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Abstract 
This paper concerns the identification of a greenhouse described in a multivariab le linear system 

with two inputs and two outputs (TITO). The method proposed is based on the least squares identification 
method, without being less efficient, presents an iterative calculation algorithm with a reduced 

computational cost. Moreover, its recursive character allows it to overcome, with a good initialization, slight 
variations of parameters, inevitab le in a real multivariab le process. A comparison with other method s 
recently proposed in the literature demonstrates the advantage of this method. Simulations obtained will be 

exposed to showthe effectiveness and application of the method on multivariab le systems.  
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1. Introduction 

The identification of multivariable systems is a topic of current research but whose 
industrial applications remain punctual. Until now, the identification of multivariable processes 
(MIMO) has generally been handled by applying multi-input, single-output (MISO) techniques to 

each output of the system [1]. 
Hence, the identification methods are classified into two broad categories: parametric 

and nonparametric. The non-parametric methods aim at determining models by direct 

techniques, without establishing a class of models a priori, they are called non-parametric 
because they do not involve a parameter vector to represent the model as developed in [2].  

The objective of parametric identification is to estimate the parameters of a 

mathematical model, so as to obtain a satisfactory representation of the real sys tem studied; in 
this kind of identification we also find different techniques. 

One of them is called "heuristic identification", it is based on the determination of the 

parameters of a transfer function by having the step response of the system. Another technique 
called "linear regression" is used in the simple least squares method. We also find methods 
based on the output error and the prediction error [3]. 

 
 
2. Background 

The use of dynamic system identification techniques is based on a systemic approach 
to heat transfer [4]. In this approach, modeling a process uses three types of quantities:  

a. The inputs of the system (magnitudes exogenous to the system), which are the cause 

of its dynamic evolution and will be denoted by the « vector U (t) » 
b. The outputs of the system, which are the variables through which the system is 

observed; these are by definition quantities which can be the object of an experimental 

measurement: «vector Y (t) ». 
c. Finally, the state of the system « vector X (t) » which groups together all variables 

(possibly non-measurable) allowing at a given moment to characterize its dynamic  

state [5]. 
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3. The Problem 

Recently, many self tuning models have been suggested to describe the dynamic 
behaviour of the greenhouse. In the reported literature the application of conventional methods 
requires preliminary knowledge of a model of the process in order to control it optimally in the 

presence of environmental disturbances. However, in our case, this knowledge is often not 
available and the process control must be preceded by a preliminary step of identifying the 
model. This type of approach leads to a two-step realization of the control system (identification 

of the model and control of the process) [6]. The major disadvantage of this approach is to set 
the control system according to the model obtained during the identification step; during which 
the process operating conditions may be different from that corresponding to the effective 

application of the control [7]. 
 
 

4. Proposed Solution 
We have therefore been led to develop models of parametric identification of 

greenhouse climate which are based on the writing of energy balances at the main components 

of the greenhouse: walls, indoor air, vegetation, different horizons of the soil. These 
multivariable models will then be compared to the parametric models obtained by parametric 
identification based on the quadratic error minimization criterion [8]. 

This article is structured as follows. Section 5 presents a general greenhouse mlodeling. 
Section 6 presents the principle of recursive least sqaure algorithm by highlighting our 
contribution to this paper. Section 7 unveils simulations on the simulink code of the proposed 

method [9].  
 
 

5. System Modeling 
The descriptive model shown in Figure 1 will be set in parametric identification in real 

time in order to obtain the dynamic model of the behavior of the greenhouse containing all the 

parameters to be identified [10]. 
 
 

 
 

Figure 1. Greenhouse system modeling 
 

 
The validation of these parameters is done by minimization of quadratic criterionon time 

horizon which allows this error to be acceptable [11]. by using the RLS identification algorithm 

applied in multivariable mode, we will be able to concretize the dynamic model of the 
greenhouse as seen in Figure 2. 
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Figure 2. Schematic diagram of controlled greenhouse 
 
 

To describe the dynamic model of the greenhouse [12-13], we chose the ARMAX [5] 
representation (recursive exogenous autoregressive moving average) as shown on Figure 3. 

 

 (   )  ( )       (   )  ( )   (   )  ( )     (1) 
 
 

 
 

Figure 3. ARMAX structure 
 
 

To simplify the modeling of the greenhouse [6], we have to limit the order of identification of the 
polynomials of the ARMAX model to n=2, and we have this: 

 

 (   )     
      

          (2) 
 

 (   )       
      

         (3) 
 

 (   )       
          (4) 

 

In the above Equations, y(t) represent the greenhouse outputs: the temperature T°(°C) 
and the humidity H (%) of the internal climate of the greenhouse. u(t) the greenhouse input: 
ventilation V(w) and heat power H(w). w(t) vector-valued zero-mean sequences, with definite 

power and independent of the inputs of theplant. Moreover (   ),  (   )and  (   ) are 
polynomial functions in the backward shift operator (   ) of order na, nb and nc, respectively.  

 
 

6. Parametric Identification RLS Method  
A general method consists in calculating the quadratic error of the criterion in order to 

use a generic method of iterative or recursive minimization (see optimization in [14-15]).  

The criterion is de ned by : 
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 ( )     ( ) ( )        (5) 

 
This predictor does not finish a linear regression because it is looped. It is generally referred to 

as pseudo-linear regression, and the parameter vector is put in the form: 
 
  ( )  [            ]       (6) 

 
The vector  ( )  contains the measured data of the control and the output of the model of the 

greenhouse "here temperature and humidity" 
 

 ( )  [      ]         (7) 
 

The method we propose here, [16] although it belongs to the category of "sub-optimal" methods, 
has the advantage of being simple in terms of both implementation and computational workload, 
and just as powerful as existing methods. The processing performed on the data will be 

sequential, ie the set of data to be processed is not supposed to be available at one time; at a 
moment k, only the history of the measurements y(k) constitutes the learning base [17]. Instead 
of resorting to particulate estimation techniques as in [8] to ensure the calculation of the 

parameters of the different modes of operation, the approach adopted here is based on 
recursive least squares. 

 

 ̂( )        ∑ ( ( )    ( )  ̂( ))  
         (8) 

 
In all cases, obtaining good estimates depends on the choice of an appropriate decision 
criterion and an appropriate initialization of the parameters [12-13]. Henceeach iteration will be 

represented by 
 

 ̂( )   ̂(   )   ( )[ ( )    ( )  ̂(   )]     (9)   
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7. Simulation Results 
The excitation input of the greenhouse is chosen as a centered white noise of unit 

variance; an additive output noise e is also selected white of the same characteristics.The 

Figures below present the simulation results of the online identification obtained after the 
calculation iteration of the RLS quadratic algorithm. 

The Figures are made for various values of parameters, in order to show the robustness 

and the time reponse of this method and especially its capacity to operate with very few 
variations of the internal parameters of the greenhouse. Note that the estimates are relatively 
close to the true parameters of the greenhouse. They are also quickly calculated by this 

method. Here to illustrate the method presented above, we give the different initializations of the 
algorithm of RLS identificationdefined such that:  

computing time: 1000; weighting matrix P=106 

Also, we consider an example of a greenhouse system of orders na=2 and nb=2 and nc=1; 
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To validate the model, the simulation results of the estimated model with respect to other 
observations than those used for the estimation phase are shown in Figure 3. The values of the 
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temperature and humidity inside the greenhouse show that the dominant behavior of the 

greenhouse is correctly described by the estimated model.  
 

 
 

Figure 4. Comparison between measured and estimated output variables 
 
 

The time-based of the greenhouse parameters is shown in Figures 2 and 3. The 
parameters values are adjusted with very low values, meanwile the extrnal disturbance are 
applied, the parameters are again estimated to consider the effect of the new greenhouse state.  

The curves below make it possible to observe that after 5% of the global time of calculation of 
the identification, the best results of the values of the parameters of the greenhouse can be 
obtained. 

 
 

 
 

  

Figure 5. Evolution of the estimate of the dyanamic parameters of the greenhouse A1, A2,  
B0 and B1 
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Figure 6. Evolution of the estimate of the dyanamic parameters of the greenhouse B2 and C1 
 
 

8. Conclusion 
In this paper, We have suggested a multivariable method for the recursive identification 

of systems with evolving coupled variables. The approach proposed here for the identification of 

a greenhouse is built around an idea which consists in coupling the tasks of identification and 
estimation of the parameters. by minimizing the qaudratic error between measurement and real -
time estimation of measured outputs.Compared with single-variable methods, it has been 

shown that for equivalent performance, our method has the advantage of being inexpensive in 
terms of computing loads.Our next work will extend to the recursive identification of the 
multivariable greenhouse, subject to more advanced controls that can be adaptive. 
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