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Abstract 
Researches have linked the cause of traffic accident to driver behavior and some studies 

provided practical preventive measures based on different input sources. Due to its simplicity to collect, 
speech can be used as one of the input. The emotion information gathered from speech can be used to 
measure driver behavior state based on the hypothesis that emotion influences driver behavior. However, 
the massive amount of driving speech data may hinder optimal performance of processing and analyzing 
the data due to the computational complexity and time constraint. This paper presents a silence removal 
approach using Short Term Energy (STE) and Zero Crossing Rate (ZCR) in the pre-processing phase to 
reduce the unnecessary processing. Mel Frequency Cepstral Coefficient (MFCC) feature extraction 
method coupled with Multi-Layer Perceptron (MLP) classifier are employed to get the driver behavior state 
recognition performance. Experimental results demonstrated that the proposed approach can obtain 
comparable performance with accuracy ranging between 58.7% and 76.6% to differentiate four driver 
behavior states, namely; talking through mobile phone, laughing, sleepy and normal driving. It is envisaged 
that such approach can be extended for a more comprehensive driver behavior identification system that 
may acts as an embedded warning system for sleepy driver. 
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1. Introduction 

Department of Statistic Malaysia reported there are five principal causes of death in 
Malaysia; namely, ischaemic heart diseases (13.2%), pneumonia (12.5%), cerebrovascular 
diseases (6.9%), transport accidents (5.4%) and malignant neoplasm of trachea, bronchus and 
lung (2.2%) respectively in 2016 out of 85,637 deaths [1]. The statistics show an increase of 
0.2% from 5.2% (4,196 deaths) in 2015 to 5.4% (4,640 deaths) in 2016 are yielded when data 
on transport accidents are compared. Transport accidents is also contributed to the third highest 
percentage of 7.4% for premature death in 2016. When comparing the data based on gender, 
male is more likely to have fatality with 3,923 deaths (7.5%) as opposed to female with 717 
deaths (2.2%) in 2016. The trend has slight increase from 2015 with male recorded 3,496 
deaths that is contrary to 700 deaths for female. The detail overview of principal cases of death 
in Malaysia for 2016 and 2015 is depicted in Figure 1. The trend of the involvement of male and 
female in a road traffic accident across European Union (EU) member states is consistent with 
Malaysia statistic. Male are more likely to report that they suffer from road traffic accident injury 
compared to female except for France where the proportion of men and women reporting a road 
traffic accident were the same [2]. It was also observed that the highest group to report that they 
have been injured in a road accident is the 35 – 44 years group. In a recent report produced by 
Ministry of Transport Malaysia, in 2016 alone, there are 521,466 accidents reported with injuries 
ranging from minor to fatal [3]. There is a 6.5% increase of number of accident reported (31860 
accidents) as compared to 489,606 accidents in 2015. Figure 2 show the summary of casualties 
and deaths caused by road accidents in Malaysia from 2007 to 2016. Although it Is obvious that 
the number of minor and severe injuries are declining, the statistic shows a consistent rise for 
death resulting from road accident. Hence, it is sound to find means and ways to study the 
cause of road traffic accident and such understanding can be extended to further reduce the 
number of accident. 
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Figure 1. Statistics on Malaysia causes of death in 2015 and 2016 [1] 
 
 

 
 

Figure 2. Statistics on Malaysia causes of death in 2015 and 2016 [3] 
 
 

Traffic accidents typically are contributed by three main factors, namely; driver, vehicle 
and external environment [4]. In vehicle factor, lack of maintenance (i.e bald tires, bad brakes), 
mechanical failure (i.e vehicle age, overdue expiry date of spare parts) and design flaws (i.e 
manufacture malfunctions) are the most common reason why accident occurs. MIROS reported 
that vehicle defects contribute to 2% to the total cause of the accident [5]. The other 13% of the 
total cause of accident is recorded by road environment. Road environment consists situation 
such as hazardous road condition (i.e potholes, windy roads with no lines, steep shoulders, 
unsafe work zones for road repair, confusing road sign, defective traffic lights), road obstruction 
(i.e animal crossing, object on road) as well as weather and ambience (i.e fog, excessive rain, 
slick road, high wind, extreme differences in temperature, lighting as in sunrise and sunset) are 
the common environment aberrations that may cause accidents to happen. Subsequently, 
human factor is the most substantial reason that contributes 85% principal cause of road traffic 
crashes. According to Redhwan and Karim [6], fatigue, aggressive driving, sudden braking, 
following too close and exceeding speed limit are the common factors for driver behavior in 
Malaysia that leads to accident. Tawari [7] stated that there are different types of human factors 
such as distraction, drowsiness and emotion while driving. The potential distractions, are; 
drinking or eating, passenger disturbance, object in vehicle, using phone and other distractions 
[8]. According to Young and Regan [9], driver distraction happens when a driver is hindered 
from receiving information needed while doing the driving task. This is because of some event, 
activity, object or person that is within or outside the vehicle that switch the driver’s attention 
from concentrating in the driving task. Kang [10] indicated that driver drowsiness and distraction 
have been the significant factors in many accidents because the driver awareness level and 
decision making capability are reduced which have negative effect to the driver itself. In 
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addition, human factor can also refer to human emotion influence which could be dangerous 
while driving. Psychologists observed that emotion influence directly by experience regarding 
how one feels about the object of surrounding [11]. Moreover, distraction, concentration, 
careless driving and loss of self-control while driving will also affect the emotion of  
driver [12-13]. Therefore, it is necessary to monitor the driver behavior and alert the driver when 
they are in distraction state to reduce the accident. Unsafe driving behaviors can be predicted in 
advance and this could lead to safe driving. According to Bayly [14], the amount of accidents 
would be reduced by 10% to 20% by monitoring and predicting the driver driving behavior 
states. For simplification, factors of road traffic accidents are illustrated in Figure 3. 

 
 

 
 

Figure 3. Road traffic accidents factors 
 
 

Human factors can be simplified to four sub-sections to facilitate understanding; 
namely, physiological, psychological, behaviour and cognitive. Physiological factor refers to the 
aspects related to human well-being characteristics of normal functioning. Defects in this factor 
include fatigue, eye sight impairment / disorder, sleep deprivation, nutritional deficit, alcohol / 
drug / medicine intoxication or medical condition such as seizure, strokes, heart attack and false 
sensation of the sensory organs. The disability to judge based on previous experience, short 
attention span and low memory capacity are also falls into physiological factor. On the other 
hand, the psychological factors are concerned about the workings of the mind or psyche. It can 
be further segregated into motivation, perceptions, learning, beliefs and attitudes. For instance, 
acute stress, excessive emotion, lack of competence and skill, attitude (i.e negligence, 
arrogance, boldness, overconfidence), personality (i.e compromising, hardliner) and individual 
characteristics are common reason why accident may occur. In this paper, focus is given to 
psychological factor with emphasis on underlying emotion extracted from speech. 

Speech can be used to measure driver behavior states (DBS) because speech carries 
underlying information that can differentiate between one DBS to another [12, 13]. However, 
speech data typically comprised of silence, voiced and non-voiced regions. Silence is observed 
when there is no speech is produced. It is different from unvoiced speech because the vocal 
cords are not vibrating resulting aperiodic and random speech waveform in nature. On the 
contrary, voiced speech produced a quasi-periodic speech waveform due to the air that flows 
from the lung that tensed of vocal chords. It is relatively high energy with less number of zero 
crossings present in the speech waveform [15]. Since for most practical cases, voiced region 
contains more information compared to the other two regions. Therefore, the silence and 
unvoiced are grouped together as silence region and need to be minimized. To complicate 
matters, background noise such as sound from vehicles engine, air conditioner, wind and others 
make the speech to noise ratio (SNR) relatively low resulting in difficulty to segregate between 
the data to be analyzed and artifacts. Hence, an automated tool to remove silence are 
developed using Energy and Zero Crossing Rate (ZCR). Such tool is useful in pre-processing a 
large number of data collected [16]. Although manual pre-processing data is the best, an 
automated tool can facilitate analysis in term of time, effort and monetary. In this paper, four 
different DBS are identified, namely; talking through mobile phone, laughing, normal and sleepy 
driving using Mel Frequency Cepstral Coefficient (MFCC) coupled with Multi Layer Perceptron 
(MLP) classifier. To explore the effect of silence removal, Short Time Energy (STE) and Zero 
Crossing Rate (ZCR) are used to truncate silence and unvoiced regions in order to make the 
data more compact. The aim of the paper is to enhance the driver behavior state (DBS) 
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recognition through the use of unvoiced and silence removal from the speech data signal thus 
improving the computational time and complexity. 

This paper is organized in the following manner. Section 2 briefly described the Real-
time Speech Driving (RtSD) dataset [12, 13] used for this work as well as feature extraction 
method and classifier employed. Section 3 demonstrates the use of Short Term Energy (STE) 
and Zero Crossing Rate (ZCR) to remove silence and unvoiced regions. The experimental set-
up, results and discussion are provided in Section 4. In conclusion, Section 5 presented the 
summary and future work. 

 
 

2.    Real-time Speech Driving Dataset, Feature Extraction Method and Classifier 
2.1. Real-time Speech Driving Dataset (RtSD Dataset) 

Real-time Speech Driving Dataset (RtSD) [12-13] was collected by the Center for 
Computational Intelligence (C2iLAB) at the Nanyang Technological University Singapore. 
Eleven Singaporean and Malaysian drivers participated with age ranging from 20 to 54 years 
old with aminimum of five years driving experienced. Each participants was required to drive 
covering 25.61 KM under differring traffic conditions and environments for approximately 60 
minutes. Three microphones were placed all around the vehicles to record the ambient noise 
while one microphone was placed very closed to the driver’s mouth. Signals from all the four 
microphones were recorded and processed to achieve a cleaned speech. Each participant will 
have to go through three different during condition; a) normal driving condition listening to car 
radio with no interruption, b) heavy traffic with traffic lights and interrupted with interview being 
carried out in the vehicle, and c) no traffic light but heavy vehicles on road and the driver is 
required to make phone calls.  

In this paper we investigate four different driving behaviour state (DBS); namely: talking 
through mobile phone, laughing, sleepy and normal driving condition. The talking through 
mobile phone distractor to the driver represent a medium stress DBS. Each driver was asked 
simple questionnaire and needed to provide with fast and accurate answers. The laughing DBS 
was captured when the driver was laughing while reading aloud the road directional signboards 
with experimenter on board reading jokes. This is supposed to have a complementary effect to 
the stress induced in talking through mobile distractor. Normal Condition driving will be used as 
the baseline since most of the time the driver will be driving under this condition. In addition, 
sleepy DBS was captured during the final phase of the driving exercise, when the driver is 
exhausted. The data was only analysed from selected drivers who complained of his/her 
sleepiness during the driving exercise especially towards the end of the driving task.  

The data acquisition system comprises of recording a series of simultaneous data, such 
as: brake/gas pedal pressure signals, driver’s facial expression and speech as well as road 
conditions, as shown by block diagram of Figure 4(a). Figure 4(b) shows the microphone 
mounted on the dashboard, the mounting of the video camera to record the road condition and 
the digital audio recorder recording noise in the vehicle. The aim for such comprehensive setting 
was to ensure a complete data collection for real-time driving data on an actual driving vehicle 
with various test subjects can be carried out. For the purpose of this study, only speech data is 
used for the analysis. 

The driving route consists of six segments and the set of instructions for the driver to 
follow is divided into four phases. The route was planned to induce the driver to experience 
stress, distraction and frustration. All drivers were not familiar with the route thus periods of 
familiarization and rests were included in all analysis. For the study we had selected the route 
with an average amount of traffic at off-peak hours such that a typical daily commute and traffic 
can be simulated. This can also help the experimenters to copntrol the situation better to ensure 
the safety of the driver. The detail description of the dataset can be found from [16]. 
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(a) Block diagram 
(b) Microphone mounting on 

dashboard 
 

Figure 4. In-car data acquisition system 
 
 

2.2. Mel Frequency Cepstral Coefficient (MFCC) 
MFCC exploits the human auditory frequency response as in the cochlea which uses 

certain number of co-efficient filter bank and specific shape filter function. These features 
capture the perceptually most important parts of the spectral envelope of audio signals and 
translate the sound energy into the nerve impulses for the brain usage. Slaney MFCC 
implementation [17] of extracting 40 features from the speech signals was selected based on 
Ganchev et al. claim that Slaney’s approach gives slightly better performance than others [18]. 

 
2.3. Multi-layer Perceptron (MLP) Classifier 

Multi Layer Perceptron is a feed-forward neural network trained with the standard back-
propagation algorithm. MLP has the ability to find nonlinear boundaries separating the states. 
The complexity of MLP network can be changed by varying the number of hidden layers and the 
number of neuron unit in each layers. Given enough hidden unit and training data, MLP can 
approximate virtually any function to desired targets [19]. During training, error information is 
propagated back to the network to adjust the weight of each neuron and map the output with the 
most minimal mean square error. In this work, 1- and 2-layer MLP with 10, 20, 30 and 40 
neurons are used to observe the DBS identification performance. 

 
 

3. Silence Removal 
Real world data is often distorted due to the present of noise and artifacts that may 

cause linear or non-linear transformation of the original data. Analysing corrupted or distorted 
data may gives wrong results thus yielding wrong conclusion. Hence, it is imperative that data to 
be used for any analysis must be pre-processed to ensure it is free from noise and artifacts. A 
clean data is needed for the analysis to ensure the observation is derived from the correct data. 
Thus the raw data to be used by feature extraction and classification stages must first be 
preprocessed by removing all the noise and artifacts. In this work, we only focus on silence and 
unvoiced regions removal based since the noise produce by the vehicle is very obvious and the 
signal to noise ratio (S/N) is the lowest. In the vehicular environment the engine noise and other 
ambient n oise will be maximum during the non-voice region, thus it will not be useful for our 
driving behavior analysis. For simplicity in this paper we use the silence and unvoiced regions 
interchangeably which refer to silence region. 

In speech production, there are silence regions exists in between voiced and unvoiced 
speech signal. The silence region is characterized by the absence of any speech signal 
characteristics. Silence is essential for human to comprehend the speech but for our analysis it 
becomes redundant and need to be removed. Figure 5 depicts the silence region in the speech 
signal. During silence region signal occurrence, there is no excitation input and output to the 
vocal tract as shown in the block diagram of Speech with Silent Region of Figure 5(a). It has the 
lowest energy compared to unvoiced and voiced speech segments as shown in Figure 5(b). It is 
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also observed that there are relatively more number of zero crossings compared to unvoiced 
segment and no correlation among successive samples. In Figure 5(b), the arrows show the 
silence region between utterances. 

 
 

 
  

(a) Block diagram 
 

 
 

(b) Example of wave signal 
 

Figure 5. Speech signal containing silence region 
 
 

Two of the most common approaches to detect silence region are by employing the 
Zero Crossing Rate (ZCR) and Short Time Energy (STE). The ZCR can be defined as the signal 
rate changes of either positive or negative while the signal are transmitted [20]. It is a measure 
of number of times in a given time interval/frame that the amplitude of the speech signals 
passes through a value of zero. ZCR is very popular for Voice Activity Detection (VAD) to 
determine between voiced, unvoiced and silence region. Such ability is due to the fact that ZCR 
rate for unvoiced sounds and noise are usually higher than voiced sounds thus making it 
possible to detect the start and end point of unvoiced sounds. 

The Short Term Energy (STE) can be defined as the energy with a short speech 
segment [21]. It is a simple and effective classifying parameter specially to differentiate between 
voiced and unvoiced sounds or silence because typically the voiced signal produces higher 
energy than silence. The silence region determined by STE will produced less energy than a 
certain threshold, which will then be truncated. 

The combination of ZCR and STE (ZCR+STE) is used because in voiced speech, the 
STE values are much higher than in unvoiced speech and has higher zero crossing rate. The 
input signal is calculated based on ZCR and STE with different type of windowing and the 
output is processed by silence removal frame by frame using this output value. The calculation 
is based on number of frame and each frame is checked to determine whether silence region 
existed or not. The condition stated that if the maximum amplitude of original input is less than 
the maximum output, the signal will be truncated. In addition, if the minimum of energy is less 
than the threshold, it is considered as silence and the frame will be omitted. The ZCR+STE is 
calculated using window length of 200. The window length is the value which influence the 
detection of voiced, unvoiced and silence signal. Figure 6 shows the flow of the silence removal 
using ZCR+STE. In this work, Hamming window is used. The Z is the output of ZCR_STE 
function while S is the original speech. Framing is used to separate the Z and S signal frames of 
0.01 seconds of frame. The number of frame is calculated by dividing the length of S with the 
frame length. Each of the 0.01 seconds of S and Z is then compared. If max(S) >= max(Z), the 
signal is appended and go to the next iteration. Otherwise, the frame is removed. Finally, the 
clean signal is returned (with removed unvoiced and silence). 
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Figure 6. Silence region removal using ZCR+STE 
 
 

4. Experimental Set-up, Result and Discussion 
Once the data had been cleaned, MFCC feature extraction method and MLP classifier 

were employed for DBS identification. In this work, two types of data arrangements were used 
with different number of instances in the targeted DBS class, namely: a) talking-biased and b) 
even-distribution data arrangements. Talking-biased data arrangement comprised of 2000 
instances of talking through mobile DBS with 666 instances for sleepy and laughing DBS 
respectively and the remaining 668 instances for normal driving DBS. This arrangement 
assumes in real life situation where more drivers will be talking through their hadphones while 
driving simulating the medium level stress distractor. In addition this data arrangement also 
allow us to analyse aggravated drivers talking on the handphones and provided a free and 
unconstrained the way for the driver to responds. On the contrary, the even-distribution data 
arrangement consists of 1000 instances for the four studied DBS. It is hypothesized that the 
accuracy for talking through mobile DBS will be the most recognized DBS in the talking-biased 
data arrangement DBS recognition experiment whereas a more consistent performance among 
the four DBS should be observed in the even-distribution data arrangement experiment. 

5-fold validation technique is employed using 80-20 rule. The data is segregated 
randomly in 5 folds where 80% of the data is used for training and the remaining 20% of the 
data is used for testing. The training-testing pairs are iteratively changed until the data are used 
completely. This is to ensure the classifier calculate the generalization of the data instead of 
memorization (using similar data for training and testing). 8 MLP networks architecture are 
implemented using 1 and 2 hidden layers with 10, 20, 30 and 40 neurons respectively. Figure 7 
presents the identification performance using the talking-biased data arrangement using 
multiple MLP network architectures. 

Results in Figure 7 illustrated that laughing DBS is consistently the least identified as 
compared to the other DBS with the lowest performance recorded using one hidden layer MLP 
with 10 neurons (11.41%) and the best performance using 2 hidden layers with 30 neurons 
(32.88%). The talking through mobile DBS results performed as expected with mean 
performance of 84.4% and 83.6% for one and two layers MLP respectively. It gives almost two 
times better than the accuracy of sleepy and normal DBS that yielded performance ranging 
between 35% and 49%. Hence, it shows that the size of instances in a class may affect 
performance and different MLP networks architecture may give different performance. 
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Figure 7. Silence region removal using ZCR+STE 
 
 

Further analysis was conducted to determine the optimal MLP network architecture for 
even-distribution data arrangement DBS identification experiment. Figure 8 shows the overall 
mean performance of DBS identification result using talking-based data arrangement. It is 
observed that the highest accuracy is yielded when MLP 2 hidden layer with 30 neurons was 
used with 51.73% accuracy. Hence, such MLP network architecture will be employed for even-
distribution data arrangement DBS identification experiment. The main reason of conducting this 
experiment is to note the changes in accuracy detected by having no bias in the number of 
instances in target classes 

 
 

 
 

Figure 8. Overall mean performance of DBS identification result using talking-biased data 
arrangement 

 
 

Table 1 illustrated identification results using the even-distribution arrangement data 
with highest DBS identified as normal driving (76.6%) followed with sleepy DBS (71.6%), talking 
through mobile DBS (59.2%) and lastly laughing DBS (58.7%). The overall mean performance 
recorded is 66.53% that is about 15% better than the best performance recorded using talking-
biased data arrangement. The result is more distributed with variance of 13.4% indicating the 
potential of such approach to be implemented in recognizing different DBS. 
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Table 1. The DBS Identification Result Using Even-distribution Data Arrangement 

Result 
Target 

Accuracy (%) 
Talking Laughing Normal Sleepy 

Talking 592 208 37 77 59.2 
Laughing 171 587 68 79 58.7 
Normal 129 108 766 128 76.6 
Sleepy 108 97 129 716 71.6 

 
 

5. Summary and Conclusion 
Recognising driving behavior state (DBS) can help reduce the road traffic accidents 

rate. Result from Figure 7 and 8 and Table 1 shows that it is possible to idetify different DBS 
through speech and by removing the silence and non-voice region. Table I shows the potential 
of using the speech DBS system to recognize sleepy driver which can be very useful in 
identifying potential abnormal driving behavior that can cause accidents. It is also shown that 
due to the silence and unvoiced removal the speech data had been reduced to more than 50% 
of its original form thus improve the computational time required. Even for cases of talking on 
mobile phone can be recognize and differentiated with normal driving with 60% and 77% 
accurarcy respectively. 

This paper shows a preliminary work on DBS which can be enhanced further with more 
speech data and different DBS. Further works should be extended in term of feature extraction 
[22-23], optimal classifier architecture and more driving speech data. It is hope that such work 
can help reduced our traffic accidents making our road safer for both the drivers and 
pedestrians. 
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