (ICTer), 2017 Seventeenth International
Conference on. 2017: 1-6.

[27] K Tiwari, A Tripathi, S Sharma, V Dubey. Merging of Data Flow Diagram with Unified Modeling.
International Journal of Scientific and Research Publications. 2012: 2(8): 1-6.

