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Abstract 

 The aim of this paper is to solve the optimal reactive power dispatch (ORPD) problem. 

Metaheuristic algorithms have been extensively used to solve optimization problems in a reasonable time 
without requiring in-depth knowledge of the treated problem. The perform ance of a metaheuristic requires 
a compromise between exploitation and exploration of the search space. However, it is rarely to have the 

two characteristics in the same search method, where the current emergence of hybrid methods. This 
paper presents a hybrid formulation between two different metaheuristics: differential evolution (based on a 
population of solution) and simulated annealing (based on a unique solution) to solve ORPD. The first one 
is characterized with the high capacity of exploration, while the second has a good exploitation of the 
search space. For the control variab les, a mixed representation (continuous/discrete), is proposed. The 
robustness of the method is tested on the IEEE 30 bus test system. 

  
Keywords: Hybrid differential evolution, Simulated annealing, Reactive power dispatch, Voltage profile 
improvement 
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Notation 

 
 
1. Introduction 

Reactive power dispatch (RPD) has shown an increasing attention these last years. 
Under voltages and over voltages in the lines cause the power system instability, the energy 
quality decrease and the equipment isolation degradation. Any change in the system 

configuration or system demand may result in higher or lower voltage profiles. The objectives  of 
an optimal reactive power dispatch (ORPD) can mainly be summarized in the minimization of 
transmission losses and the improvement of the voltage profile in a power system by using a 

number of control tools. The optimal setting of switching VAr sources, changing transformer 

Vi  Voltage profile at bus i;  Ni  Set of the bus numbers adjacent to bus i 
including bus i; 

θij  Phase angle of voltage between buses i 
and j; 

 Ti  Tap-setting of the transformer i;  

g ij   Conductance of the branch existing 
between the buses i and j; 

 NT  Set containing the numbers of tap-
setting transformer branches;  

NB  Set of branch numbers;   Ncap  Set of bus numbers containing shunt 
compensator banks; 

Gij  Transfer conductance between buses i and 
j; 

 Pdi  Active power load at bus i; 

Bij  Transfer susceptance between buses i and 
j; 

 Qdi  Reactive power load at bus i; 

NPQ  Set of PQ bus numbers;   Pgi  Generated active power at bus i; 

NPV  Set of PV bus numbers containing swing 
bus; 

 Qgi  Generated reactive power at bus i; 

N  Set of the total number of buses;  PkLoss Active power loss of branch k ;  

N0  Set of the bus numbers except the swing 
bus; 
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settings and adjusting generator voltages, would minimize transmission losses.  (ORPD) is 

considered as a multi-constraints nonlinear multivariable optimization problem. 
Several conventional techniques were described to solve this kind of problems after 

using some simplifications and special treatments [1-3]: Gradient’s method, Quadratic 

programming, Linear programming, Newton’s method and the Interior point’s technique.  
However, all these techniques have a lot of problems such as:  

a. converging in local solution, 

b. large iteration number,  

c. sensitivity to an initial search point,  

d. limited modeling capabilities (in handling nonlinear, discontinuous functions and 
constraints,…). 

These problems can be overcome by the introduction of intelligent techniques such as 
Neural networks [4], Fuzzy logic [5] and Evolutionary algorithms [6-11]. With the advancement 
of soft computing during the last years, many new stochastic search methods were developed 

for global optimization problems. Metaheuristics are stochastic algorithms for solving a wide 
range of problems for which there is no known effective conventional methods. These 
techniques are often inspired from biology (Evolutionary algorithms [6-11], Differential  

evolution [12-15]), physics (Simulated annealing [16-18], Gravitational search algorithm [19]) 
and ethnology [20-24].  

In order to improve the performance of optimization algorithms, some authors have 

proposed hybrid algorithms [3, 11, 16-18, 25-27. Hybridization is a technique that combines the 
characteristics of two (or more) different methods to derive the benefits of both methods and 
compensate any disadvantages that were suffered by both algorithms. An ideal hybridization 

produces a hybrid method that combines the good properties of its constituents while inhibiting 
their weaknesses. 

The main objective of this paper is to present a new hybrid formulation between 

differential evolution and simulated annealing algorithms for solving the optimal reactive power 

dispatch problem. The proposed methodology can be viewed as a two-stage algorithm. In the 

first level, a modified DE algorithm (based on the SA selection) is used to increase the diversity 

of solutions and resist premature convergence. When this modified DE algorithm is completed, 

the solution found can be improved by using the SA algorithm as a local search algorithm. To 

illustrate the suitability of this algorithm, the proposed hybridization is tested on the IEEE 30 bus 

test system. 

The organization of this paper is as following: Problem formulation of the ORPD is 

presented in section 2. Sections 3 and 4 provide a brief overview of differential evolution 
technique and the simulated annealing algorithms, respectively. The proposed hybridization is 
presented in section 5. Detailed simulation results and also performance analysis are given and 

explained in section 6. Finally, conclusions and perspectives are given in section 7. 
 
 

2. Problem Formulation 
In general, minimization problem with constraints can be written in the following form:  

 

Minimize : f (x) ,  
Subject to: hi (x) = 0 , i = 0, , . . . , m,  
 gj (x) ≤ 0 , j = 0, , . . . , n,   (1) 

 
Where:  
m : Number of equality constraints;  

n  : Number of inequality constraints;  
f (x)  : Objective function; 
hi (x)  : Equality constraint;  

gj (x)  : Inequality constraint; 
The number of variables is equal to the dimension of the vector x. 

The purpose of an optimal reactive power dispatch (ORPD) can be summarized mainly 

in the minimization of transmission losses and the improvement of the voltage profile in a power 
system. The total loss can be described so, as the objective function:  
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  )cos2    (  22

Nk B

ijjij

Nk

iijkLoss VVVVgPpxf
B

 


   (2) 

 

where k  is the branch between buses i and j. The function f(x) is subjected to a number of 
equality constraints (real and reactive power balance at each node) related to the load flow:  
 

0  ) sin   cos(       
 iNj

ijijijijjidigii BGVVPPP  , iN0   (3) 

 

0  )      sin(       
 iNj

ijijijijjidigii oscBGVVQQQ  , iNPQ   (4)  

 
Inequality constraints of control variables are given as:  
 

maxmin iii TTT   , iNT   (5) 

maxmin iii ggg
QQQ   , i Ncap  (6) 

 

maxmin iii VVV   , iNPV  (7) 

 
Inequality constraints of state variables are written as: 

 

       maxmin iii VVV   , i NPQ  (8) 

 

maxmin

    
iii

ggg
QQQ   , i NPV  (9)  

 

The control variables such as generator bus voltage, transformer tap-setting, and switchable 
shunt capacitor banks are self restricted. While the load bus voltages and reactive power 
generations are state variables, which are restricted by adding them to the objective function as 

the quadratic penalty terms to form a penalty function: 
 

,)()( 2lim2lim 



PVPQ Ni

gigiQgii
Ni

iVi QQVVp Min   F(x)    (10) 

 

This new formulation of the objective function is subject to equality constraints (3)-(4) and 

inequality constraints of control variables (5)-(7). The coefficients Vi  and Qgi  are considered 

as penalty factors. 
 


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3. Differential Evolution Algorithm 

Differential evolution (DE) is a stochastic optimization technique proposed by Storn and 
Price in 1997 [12]. It was originally designed to solve problems with continuous variables. Based 
on a population of solutions, it belongs, like genetic algorithms (GA), to the family of 

evolutionary algorithms (EA). It uses the same genetic algorithms operators: crossover, 
mutation and selection, but it is distinguished by the way of creating new individuals. Genetic 
algorithms are based on the crossing, while DE algorithm is based on the mutation operation 

that is based on the difference between pairs of solutions randomly chosen from population.  
The initial population of DE algorithm is randomly generated within the control variable 

bounds. The population contains N individuals. Each individual xi,G is a vector of dimension D, 

where G is the generation: 
 

     (                    ) , i = 1,2,…,N  (13) 

 

In every generation, the algorithm successively applies the three operations (mutation, 
crossover and selection) on each vector to produce a trial vector:  

 

       (                          ), i = 1,2,…,N  (14) 

 
A selection operation selects individuals to be saved for the new generation (G + 1).  

DE has a specialized nomenclature that takes the form of DE/x/y, where x signifies the solution 
to be perturbed (random or best). The y represents the number of difference vectors used in the 
perturbation of x. The difference vector is the difference between two randomly selected distinct 

members of the population.  
 

3.1. Mutation 

For each current vector      is generated a mutant vector        which can be created 

using one of the following most used mutation strategies:  

DE/Rand/1 : 

 

              (           
)   (15) 

 
DE/Best/1 : 

 

                 (           
)   (16) 

 
DE/Current to best/1 : 

 

              (           
)    (            )   (17) 

 
DE/Best/2 : 

 

                 (           
)   (           

)  (18) 

 
DE/Rand/2 : 

 

               (           
)    (           

)   (19) 

 

Where r1, r2, r3, r4 and r5 ∈ {1,2, ..., N}, with r1 ≠ r2 ≠ r3 ≠ r4 ≠ i are mutually different integers 
randomly selected from the set {1,2, ..., N}.         is the best individual in the generation G. The 

constant value F ∈ [0,2]  (called differential weight or mutation constant), controls the 

amplification of the difference between two individuals so as to avoid search stagnation. If    is 
found outside variable limit, it will be fixed to the accepted upper or lower limit.  
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3.2. Crossover 

The crossover operation is introduced to increase the diversity of the perturbed 
parameter vectors. The new vector is given by the following formula: 

 

        {
                         

                     
   (20) 

 
This Equation is applied for every vector component  ∈ {       },  ∈ {       }. Where 

         is a random number that belongs to the interval [0,1]. CR ∈       is the coefficient of 
crossover. 

 
3.3. Selection 

To decide if the vector        should be a member of the population of the next 

generation or not, it is compared to the vector      . 

 

       {
           (      )   (    )

               
   (21) 

 
3.4. Stopping Criteria 

The optimization process is stopped when a predefined maximum iteration is achieved 

or other predetermined convergence criterion is satisfied. DE algorithm is represented in the 
algorithm of Figure 1. 

 

 

 
Figure 1. Differential Evolution Algorithm 

 
 
4. Simulated Annealing (SA) 

Simulated annealing (SA) is a stochastic optimization approach proposed by Kirkpatrick 
in 1983. It is inspired from the natural process of annealing related to thermodynamics. The 
annealing process is used in metallurgy to improve the quality of a solid. A metal is heated to a 

very high temperature      and slowly cooled to a low temperature      that can crystallize. 
The heating procedure lets the atoms travel arbitrarily, if the cooling is done slowly enough, so 

the atoms have enough time to regulate themselves so as to reach a minimum energy state. 
This similarity can be applied in optimization problems where the state of metal is corresponding 
to the       possible solution and the minimum energy state represent the final best solution.   

The principle of SA algorithm is to browse iteratively the solution space. We start with 
initial solution    randomly generated which corresponds to an initial energy   , and initial 

temperature      generally high. At each iteration of the algorithm, a basic change is made to 

the solution. This modification varies the energy    of the system. If this variation is negative 
(the new solution    improves the objective function      , and reduces the energy of the system 

               ), it is accepted. If the solution found    is worse than the previous one 

                   , so it may be accepted with a probability distribution   calculated 
according to the following Boltzmann distribution: 

 

          
  

  

    (22) 
 

Initialisation  

Lets G = 0 
Repeat  
Mutation step 

Crossover step 
Selection step 
G = G+1 (increment the generation counter) 

Until a stopping criterion is satisfied 
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Initialization 
Choose 𝑇𝑚𝑎𝑥 , Tmin , 𝛼, Trymax and initialize temperature at 𝑇  𝑇𝑚𝑎𝑥 .    

Generate an initial solution s randomly and compute its objective function 𝑓 𝑠 . 

while T ≥ Tmin 

 while the number of tries ≤ Trymax  

Generate an adjacent solution 𝑠   randomly and compute its objectif function 𝑓 𝑠   . 
if 𝑓 𝑠    𝑓 𝑠  

accept the new solution and replace the previous solution with the new. 

else if 𝑓 𝑠    𝑓 𝑠  

 Then, let  𝐸  𝑓 𝑠    𝑓 𝑠 , generate a random number 𝑟 ∈      , accept the new 

solution if 𝑒𝑥𝑝
 

 𝐸

𝑇 ≥ 𝑟 and replace the previous solution with the new. 
end of if 

end of while 

Decrease the temperature 𝑇 𝑡  𝛼  𝑇 𝑡    

end of while 

A random number  ∈       is compared to the probability      
 

  

 . If  ≥  , the new solution 
is accepted. Otherwise, the new solution is rejected, we try with another solution. Temperature T 

is gradually decreased in each iteration. In this paper the decrement of temperature at iteration 
      is implemented using:  

 
                (23) 

 
The coefficient , is a constant close to 1. This procedure is repeated until the stopping 

criteria is satisfied, which is in our algorithm T ≤ Tmin. SA algorithm can be summarized in  
Figure 2, where Trymax is the max tries happened at each temperature value. 

 
 

 
Figure 2. Simulated Annealing Algorithm 

 
 

5. Proposed Hybridization for ORPD 

In this paper, a hybrid formulation between differential evolution and simulated 
annealing algorithms (HDESA) is proposed to solve the optimal reactive power dispatch 
problem. DE is a powerful global optimization technique that is simple and easy to use. It is 

characterized by its suitability for parallelization. The difference between DE and other EA’s 
appears in the mutation and recombination phases. In the EA techniques such as GA, the 
perturbation occurs in accordance with a random quantity, while DE uses weighted differences 

between solution vectors to perturb the population. When the population lost completely its 
diversity, it will contain identical elements, and it remains unchanged by DE perturbation. To 
avoid premature convergence, it is necessary to keep a reasonable level of diversity in the 

population. 
In the other side, SA method is characterized by the ability to escape from local minima 

because of its probability function incorporated to accept or reject new solutions. It does not 

need large computer memory. In this paper a hybrid formulation, shortened HDESA, is 
proposed. The proposed hybridization benefits from the global search ability of DE and the local 
search ability of SA, and offset the weaknesses of each other. The combination of DE and SA 

will provide so a good balance between exploration and exploitation.  In this study, we start the 
hybrid algorithm with the DE algorithm described in section 3, but at the time of selection of the 
individual, we replace the stage: 

 

       {
           (      )   (    )

               
   (24)  
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with this expression inspired from SA selection:  

 

       {

          (      )   (    )

         {              
 

  

   ∈      

             

   (25) 

 
The decrease in temperature is calculated here in each generation. This method of 

selection can enable the exploration of areas not improving objective function value by 
accepting less good solutions, so it can avoid local point, resist premature convergence, and 
increase the diversity of DE solutions. When this modified DE algorithm is completed, we 

improve the solution found from it by using the SA algorithm as a local search algorithm to refine 
the best solution found so far. 

 

 
6.    Simulation 
6.1. Data of the Studied Network 

In this section, we describe an evaluation of the hybrid differential evolution simulated 
annealing-based algorithm for solving the ORPD problem. This evaluation is carried out through 
an application on the standard IEEE 30-bus test system. The network consists of 30 bus, 41 

branches, 6 generators, 4 tap-setting transformers and 9 VAR switching sources. Bus 1 is the 
swing bus. Buses 2, 5, 8, 11 and 13 are selected as PV buses. The possible reactive power 
installation buses are 10, 12, 15, 17, 20, 21, 23, 24 and 29. The branches with tap-setting 

transformer are branches (6-9), (6-10), (4-12) and (28-27). It should be mentioned that the 
system data is taken from [8, 15, 24, 28]. The constraints of control and state variables are 
shown respectively in Tables 1 and 2. The used base of power is SB = 100 [MVA]. 

To demonstrate the effectiveness of the proposed algorithm, the currant section 
proposes also to compare the achieved results by HDESA with those achieved by an 
application of a number of benchmark algorithms : SA, DE, PSO [29] and GA Based FGP [30]. 

 
6.2. Load Flow Calculation 

The execution of Newton-Raphson method for the load flow gave the results presented 

in Table 3 where the total transmission loss is 5.8223 [MW]. The voltages outside the limits are 
V19, V20, V21 V22, V23, V24, V25, V26, V27, V29 and V30. In fact, it is of primary importance to adjust 
the control variables at the end of ensuring a minimization of transmission losses and an 

improvement of the voltage profile in the studied network. 
 
 

Table 1. Control Variable Constraints 
 Transforma

tion ratio 

Generator bus 

voltage [pu] 

Reactive pow er 

installation [pu] 

Low er limit  0.9 0.95 0.0 
Upper limit  1.1 1.1 0.05 

 
 

Table 2. State Variable Constraints 
 Voltage of 

PQ buses 
[pu] 

Reactive pow er of PV buses (generators) 
[pu] 

Bus 1 2 5 8 11 13 

Low er limit 0.95  -0.2 -0.2 -0.15 -0.15 -0.1 -0.15 
Upper limit 1.05  0.25 1 0.8 0.6 0.5 0.6 
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Table 3. Load Flow Results 
 

Bus 

Voltage Load Generation 

V [pu] Θ [degree] Pd [pu] Qd [pu] Pg [pu] Qg [pu] 

1 
2 

3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 

18 
19 
20 
21 

22 
23 
24 

25 
26 
27 
28 

29 
30 

1.0500 
1.0400 

1.0279 
1.0222 
1.0100 
1.0166 

1.0059 
1.0100 
0.9755 

0.9547 
1.0500 
0.9976 
1.0500 

0.9773 
0.9680  
0.9718 
0.9540  

0.9501 
0.9429  
0.9450 
0.9408  

0.9413 
0.9467  
0.9274 

0.9204  
0.9008 
0.9257  
1.0116 

0.9035  
0.8907  

0 
-1.7623 

-3.9323 
-4.6963 
-6.4824 
-5.4355 

-6.3969 
-5.6272 
-7.0162 

-9.1959 
-4.6886 
-8.7884 
-7.2567 

-9.7952 
-9.7932 
-9.2538 
-9.4522 

-10.3964 
-10.5331 
-10.2636 
-9.7516 

-9.7419 
-10.1714 
-10.2804 

-10.3073 
-10.8220 
-10.0102 
-5.8711 

-11.5199 
-12.6115 

0 
0.217 

0.024 
0.076 
0.942 

0 

0.228 
0.300 

0 

0.058 
0 

0.112 
0 

0.062 
0.082 
0.035 
0.090 

0.032 
0.095 
0.022 
0.175 

0 
0.032 
0.087 

0 
0.035 

0 
0 

0.024 
0.106 

0 
0.127 

0.012 
0.016 
0.190 

0 

0.109 
0.300 

0 

0.020 
0 

0.075 
0 

0.016 
0.025 
0.018 
0.058 

0.009 
0.034 
0.007 
0.112 

0 
0.016 
0.067 

0 
0.023 

0 
0 

0.009 
0.019 

0.9922 
0.8000 

0 
0 

0.5000 
0 

0 
0.2000 

0 

0 
0.2000 

0 
0.2000 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

0 
0 

-0.01535 
0.15644 

0 
0 

0.16406 
0 

0 
0.13537 

0 

0 
0.38002 

0 
0.39545 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

0 
0 

Total real losses : 5.8223 [MW] 

 
 

6.3. Treatment of Control Variables, Initiation and Evaluation Steps 

Each possible solution is represented as a vector containing the values of control 
parameters (generator voltages, transformer taps and injected reactive power of switchable 

shunt capacitor). It is represented as: 
 














 capTPV NgcgcNNNN
QQTTVVX .........

1
11

   (26) 

 
Generator voltages are considered as continuous values. However, reactive power 

installation and the transformer taps are regarded as discrete ones. At the initiation step of each 

approach (DE, SA or Hybridization), the initial solutions are created using uniform random 
variables:  

 

 minmaxmin iiii XXrndXX 
   (27) 

 
where rnd is a random value 0 < rnd < 1. To deal with discrete variables, we must adjust the 
variable value to have a formulation as:  

 

iiii XNXXX  min    (28) 
 

    : Integer number represents the variation number of the variable Xi  
    : Step size of the variable Xi 

In this paper, each one of the transformers contains 32 steps. Each one of the nine 
shunt compensator banks has 100 possible variations. To evaluate any solution, the 

corresponding fitness function value is obtained by running load-flow with Newton-Raphson 
method. 
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6.4. Application of Simulated Annealing (SA) 

The basic SA optimization procedure has 4 principal parameters:     ,     ,   and 
Trymax. In order to help the SA algorithm to find optimal solution, we must use a large initial 

temperature, a small final temperature, a large max try times with a slow decrement on the 
temperature. The parameters used here for the SA are: 

a. Initial temperature      : 1000 

b. Final temperature      : 0.1  

c. Constant of temperature decrement   : 0.99 

d. Max tries at each temperature Trymax : 50  
The SA results are presented in Table 4. One can clearly perceive an important 

improvement of 10.59% in total real losses, ranging also from 5.8223 [MW] in the case of load 

flow calculation to 5.2055 [MW] in our current case. The voltage profile has been improved and 
all the constraints have been respected. The convergence characteristic of the algorithm is 
shown in Figure 3.  

 
 

 
 

Figure 3. Convergence of the SA Algorithm 
 
 

6.5. Differential Evolution Algorithm Application 
The main parameters of the DE are differential weight F (step size), and crossover 

coefficient CR. The parameter F controls the scale of differential variation. It is usually selected 

to be in the range of 0 ≤ F ≤ 2. If F is too small, the differentiation vectors will lead us to a local 
search around      . In the case, where F is too large, the new vectors may often violate the 

constraints imposed on the search space. On the other side, CR is usually within the range 0 < 

CR < 1. Furthermore, it must be sufficiently close to 1 to enable the acceptance of new vectors 
and increase the diversity level in the population. In this paper, the different parameters of the 
DE are decided based on trial simulation run. The used parameters are:  

a. Maximal number of generations : 100 

b. Population size : 500 

c. Differential weight F : 1 

d. Crossover coefficient CR : 0.8 

 The convergence characteristic of the algorithm is shown in Figure 4. The DE results 
are given in Table 4. Hence, we can clearly perceive the superiority of DE over SA, where the 
losses are moved from 5.2055 [MW] to 5.1439 [MW].  
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Figure 4. Convergence of the DE Algorithm 
 
 

6.6. Proposed Hybridization between DE and SA 

In this study, the hybridization starts with a DE algorithm but at the time of selection the 
equation (21) is replaced with the expression (25). Once the execution of modified DE algorithm 

is finished, the solution found is used as an initial solution for the SA algorithm. We use the SA 
as a local search algorithm in the final stage to refine the best solution found so far. The 
convergence characteristic of the algorithm is shown in Figure 5 and the simulation results are 

resumed in Table 4. The total loss is considerably reduced to 5.1298 [MW]. The results obtained 
from the proposed hybrid approach are better than those obtained from DE or SA. The results of 
our applied algorithm have been also compared in Table 4 with those achieved by a 

multiobjective RPD using classical PSO algorithm in [29] and genetic algorithm based fuzzy 
programming (GA based FGP) in [30]. Once again, the comparison shows the efficiency and the 
superiority of our hybrid algorithm.  

 
 

 
 

Figure 5. Convergence of the Hybridization Algorithm 
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Table 4. Control Variables and Losses Obtained From Execution of SA, DE, HDESA,  

PSO [29] and GA Based FGP [30] 
Control 

variables 
Initial SA DE Hybridization 

(HDESA) 
PSO algorithm 

[29] 
GA based 
FGP [30] 

V1 [pu] 
V2 [pu] 
V5 [pu] 

V8 [pu] 
V11 [pu] 
V13 [pu] 

T6-9 

T6-10 
T4-12 
T28-27 

Qc10 [pu] 

Qc12[pu] 
Qc15 [pu] 
Qc17 [pu] 

Qc20 [pu] 
Qc21 [pu] 
Qc23 [pu] 
Qc24 [pu] 

Qc29 [pu] 

1.05 
1.04 
1.01 

1.01 
1.05 
1.05 
1.078 

1.069 
1.032 
1.068 

0 

0 
0 
0 

0 
0 
0 
0 

0 

1.0590 
1.0545 
1.0102 

1.0348 
1.0712 
1.0717 
0.9688 

0.9750 
1.0313 
0.9750 
0.0335 

0.0110 
0.0390 
0.0140 

0.0425 
0.0175 
0.0090 
0.0170 

0.0120 

1.0593 
1.0532 
1.0279 

1.0240 
1.1000 
1.0579 
1.0312 

0.9875 
0.9812 
1.0187 
0.0355 

0.0040 
0.0500 

0 

0.0250 
0.0020 
0.0265 
0.0275 

0.0395 

1.0744 
1.0724 
1.0486 

1.0498 
1.0692 
1.0038 
1.0375 

0.9938 
0.9750 
1.0438 
0.0110 

0.0330 
0.0465 
0.0350 

0.0335 
0.0180 
0.0070 
0.0170 

0.0155 

1.04189 
1.03174 
1.00817 

1.00711 
1.05427 
1.00921 
1.08161 

0.90668 
0.99907 
0.97220 
0.02752 

0.04986 
0.04821 
0.02367 

0.04998 
0.04999 
0.04954 
0.05000 

0.02591 

1.055 
1.042 
1.035 

1.036 
1.085 
1.064 
0.9536 

0.9067 
0.9990 
0.9662 
0.03871 

0.04151 
0.04812 
0.03735 

0.04617 
0.04828 
0.03781 
0.04512 

0.02690 
Total real 

losses [MW] 
5.8223 5.2055 5.1439 5.1298 5.2278 5.169 

 
 

7. Conclusions & Perspectives  
Reactive power dispatch (RPD) is a nonlinear multivariable optimization problem with 

constrains. To solve reactive power dispatch problem, this paper has proposed DE, SA and a 

hybrid combination between the two. The objective of this hybridizat ion is to benefit from the 
advantages of both methods and improve results. The proposed algorithm combines the global 
search capacity of the DE and the local search ability of the SA, and offsets the weaknesses of 

each other. It will provide so a good balance between exploration and exploitation. It can avoid 
local point, resist premature convergence, and increase the diversity of DE solutions.  

In order to make the problem of RPD more practical the optimal setting of control 

variables are represented in a mixed (continuous/discrete) representation. Generator voltages 
are considered as continuous values. However, reactive power installation and the transformer 
taps are regarded as discrete ones. 

The robustness of the proposed method is tested on the standard IEEE 30 bus test 
system. Compared with the use of DE or SA method alone, the hybrid method shows a potential 
advantage. Therefore, the hybridization techniques are a promising alternative approaches. As 

perspective of this work, we can hybrid SA algorithm with another technique and demonstrate 
the effectiveness of the proposed algorithm on different electrical test networks.  
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