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Abstract 
 Recently chaos-based encryption has been obtained more and more attention. Chaotic systems 

without equilibria may be suitable to be used to design pseudorandom number generators (PRNGs) 
because there does not exist corresponding chaos criterion theorem on such systems. This paper 
proposes two propositions on 4-dimensional systems without equilibria. Using one of the propositions 
introduces a chaotic system without equilibria. Using this system and the generalized chaos 
synchronization (GCS) theorem constructs an 8-dimensional discrete generalized chaos synchronization 
(8DBDGCS) system. Using the 8DBDGCS system designs a 216-word chaotic PRNG. Simulation results 
show that there are no significant correlations between the key stream and the perturbed key streams 
generated via the 216-word chaotic PRNG. The key space of the chaotic PRNG is larger than 21275. As 
an application, the chaotic PRNG is used with an avalanche-encryption scheme to encrypt an RGB image. 
The results demonstrate that the chaotic PRNG is able to generate the avalanche effects which are similar 
to those generated via ideal chaotic PRNGs. 

  
Keywords: chaotic map, pseudorandom number generator, randomness test, avalanche encryption 
scheme 
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1. Introduction 

Chaos is a kind of complex dynamic behaviors generated from determined nonlinear 
systems. Chaotic behaviors are extremely sensitive to initial conditions, difficult to predict in a 
long-term [1-3]. Chaos synchronization (CS) is of essential importance for many physical, 
biological and engineering systems. Pecora and Carroll’s poineer work on GS communication 
[4] has made the research on GS to developed rapidly [5-11]. The apparant random behaviors 
of chaotic systems makes them to provide new tools for cryptography and other fields [12-25]. 

In cryptographic terms, the strict key avalanche criterion means that when any bit of the 
key change, each binary bit of the ciphertext should have a change with the probability of one 
half [26,27]. In 2013, a d-bit segment stream encryption scheme with avalanche effect (SESAE) 
has been presented [28]. The feature of the SESAE is to make each bit of the decrypted 
plaintext changed to 1 with probability of (2

d
-1)/2

d
 if using an ideal d-bit PRNG [28]. Following 

[28], some 2
16

-word PRNGs have been designed [19,29,30], which provide a new tool in 
cryptography. 

Dynamic chaotic systems without equilibria have generally complex dynamic behaviors 
[31], and more suitable to design PRNGs because there are corresponding chaos criterion 
theorems on them. In a recent paper [19], we have firstly intorduded a kind of disrete chaotic 
system without equilibria (DCSE), used a DCSE to design a PRNG applying to SESAE. 

Conseqently, studing new theorems on DCSE, PRNGs and their applications to SESAE 
is important both for theoretical researchs and pactical applications. This paper firstly set up two 
new propositions for determining 4-dimensional DCSE. Our propositions extend the results 
obtained in [19]. And then introduces such a DCSE. Thirdly construct an DCSE-based 
generalized CS (GCS) system, and simulate the complex dynamics of the system. Fourthly 
designs a DCSE-GCS-based PRNG. and uses the NIST FIPS 140-2 test suite [32] to test the 
randomness of the GCS PRNG, the RC4 algorithm and the ZUC algorithm [33]. Finally, using 
the GCS PRNG and the SESAE [28] encrypts an RGB image with numerical analysis. 
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2. Definition and the GCS Theorem 
Definition 1: (Similar to [34,35 ]).Consider two systems, 

 

( 1) ( ( ))k F k X X  (1) 

 

( 1) ( ( ), ( ))k G k k Y Y X                                                         (2) 

 
where 
 

T

1( ) ( ( ), , ( ))nk x k x kX L                                                          (3) 

 

1

T( ) ( ( ), , ) , ( )mk y k y k m n Y L                                                  (4) 

 

1

T( ( )) ( ( ( )), , ) ( ( ) )nF k f k f kX X XL                                              (5) 

 

1

T( ( ), ( )) ( ( ( ), ( )), , ( ( ), ( ))) .mG k k g k k g k kY X Y X Y XL                           (6) 

 
If there exists a transformation 
 

: n mH ¡ ¡                                                                  (7) 

 

1

T( ( )) ( ( ( )), , ) ( ( ) )mH k h k h kX X XL                                              (8) 

 

and a subset n m

X YB B B   ¡ ¡ such that all trajectories of (1) and (2) with initial conditions 

in B  satisfy lim ( ( )) ( ) 0,
k

H k k


 X Y‖ ‖ then the two systems (1) and(2) are said to be in GS with 

respect to the transformation ( ( ))H kX . System (1) is called the driving system, while system (2) 

is the driven system. In particular, if the two systems are chaotic, then the GS is called a 
generalized chaos synchronization (GCS). 

In order to construct a new discrete chaotic system with the GCS property, the following 
theorem is needed. 

Theorem 1: [11] Let , , , ( )m FX Y X X  and ( , )G Y X  be defined by (3)-(6), and 

1

T( ( ), , ( ))m mx k x kX L
 

 
Suppose that 
 

1 2

T( ) ( , , , )m mH y y yX L                                                               (9) 

 
is an invertible transformation. If the two systems (1) and (2) are in GCS via the transformation 

( )mHY X , then the function ( , )G Y X  given in (2) will have the following form: 

 

( , ) ( ( )) ( , ) m mG H F q Y X X X Y  (10) 

 
Where 
 

1 2

T( ) ( ( ), ( ), , ( ))m mF f f fX X X XL
 

 
and the function 
 

1 2

T( , ) ( ( , ), ( , ), , ( , )    ) m m m m mq q q qX Y X Y X Y X YL
 

 
guarantees that the zero solution of the following error equation is asymptotically stable: 
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( 1) ( ( 1)) ( 1) ( ,   )m mk H k k q     e X Y X Y                                     (11) 

 
 

3. Two Propositions on Chaotic System Without Equilibria 
Consider a  general parametric form of four-dimensional discrete system: 
Form A: 
 

1 1 1 1 2 1

2 2 1 2 3 4 2 3 4

3 3 3 1 2 5 6

4 4 4 1 2

( 1) ( ) ( ( ), ( ), )

( 1) ( ( ), ( ), ( ), ( ), , , )

( 1) ( ) ( ( ), ( ), , )

( 1) ( ) ( ( ), ( ))

x k x k f x k x k

x k f x k x k x k x k

x k x k f x k x k

x k x k f x k x k



  

 

  


 


  
   

                                 (12) 

 

Where , 1,2, ,6.n

ia i ¡ L Now we give the following 

Proposition 1: If the following conditions hold, then system (12) has no equilibrium.  
 

i 1 1 2 1( , , ) 0f x x a  if and only if 1 2x x
 

 

ii 3 1 2 5 6( ( ), ( ), , ) 0f x k x k a a   if and only if 2

1 2 6x x a
 

 

iii 4 6 6( , ) 0f a a   
 
Proof. Firstly, solve for the equilibrium of the first equation of system (12). Condition (i) gives 
 

1 1 1 1 2 1( ) ( ) ( ( ), ( ), )x k x k f x k x k a   

1 2 ( ) ( )x k x k                                                                       (13) 

 

Substituting (13) into the third equation of system (12) and letting 3 3( 1) ( )x k x k   gives 

 

3 1 2 5 60 ( ( ), ( ), , )f x k x k a a                                                           (14) 

 
and 
 

1 2 6( ) ( )x k x k a                                                                   (15) 

 

Then substituting (15) into the fourth equation of system(12) and letting 4 4( 1) ( )x k x k   gives 

 

6 60 ( , ) 0f a a                                                                    (16) 

 
This contradiction shows that system (12) has no equilibria. This completes the proof. 
Form B: 
 

1 2 3 4 1 2 3 4

1

1 1 2 3 4

1 2 3 4

2

2 1 2 3 4

1 1

3 3

3 1 2 3 4

( ( ), ( ), ( ), ( )) ( ( ), ( ), ( ), ( ))
( 1)

( ( ), ( ), ( ), ( ))

( ( ), ( ), ( ), ( ))
( 1)

( ( ), ( ), ( ), ( )

sin( ( ))
( 1) ( )

( ( ), ( ), ( ), ( )

g x k x k x k x k e x k x k x k x k
x k

f x k x k x k x k

g x k x k x k x k
x k

f x k x k x k x k

x k
x k x k

f x k x k x k x k




 

 

  

2 2

4 4

3 1 2 3 4

)

sin( ( ))
( 1) ( )

( ( ), ( ), ( ), ( ))

x k
x k x k

f x k x k x k x k













   



                         (17) 

 

where 1 2, 0   . Now we give the following 

Proposition 2: If the following conditions hold, then system (17) has no equilibrium. 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 16, No. 2, April 2018 :  811 – 826 

814 

i 1 2 3 4| g( ( ), ( ), ( ), ( )) | <x k x k x k x k M
 

 

ii 1 2 3 40 | ( ( ), ( ), ( ), ( )) |e x k x k x k x k N 
 

 

iii 1 2 3 4( ( ), ( ), ( ), ( )) 0, 1, 2,3, 4.i if x k x k x k x k i  
 

 

iv 
1 1

| |
M N

 


 , 

2 2

| |
M

 


 
 
Proof. Solving the equilibrium point is to solve the following Equations: 
 

1 2 3 4 1 2 3 4

1

1 1 2 3 4

1 2 3 4

2

2 1 2 3 4

1 1

3 1 2 3 4

( ( ), ( ), ( ), ( )) ( ( ), ( ), ( ), ( ))
( ) (18 1)

( ( ), ( ), ( ), ( ))

( ( ), ( ), ( ), ( ))
( ) (18 2)

( ( ), ( ), ( ), ( ))

sin( ( ))
0= (1

( ( ), ( ), ( ), ( ))

g x k x k x k x k e x k x k x k x k
x k

f x k x k x k x k

g x k x k x k x k
x k

f x k x k x k x k

x k

f x k x k x k x k




 

 

2 2

4 1 2 3 4

8 3)

sin( ( ))
0= (18 4)

( ( ), ( ), ( ), ( ))

x k

f x k x k x k x k










 


 



                      (18) 

 

Then 1 1( ( )) 0sin x k  , because of (18-3) and conditions (iii). Those imply 

 

1 1( ) , 0, 1, 2x k m m     L  

then  

1

1

( ) , 0, 1, 2
m

x k m



    L

 
 

And we can know 1

1

| ( ) |
M N

x k



 form the proposition 2 

that is  
 

1 1

| | , 0, 1, 2,
m M N

m


 


    L                                                    (19) 

 

then 0m  because of (19) and condition (iv), so 1( ) 0x k  and similarly 2 ( ) 0x k  . 

then 
 

3 4 3 4

3 4

(0,0, ( ), ( )) (0,0, ( ), ( )) 0

(0,0, ( ), ( )) 0

g x k x k e x k x k

g x k x k

 


  
 

then  
 

3 40 (0,0, ( ), ( )) 0e x k x k 
 

 
This contradiction shows that system (17) has no equilibria. This completes the proof. 

Table 1 shows fourteen systems which satisfy propositions 1 and 2, respectively. The 
corresponding Lyapunov exponents and initial conditions are listed in the table. The largest 
Lyapunov exponents of all systems are positive. Therefore they are chaotic systems. The 

chaotic orbits of the state variables 1( )x k , 2 ( )x k , 3 ( )x k  and 4 ( )x k  of the systems are shown in 

Figure 1 and Figure 2. It can be observed that, although the same initial conditions are used, the 
chaotic systems have different dynamical characteristics. 
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Figure 1. Chaotic orbits of the variables of the form a listed in Table 1 
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Table 1. 4-dimensional Discrete Chaotic Systems without Equilibrium  
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Figure 2. Chaotic orbits of the variables of the form b listed in Table 1 
 
 
4.  A chaotic System-Based GCS Theorem 
Firstly, we construct a 4-dimensional polynomial system 
 

1 1 2 1

2 2 1 3 4

3 3 1 2

4 4 2

( 1) ( ) 0.01( ( ) ( ))

( 1) 1.0025 ( ) 0.001 ( ) ( ) 0.001 ( )

( 1) ( ) 0.001( ( ) ( ) 25)

( 1) ( ) 0.1sin( ( )).

x k x k x k x k

x k x k x k x k x k

x k x k x k x k

x k x k x k

   


   
 

   
   

X                         (20) 

 
From Proposition 1, system (20) has no equilibria. Calculated  Lyapunov exponents of this 

system are 0.00104,  0, 0.00089,  0.00761  . Therefore, it is chaotic. System (20) is used as the 

driving system of our GCS system. 
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Second construct an invertible matrix: 
 

4 2 8 7

5 8 3 1

7 0 2 3

4 3 1 7

A

 
 
 
 
 
 

                                                                      (21) 

 

with the transformation 
4 4:H ¡ ¡  defined as follows: 

 

1 2 3 4( ) ( ( ), ( ), ( ), ( ) )H A h h h hX X X X X X@                                                (22) 

 
Let 

1
( , ) ( )

8
q  X Y AX Y                                                                 (23) 

where ( , )q X Y  is used to ensure the error Equation (11) be asymptotically stable. 

Using Theorem 1, we can select a driven system as following form: 
 

1

2

3

4

( 1)

( 1)
( 1) [ ( ( ))] ( ( ), ( )).

( 1)

( 1)

 

y k

y k
k F k q k k

y k

y k

 
 

    
 
 

 

Y A X X Y                                    (24) 

 
Therefore system (20) and (24) are in GCS with respect to transformation (22). Now choose 
(25) and (26) as initial conditions: 
 

T(0) (0.2,0.1,0.75, 2) X                                                            (25) 

 

(0) (0)Y AX                                                                     (26) 

 

The numerical simulated chaotic orbits of state variables 1 2 3 4, , ,x x x x  and 1 2 3 4, , ,y y y y  for 

the first 50000 iterations are shown in Figure 3 and Figure 4, respectively. The evolution of state 

variables: 1( )k x k , 2 ( )k x k , 3 ( )k x k , 4 ( )k x k  and 1( )k y k , 2 ( )k y k , 3 ( )k y k , 4 ( )k y k  are 

shown in Figure 5 and Figure 6. It can be observed that the dynamic behaviors of the chaotic 
system demonstrate chaotic attractor. Moreover, as the theory predicts, with respect to 

transformation ( )H A k X  and ( )kY  are showed in generalized synchronization in Figure 7. 
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Figure 3. Chaotic trajectories of variables: 

 
Figure 4. Chaotic trajectories of variables: 

(a) 1 2 3( ) ( ) ( )x k x k x k  ,(b) 1 2 4( ) ( ) ( )x k x k x k   

(c) 1 3 4( ) ( ) ( )x k x k x k  ,(d) 2 3 4( ) ( ) ( )x k x k x k   

(a) 1 2 3( ) ( ) ( )y k y k y k  ,(b) 

1 2 4( ) ( ) ( )y k y k y k   

(c) 1 3 4( ) ( ) ( )y k y k y k  ,(d) 

2 3 4( ) ( ) ( )y k y k y k   

  
 

Figure 5. The evolution of state variables: 
 

Figure 6. The evolution of state variables: 

(a) 1( )k x k  (b) 2 ( )k x k  

(c) 3 ( )k x k  (d) 4 ( )k x k  

(a) 1( )k y k  (b) 2 ( )k y k   

(c) 3 ( )k y k  (d) 4 ( )k y k  

 
 

 
 

Figure 7. The state vectors and are in generalized synchronization with respect to the: (a), 
(b), (c), (d) 
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5.    Chaotic Pseudorandom Number Generator and Pseudorandomness tests 
5.1. Pseudorandom Number Generator 
Denote 
 

{ ( ) | 1,2,3,4},

{ ( ) | 1,2,3,4}

i i

i i

x k i

y k i

 


 

X

Y
                                                             (27) 

 

where ix s , iy s  are defined by system (20)  and (24). 

Now  introduce a transformation 16

1 : {0,1, ,2 1}T  ¡ L , which transforms the chaotic streams of 

systems(27) into key streams. Let 1510L  , 3 1S X Y  .Then, the chaotic  PRNG 1T  is defined by 

 
16

1( ) mod(round(( ( min( )) / (max( ) min( ))),2 )T L  S S S S S                               (28) 

 
The seeds of the chaotic PRNG are the initial conditions of the GCS system, which can 

be chosen via random number generator. Therefore, the output key streams of the chaotic 
PRNG can be obtained via the transformation (28) on the chaotic streams of the GCS systems 
(20) and  (24). 
 
5.2. Pseudorandomness Test 

The FIPS 140-2 test consists of four sub-tests: Monobit Test, Poker Test, Runs Test and 
Long Runs Test. Each test needs a single stream of 20,000 one and zero bits from the 
keystream generator. Any failure in the first three tests means that the corresponding quantity of 
the sequences falls out the required intervals listed in the second column of Table 2. The Long 
Runs test is passed if there are no runs of length 26 or more. 

Two previous papers [36,37] have pointed out that the required intervals of Monobit test 

and Porker test correspond significant 
410  for the normal cumulative distribution and the 2

distribution, respectively; however the required intervals of the Runs tests correspond 

approximately the significant 
71.6 10   for the normal cumulative distribution. If one selects 

the significant 
410  of all tests, the corresponding accepted intervals are those as ones listed 

in the third column of Table 2 [36-37]. Then, we denote the accepted intervals by G FIPS 140-2 
test criterion. 

 
 

Table 2. The Required Intervals of FIPS 140-2 Monobit Test, Porker Tests, Runs Test. Here, 
MT, PT, and LT Represent the Monobit Test, the Porker Test and the Long Runs Test, k  

Represents the Length of the Run of a Tested Sequence. 2 DT Represents 2 Distribution 

Test Item 
FIPS 140-2 

required intervals 

410   

Accepted Intervals 

Golomb’s 
Postulates 

MT 9,725~10,275 9,725_10,275 10000 

PT 2.16~46.17 2.16_46.17 2 DT 

LT < 26 < 26 ---- 
k  Run Test Run Test Run Test 

1 2,315~2,685 2,362~2,638 2,500 
2 1,114~1,386 1,153~1,347 1,250 
3 527~723 556~694 625 
4 240~384 264~361 313 
5 103~209 122~191 156 

6+ 103~209 122~191 156 

 
 
According to Golomb's three postulates on the randomness, the ideal pseudorandom 

sequences should satisfy [38], the ideal values of  the first three tests should be listed in the 
fourth column of Table 2. Finally, FIPS 140-2 test suite is used to test the randomness 

performance. One needs to change the keystreams with values 16{0,1, ,2 1}L to binary 

keystreams via the following transformation: 
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16:{0,1, ,2 1} {0,1}T  % L
 

 
which is defined by 
 

22 21T T T% o                                                                         (29) 

 
16{0,1, ,2 1}N y L

 
 

21( ) 2 ( )T dec biny y
 

 

Let 2 ( )dec binz Y . Then 

 

22 ( ) (:)T z z  

where 2dec bin  and (:)z  are both Matlab commands. 

The FIPS 140-2 test is used to check 1,000 keystreams randomly generated, 
respectively by the chaotic  PRNG  with perturbed randomly initial conditions (25) and (26) and 

the matrix (21) in the range 16| | [10 ,1]ò . All sequences pass the FIPS 140-2 test and 16 

sequences fail to pass the G FIPS 140-2 test. The test results are listed in the third column of 
Table 3, which the results are described by mean values  standard deviation (Mean  SD). 

 
 

Table 3. The Confident Intervals of FIPS 140-2 Tested Values of 1,000 key Streams Generated 
by the CHAOTIC PRNG, the RC4 and ZUC PRNG. Here, SD Represents the Standard 

Deviation 
Test 
item 

bits 
PRNG RC4 ZUC 

Mean  SD Mean  SD Mean  SD 

MT 
0 9999.0  69.813 9999.7  70.092 9998.4  71.843 

1 10000.9  69.813 10000  70.092 1002  71.843 

PT - 15.175  5.568 14.87  5.433 15.043  5.549 

LT 
0 13.577  1.841 13.6  1.8214 13.605  1.841 

1 13.642  1.930 13.604  1.884 13.595  1.931 

1 
0 2500.3  45.770 2500.9  45.568 2501.9  45.735 

1 2498.7  46.972 2501.4  46.398 2502.7  45.121 

2 
0 1249.4  31.030 1250.5  31.372 1252.1  32.606 

1 1250.9  31.613 1249  31.048 1249.5  32.221 

3 
0 624.42  23.051 624.95  22.964 624.09  22.648 

1 625.58  22.912 625.65  22.93 624.64  23.455 

4 
0 312.75  16.662 311.71  16.548 312.56  16.748 

1 313.73  16.245 312.17  16.822 312.72  16.506 

5 
0 156.36  11.758 156.41  12.069 155.65  12.097 

1 155.99  12.096 156.6  11.958 156.66  12.369 

6+ 
0 156.13  11.811 156.15  11.792 155.75  11.719 

1 156.53  11.551 155.79  11.979 155.82  11.497 

 
 
The Rivest Cipher 4 (RC4) has been widely used in popular protocols such as Secure 

Sockets since it's designed in 1987. The RC4 algorithm as PRNG can be designed via the 
Matlab commands which is shown in Figure 8. 
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Figure 8. The Matlab commands of RC4 algorithm to design PRNG 
 
 
Here, “randint(1, 2^L, [0 2^L-1])” generates a vector of uniformly distributed random integers 

{0,1, ,2 1}L L  of dimension 2L ; “mod” means modulus after division; “zeros(1, N)” is a zero raw 

vector of dimension .N Consequently, the RC4 algorithm based L -bit segment PRNG is 

designed. Next, using FIPS 140-2 test to test the 1,000 keystreams randomly generated by RC4 
PRNG. Results show that 1 and 12 sequences fail to pass the FIPS 140-2 test and G FIPS 140-
2 test, respectively. The statistic test results are listed in the forth column of Table 3. 

Furthermore, ZUC is a stream cipher that forms the heart of the third generation 
partnership project (3GPP) confidentiality algorithm 128-EEA3 and the 3GPP integrity algorithm 
128-EIA3. Then, using FIPS 140-2 test to test the 1,000 keystreams randomly generated by the 
ZUC algorithm [33]. It demonstrates that all of the sequences pass the FIPS 140-2 test, and 21 
sequences fail to pass the G FIPS 140-2 test. The test results are listed in the fifth column of 
Table 3. Finally, compare all test results shown in Table 3. It can be observed, the statistical 
properties of the pseudorandomness of the sequences generated via the three PRNGs don't 
have significant differences. 
 
5.3. Key Space 

The key parameters set of the proposed CHAOTIC PRNG includes the initial condition 

(0)X , (0)Y and the matrix
,( ).i jA  It can be proved that if the perturbation matrix 

,( )i j   

satisfies 
,| | 1.0035i j  , the matrix A   is still invertible. Therefore the chaotic PRNG have 

4+4+16 key 
parameters denoted by 
 

1 2 24{ , , , } s k k kK L                                                               (30) 

 
The perturbed keys have the forms 
 

1 2 24( ) [ , , , ] s s     K K L                                                        (31) 

 
The Matlab platform uses double precision decimal computations. That means each 

computed decimal number has 16 bits' accuracy. Therefore, one can select 
1610 | | 1, 1, ,24,i i    L that is, 1 2 160.i a a a  L , where [0,1, ,9]ia  L . Therefore, the 24 keys 

have a key space which is larger than 
24 16 127510 2 .   Now, compare the difference between the 

key stream S  with 20000 codes length generated by the key set (30) with the key streams 
pS  

generated by the perturbed key set (31), respectively. 
The comparison results are shown in the third column of Table 4, where SV denotes the 

statistic values, DC denotes the different codes, and CC denotes the correlation coefficients. 

Observe that the average percent of different codes is 50.0136% , which is very closed to the 

ideal value 50% . And the average of the correlation coefficients is 0.00583440 , also very closed 

to the ideal value of 0. 
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Table 4. The Statistic Data Describes the Percentages of the Codes of the Key Stream 
Variations between S and pS as well as S and mS  

Item SV pS  
mS  

DC 

Min 48.5900% 48.7299% 

Mean 50.0136% 49.9855% 

Max 51.1000% 51.0700% 

CC 

Min 00000871 0.00001005 

Mean 0.00583440 0.00554509 

Max 0.02823380 0.02533419 

 
 

Next, compare the same key stream S  with the 1000 streams mS  generated by the 

Matlab function randi([0 1], 1, 20000). The comparison results are shown in the fourth column of 

Table 4. Observe that the average percentage of different codes is 49.9855%  and the average 

of the correlation coefficients is 0.00554509 . The results suggest that the key stream S  has no 

significant correlations with the perturbed key streams 
pS  and the streams mS . In summary, the 

effective key space of the CHAOTIC PRNG is 10
24x16

 (larger than 12752 ), which is larger than the 
key space 10

24x15
 obtained in [19]. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
Figure 9 (a) Original Image (b) Decrypted Image via the key Streams P .Ten Decrypted Images 
via Key Streams Generated with Slighted Perturbed Initial Conditions and the Matrix within the 

Range 15 10[10 ,10 ]  : (c)
1,1I  (d)

3,1I  (e)
4,1I  (f)

4,2I ,(g)
5,1I ,(h)

23,1I  (i)
23,2I  (j)

24,1I ,(k)
24,2I  and (l)

25,1I
 

 
 

6. Simulations on SESAE 
Consider the avalanche effect of the CHAOTIC PRNG, which is used to encrypt an RGB 

image "tower" with 250 140 pixels. The simulation is implemented via the Matlab R2016a 
platform. The SESAE experiments on CHAOTIC PRNG are described as follows: Prosedures 
(1)-(4) are the same as those given in [19]. The receiver randomly disturbs the initial conditions 
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(25) and (26), and also the matrix (21), for 1000 times in the range 15 10| | [10 ,10 ] ò , then obtain 

disturbed key streams: 
 

, 1, 2, ,1000.iP i  L                                                            (32) 

 

The receiver uses 1 2{ , , , }i NP p p p L  to decrypt the ciphertext and obtains a decrypted plaintext: 

 
1( , ), 1,2, ,1000.i iM E C P i  L                                              (33) 

 

After changing 
iM s  to RGB images, one can find that all images become almost pure white-

colored ones. There are  840000 0,1  codes in each decrypted image. Among the decrypted 

images,the minimum of 0 s  is 2 and the maximum of 0 s  is 24. 

Denote 
,i jI the j th image that has i  zero codes. The first five images with minimum zero 

codes and the last five images with maximum zero codes are shown in Figure 9(c)-(l). 
Therefore, the percentages of the numbers of “1” codes in the 1000 decrypted images are within 

the range [0.999970, 0.999998] , which are near to the ideal value 16 16(2 1) / 2 0.999985  , 

and are similar to those given in [19]. 

Table 5 lists some statistical data of the norms between the original key stream 0S  and 

the key stream 
,i jS  used in the above ten decrypted images, respectively. The results suggest 

that there are no significant correlations between the norms and the corresponding decrypted 
image, and  similar to those obtained in [19]. 

 
 

Table 5. Differences between the Original Keystream 0S and the keysteams ,j iS , Measured by 

Norm 0 ,|| ||j iS S  

 
10

0 ,|| || 10j iS S    

 1,1S  3,1S  4,1S  4,2S  5,1S  

0S  3.151 2.836 3.138 2.344 2.723 

 23,1S  23,2S  24,1S  24,2S  25,1S  

0S  3.092 2.828 2.847 2.950 2.817 

 
 

Remark: To resist attacks, one may consider implementing an “one-time-pad” scheme into 
CHAOTIC PRNG: Let X  be a set in the seed space (initial conditions) of the CHAOTIC  PRNG, 

and assume that Alice and Bob share a one-to-one map  :f X X . Before each 

communication, Alice randomly selects an element xX  and sends it to Bob. Then, they both 

use ( )f x  as the seed for one-time encryption. 

In summary, the simulation shows that using the CHAOTIC PRNG and SESAE to encrypt 
RGB images is able to generate encrypted images with significant avalanche effects. 
 
 
7. Concluding Remarks 
The main results of this paper are summarized as follows: 
a. This paper proposes two propositions on 4-dimensional discrete systems without equilibra, 

which extend the results obtained by [19]. 
b. A 4-dimensional discrete chaotic system is proposed. Using the system and the GS 

theorem designs an 8-dimensional GCS system. 
c. Using the 8-dimensional GCS system constructs a chaotic PRNG. The key space of our 

PRNG is 10
24x16 (larger than 12752 ) is larger than the key space 10

24x15
 obtained in [19] and 

the key space 2
128

 obtained by the ZUC algorithm. 
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d. Using the FIPS 140-2 test critrions tests the keystreams generated via the CHAOTIC 
PRNG, the RC4 algorithm and the ZUC algorithm. The results show that the randomness of 
the sequences generated via the chaotic PRNG and others are similar. 

e. Numerical simulations show that the CHAOTIC PRNG is able to generate significant 
avalanche effects, and the percentages of the “1” code in the decrypted texts for different 
keystreams are larger than 0.999970, which is very closed to the idea value of 

16 16(2 1) / 2 0.999985   and similar to those given in [19]. Therefore, it verifies the proposed 

chaotic PRNG is a qualified candidate for SESAE. 
In summary, the proposed chaotic PRNG is a promising candidate for practical 

applications. Further comparison with different state-of-the-art PRNG schemes in terms of 
computational complexity, storage requirement, communication cost, etc., it will be carried out in 
future research along the same lines. 
 
 
References 
[1]  Li, Tien Yien, James A Yorke. Period three implies chaos. The American Mathematical Monthly 82.10 

(1975): 985-992. 
[2]  Rong, Chen Guan, Dong Xiao Ning. From chaos to order: methodologies, perspectives and 

applications. World Scientific, 1998. 
[3]  Sprott, Julien Clinton, Julien C. Sprott. Chaos and time-series analysis. Vol. 69. Oxford: Oxford 

University Press, 2003. 
[4]  Pecora, Louis M, Thomas L. Carroll. Synchronization in chaotic systems. Physical review letters. 

1990; 64(8): 821-825. 
[5]  Murali, K, M Lakshmanan. Secure communication using a compound signal from generalized 

synchronizable chaotic systems. Physics Letters A. 1998; 241(6): 303-310. 
[6]  Abdurahman, Kadir, Wang Xing-Yuan, Zhao Yu-Zhang. Generalized synchronization of diverse 

structure chaotic systems. Chinese Physics Letters. 2011; 28(9): 090503. 

[7]  Margheri, Alessandro, Rogério Martins. Generalized synchronization in linearly coupled time periodic 
systems. Journal of Differential Equations 249. 2010; 12: 3215-3232. 

[8]  Zhi-Ling, Yuan, Xu Zhen-Yuan, Guo Liu-Xiao. Generalized synchronization of two unidirectionally 
coupled discrete stochastic dynamical systems. Chinese physics B 20.7 2011: 070503. 

[9]  Koronovskii, AA, OI Moskalenko, AE Hramov. Generalized synchronization in complex networks. 
Technical Physics Letters, 2012; 38(10): 924-927. 

[10]  Min, Lequan, Guanrong Chen. Generalized synchronization in an array of nonlinear dynamic systems 
with applications to chaotic CNN. International Journal of Bifurcation and Chaos, 2013: 1350016. 

[11]  Jia, Qianqian. Synchronization Control of Complex Dynamical Networks Based on Uncertain 
Coupling. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2017; 15(3): 1164-
1172. 

[12]  Zang, Hongyan, Lequan Min, Geng Zhao. A generalized synchronization theorem for discrete-time 
chaos system with application in data encryption scheme. Communications, Circuits and Systems, 
2007. ICCCAS 2007. International Conference on. IEEE, 2007. 

[13]  Wang, Yong, et al. A new chaos-based fast image encryption algorithm. Applied soft computing. 
2011; 11(1): 514-522. 

[14]  Kanso, A, M Ghebleh. A novel image encryption algorithm based on a 3D chaotic map. 
Communications in Nonlinear Science and Numerical Simulation. 2012; 17(7): 2943-2959. 

[15]  Min, Lequan, et al. Study on pseudorandomness of some pseudorandom number generators with 
application. Computational Intelligence and Security (CIS), 2013 9th International Conference on. 
IEEE, 2013. 

[16]  Guo, Cheng, Chin-Chen Chang, Chin-Yu Sun. Chaotic maps-based mutual authentication and key 
agreement using smart cards for wireless communications. Journal of Information Hiding and 
Multimedia Signal Processing. 2013; 4(2): 99-109. 

[17]  Liu, Yang, Xiaojun Tong, Shicheng Hu. A family of new complex number chaotic maps based image 
encryption algorithm. Signal Processing: Image Communication, 2013; 28(10): 1548-1559. 

[18]  Du, Baoxiang, Qun Ding, Xiaoli Geng Analysis and elimination of digital chaotic key sequence's 
autocorrelation. Journal of Information Hiding and Multimedia Signal Processing, (2014); 5(2): 302-
309. 

[19]  Min, Lequan, et al. Some polynomial chaotic maps without equilibria and an application to image 
encryption with avalanche effects. International Journal of Bifurcation and Chaos, 2015; 25(09): 
1550124. 

[20]  Han, Dandan, Lequan Min, Guanrong Chen. A Stream Encryption Scheme with Both Key and 
Plaintext Avalanche Effects for Designing Chaos-Based Pseudorandom Number Generator with 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 16, No. 2, April 2018 :  811 – 826 

826 

Application to Image Encryption. International Journal of Bifurcation and Chaos, (2016); 26 (05): 
1650091. 

[21]  Sukirman, Edi, MT Suryadi, M Agus Mubarak. The implementation of henon map algorithm for digital 
image encryption. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2014; 
12(3): 651-656. 

[22]  Arboleda, Edwin R, Joel L Balaba, John Carlo L Espineli. Chaotic Rivest-Shamir-Adlerman Algorithm 
with Data Encryption Standard Scheduling. Bulletin of Electrical Engineering and Informatics (BEEI). 

2017; 6(3): 219-227. 
[23]  Pacha, Adda Ali, Naima Hadj Said. The quality of a New Generator sequence improvent for spreading 

the Color Image Transmission system. TELKOMNIKA (Telecommunication Computing Electronics 
and Control), 2018; 16(1): 402~414. 

[24]  Xiao, Genfu, et al. Research on Chaotic Firefly Algorithm and the Application in Optimal Reactive 
Power Dispatch. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2017; 
15(1); 93-100. 

[25]  Wang, Junnian, et al. The Chaos and Stability of Firefly Algorithm Adjacent Individual. TELKOMNIKA 
(Telecommunication Computing Electronics and Control). 2017; 15(4): 1733~1740. 

[26]  Spillman, Richard J. Classical and contemporary cryptology. Prentice-Hall, Inc., 2004. 
[27]  Feistel, Horst. Cryptography and computer privacy. Scientific American. 1973; 228(5): 15-23. 
[28]  Min, Lequan, and Guanrong Chen. A novel stream encryption scheme with avalanche effect. The 

European Physical Journal B. 2013; 86(459): 1-13. 
[29]  Chen, E, Lequan Min, Guanrong Chen. Discrete Chaotic Systems with One-Line Equilibria and Their 

Application to Image Encryption. International Journal of Bifurcation and Chaos, 2017: 27(03): 
1750046. 

[30]  Zhang, Mei, et al. A generalized stability theorem for discrete-time nonautonomous chaos system 
with applications. Mathematical Problems in Engineering. 2015. 

[31]  Fiedler, Bernold, Stefan Liebscher. Bifurcations without parameters: Some ODE and PDE examples. 
arXiv preprint math/0304453(2003). 

[32]  FIPS, PUB. 140-2. Security Requirements for Cryptographic Modules, 2001; 25. 
[33]  ETSI/SAGE Specification, Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.5, Date: 4th January 2011. 
[34]  Breve, Fabricio A., et al. Chaotic phase synchronization and desynchronization in an oscillator 

network for object selection. Neural Networks, 2009; 22(5): 728-737 

[35]  Kocarev, Lj, U Parlitz. Generalized synchronization, predictability, and equivalence of unidirectionally 
coupled dynamical systems. Physical review letters, 1996; 76(11): 1816. 

[36]  Min, Lequan, Tianyu Chen, Hongyan Zang. Analysis of fips 140-2 test and chaos-based 
pseudorandom number generator. Chaotic Modeling and Simulationx, 2013; 76(11): 273-280. 

[37]  Min, Lequan, Tianyu Chen, Hongyan Zang. Analysis of fips 140-2 test and chaos-based 
pseudorandom number generator. Chaotic Modeling and Simulation, 2013; 2(1): 273-280. 

[38]  Golomb, Solomon W. SHIFT REGISTER SEQUENCES: Secure and Limited-Access Code 
Generators, Efficiency Code Generators, Prescribed Property Generators, Mathematical Models. 
1982. 


