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Abstrak 
Kode konvolusional punctured telah digunakan secara luas dalam sistem telekomunikasi karena 

hemat bandwidth dan lebih sederhana dibandingkan kode non-punctured, namun tetap memiliki kinerja 
yang baik. Analisa kinerja kode konvolusional punctured dapat disederhanakan menggunakan kode 
ekivalen non-punctured.  Dalam makalah ini diajukan kode konvolusional punctured baru dengan rate 3/8, 
3/7 dan 3/6, dan kinerjanya dianalisa dengan terlebih dahulu mengkonstruksi kode ekivalen non-
punctured.  Hasil simulasi menunjukkan bahwa pola puncturing yang berbeda untuk laju kode yang sama 
akan mempengaruhi kinerja kode. Penelitian lebih lanjut menunjukkan bahwa puncturing pada bit-bit yang 
bersebelahan perlu dihindari karena berpotensi menurunkan kinerja kode, seperti diindikasikan dengan 
penurunan jarak bebas kode sebesar 9% dan 33% di bawah rata-rata berturut-turut untuk laju kode 3/7 
dan 3/6. Sebaliknya puncturing yang dilakukan pada bit-bit yang tersebar akan menghasilkan kinerja kode 
yang baik, seperti diindikasikan dengan peningkatan jarak bebas sebesar 27% dan 32.45% di atas rata-
rata berturut-turut untuk laju kode 3/7 dan 3/6. 

  
Kata kunci: bobot galat, kode ekivalen non-punctured, kode konvolusional punctured, pola puncturing 

 
 

Abstract 
 Punctured convolutional codes are known to have low complexity compared to their non-

punctured counterpart, while retaining a good performance. Analyzing the performance of punctured 
convolutional code can be simplified by using non-punctured equivalent code. In this paper new punctured 
convolutional codes with rates of 3/8, 3/7 and 3/6 are proposed, and their performances are studied by first 
constructing non-punctured equivalent codes.  Simulations results show that different puncturing patterns 
will affect the code performances. Further investigations show that puncturing adjacent bits is to be 
avoided as it tends to degrade the code performance, as indicated by a decrease of the free distance by 
9% and 33% below average for code rates 3/7 and 3/6 respectively. On the contrary, dispersed punctured 
bits will yield good code performance as indicated in the increase of the free distance by 27% and 32.45% 
above average for code rates 3/7 and 3/6 respectively. 

  
Keywords: error weight, punctured convolutional code, puncturing pattern, non-punctured equivalent code  
  
 
1. Introduction 

Forward error control is one of the key areas which enable the rapid development of 
reliable and secure telecommunication systems.  It is found in the transmission and reception 
parts of a telecommunication system, as well as in the storage media critical to the reliability of a 
system. 
 One of the most widely used forward error control method is convolutional coding, found 
in wireless terrestrial to deep space telecommunication.  Its advantage lies in its ability to protect 
transmitted data from burst as well as intermittent errors.  This type of coding plays an important 
role in both parallel and serial concatenated coding, which serves as a highly reliable error 
detector and corrector [1].   
 To ensure high reliability, however, convolutional codes tend to occupy a large 
bandwidth.  This is due to the fact that convolutional codes add redundancy to each transmitted 
bit, producing a code rate of smaller than 1. The larger number of redundancy bits added to 
each transmitted bit, the stronger the protection given to the said bit against transmission  
errors [2].  
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 One way to reduce the occupied bandwidth is by using punctured convolutional codes 
[3-4].  Punctured convolutional codes can also provide variable rate convolutional code, an 
important part of unequal error protection in wireless telecommunication systems [5-6]. A 
puncturing process deletes a number of bits in the codeword produced by a convolutional 
encoder [3].  As the number of redundant bits decreases, so does the system complexity and 
the bandwidth required by the system.  The decrease of redundant bits implies that the code 
performance will decrease as well. However it has been shown that there punctured codes 
which performances are comparable to those of convolutional codes [3], [7-8]. 
 Quantifying the performance of punctured convolutional codes is not straightforward, 
and the accurate analysis using state diagram and transfer function has been widely known only 
for convolutional codes [1], [9-10].  A method to accurately analyze the performance of 
punctured convolutional codes is therefore a research topic of an urgent value. We have tried to 
implement a combination of the methods proposed in [1] and [9] to quantify the performance of 
new punctured convolutional codes using non-punctured equivalent model [10]. However the 
role of a puncturing pattern is not shown in [10]. In this paper we use the non-punctured 
equivalent model [1], [9-10] to construct a punctured convolutional code in order to quantify the 
performance of a punctured convolutional code, as well as demonstrating the effects of 
puncturing patterns used on the code performance.   
 This paper is organized as follows. Section 2 illustrates the basics of punctured 
convolutional codes. The reconstruction of equivalent non-punctured convolutional code for a 
punctured code is given in Section 3.  Section 4 gives the simulation results and the analysis of 
the code performance, while the conclusion is given in Section 5. 
 
 
2. Research Method 
 In this paper three punctured convolutional codes of rates 3/8, 3/7 and 3/6 are 
generated from a mothercode having a rate of 1/3. The steps required to analyze the 
performance of punctured convolutional codes using non-punctured equivalent codes is given in 
Figure 1.Details are given in the subsequent sub-sections. 
 
 

 
Figure 1.  Steps to analyze punctured convolutional codes using non-punctured equivalent 

codes 
 

 
 

Figure 2. Punctured convolutional code with Pc=4 
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2.1.Punctured Convolutional Codes and the Equivalent Non-Punctured Representation 
 Punctured convolutional code was first developed to simplify the decoding process of a 
convolutional code. A pioneering research has shown that codes with rates 8/9 to 8/30, attained 
by puncturing a rate 8/32 convolutional code, have comparable performances to the best known 
convolutional codes of the respective rates [3]. Figure 2 illustrates a punctured convolutional 
code scheme where a convolutional code with rate Rc=k/n=1/2 is punctured with puncturing 
period Pc=4, where k denotes the number of transmitted bits from the source, and n denotes the 
number of coded bit resulted in the codeword.  The illustrated system has two puncturing tables 
used simultaneously, where the number “0” represents a punctured bit while “1” represents a 
non-punctured bit. It is shown that for 4 input bits, instead of a codeword with 8 bits in 
accordance to Rc=1/2, the system yields a codeword with 6 bits, resulting in an Rc’=4/6.   This is 
due to the fact that 2 bits in the codeword are punctured, conforming to the puncturing tables 
used. 

A puncturing table can be stated as an n×Pc  matrix, and for Figure 2 the puncturing 
table is as follows  

 

         (1) 
 
where 1 ≤δ≤ (n-1)Pc, and δ denotes the number of punctured bits. For this example as Pc=4, δ 
can take any value from 1 to 3. The resulting punctured convolutional codes are [3] 
 

          (2) 
 
so that for the example given, the possible code rates are 4/5, 4/6 to 4/7.   
 It is apparent that there is a number of different puncturing tables available to reach 
each code rate.  A different puncturing pattern will yield different code performance, as will be 
shown in the later sections. 
 To construct a non-punctured equivalent of a punctured convolutional code, the first 
step is to develop a K-times blocked code from the mother code with rate Rc=1/n, with K being 
any integer value. Any convolutional code with rate 1/n can be stated as a K-times blocked code 
with rate K/nK[9].  
 A convolutional code which generator matrix is G=(G0,…,Gn-1) can be expanded into a 
K-times blocked code with expanded generator Ge.  The expanded generator Ge consists of n 
polynomials, each further broken down into K polynomials. The resulting expanded generator 
Ge therefore consists of nK polynomial Tij, where i=0, 1, .., (n-1) and j=0,1,.., n. The expanded 
generator Ge for a convolutional code can be stated as [9] 
 

       (3) 
 
where j/n denotes the smallest  integer not exceeding j/n and D denotes the D-transformation 
of unit delay produced by one memory element in the shift-register of the convolutional encoder. 
 For the example as given in Figure 2, assume the mother code has a rate of Rc=1/2 and 
blocked 4 times, so that K=4. The resulting equivalent code rate is K/nK=4/(2)(4)=4/8.  
According to (3), the expanded generator Ge will therefore have nK=8 polynomials Tijand DTij.  
After the polynomials are calculated, the elements of the expanded generator are laid out as 
follows [9]. 
 

       (4) 
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where Z denotes a K ×Kmatrix  consisting of an upper diagonal of 1, a D in the bottom left 
corner and 0 elsewhere [9], while M is a K ×n matrix which consists of the previously calculated 
polynomials Tijand DTij. 
 The next step in constructing a non-punctured equivalent of a punctured convolutional 
code is to delete some columns in the expanded generator matrix Ge. The deletion is done 
according to the puncturing pattern as stated in the puncturing table.  
 As there are no systematic method to create a well-performing punctured convolutional 
code, such code is created by puncturing a well-known convolutional code with good 
performance [7-8]. 
 
2.2.Constructing Non-Punctured Equivalent Codes of Punctured Convolutional Codes 
 In this paper a mother code having a rate of 1/3 will be punctured to yield punctured 
convolutional codes of rates 3/8 to 3/6with puncturing period P=3.  For Rc=1/3, a blocking of 
K=3 times is carried out, resulting in an equivalent code rate Rc’=3/9.  The generator of the 
mother code is G(D)=[75 53 47], which is a well-known convolutional code with good 
performance. This generator will be expanded to yield Ge which consists of nK=9 polynomials. 
In its matrix form, Ge will have nKcolumns and n rows. 
 To construct Ge, first G(D) is split into G0(D), G1(D), and G2(D). The three separate 
generators can be stated in their binary forms as follows: 
 
 G0(D)=758=1 1 1   1 0 12=1 + D + D2 + D3 + D5     (5) 
 
 G1(D)=538=1 0 1   0 1 12=1 + D2 + D4 + D5     (6) 

 
 G2(D)=478=1 0 0   1 1 12=1 + D3 + D4 + D5     (7) 
 

Each of the generator G0(D), G1(D), and G2(D) is split further using the method 
proposed in [1].  The generator G0(D) is split as follows 
 
 G0(D) = 1 + D + D2 + D3 + D5=a0 D

0+a1 D
1+a2D

2+a3D
3+a5 D

5   (8)      

 

where  is  binary sequence and its equivalent in the D-domain is A(D)=

   and the sequence a can be split into P sub-sequences with respect to the modulo-P 
positions [1] 
 

        (9) 
 

hence the representation of G0(D) in (8). 
 The first of the 3 polynomials Tij gained from (8) is T00, where 
 

     (10) 
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It is shown in (8) that the polynomials in G0(D) possesses a maximum coefficient of a5, therefore 
the terms of sequence in (10) with coefficients higher than 5 are negligible. The first polynomial 
T00 can be written as 
 

        (11) 
 

With the same method, the polynomials T01 and T02 can be derived from G0(D) and yields  
 

 T01=1          (12) 
 T02 =1+ D         (13) 

 

In a similar manner, G1(D) is rewritten as 
  
 G1(D)= 1 + D2 + D4 + D5=a0 D

0+a2 D
2+a4D

4+a5 D
5     (14) 

 

Splitting G1(D) into 3 polynomials will yield 
 
 T10=1          (15) 
 
 T11=1+ D         (16) 
 
 T12=1+ D         (17) 
 
Whereas G2(D) is rewritten as  

 
 G2(D)= 1 + D3 + D4 + D5=a0 D

0+a3 D
3+a4D

4+a5 D
5     (18) 

 
and splitting G2(D) into 3 polynomials will yield  
 
 T20=1 + D         (19) 
 
  T21=1+ D         (20) 
 
   T22=1+ D         (21) 
 
The resulting 9 polynomials T00 to T22 are the elements of expanded matrix generator Ge, which 
is stated in (4).  For K=3, Z can be stated as 
 

         (22) 
while M is 
 

         (23) 
 
 
Using (4), the expanded generator Ge can be stated as 
 

   (24) 

DDaDaT +=+= 11
3

0
000

















=
00

100

010

D

Z

















=

201000

211101

221202

TTT

TTT

TTT

M

















=

201000221202021101

211101201000221202

221202211101201000

TTTDTDTDTDTDTDT

TTTTTTDTDTDT

TTTTTTTTT

Ge



 �  ISSN: 1693-6930 

TELKOMNIKA  Vol. 10, No. 4,  December 2012 :  759 – 770 

764

 
where each element Tijis given in previous equations and DTij can be easily calculated using Tij 
and is given in Table 1. 
 
 
 
3. Results and Analysis 

The code rates of 3/8 to 3/6 are yielded by puncturing 1 to 3 bits from the mother code 
used in this paper, which rate is 3/9. This translates into removing 1 to 3 columns from the 
expanded generator Ge. The determination of which column or columns to be removed is done 
by trial and error to find the best-performing punctured codes. 
 
 

Table 1. Values of DTij calculated from (D), G1(D), G2(D) 

Polynomials from G0(D) Value (Octal) 
DT00 Not needed 
DT01 2 
DT02 5 
DT10 Not needed 
DT11 5 
DT12 5 
DT20 Not needed 
DT21 5 
DT22 5 

 
 

Table 2. Punctured code with Rc=3/8 

 
 

Removing one column of Gefor example will mean increasing the code rate from 3/9 to 
3/8, regardless of which of the 9 columns in Geis removed. However the code yielded by 
removing the first column in Ge will have a different performance compared to the code yielded 
by removing the ninth column in Ge. The performance of a punctured code resulting from 
removing one column in Ge is given in Table 2. It is shown that different puncturing patterns will 
result in different performances, in this case different free distances dfree and error weights cd for 
the given code; where error weights represent the number of erroneous bits produced by the 
incorrect paths. The simulations for all codes are done for the first 5 components of cd. 
 It is noted that for instance, puncturing the first bit of the codeword, which is equal to 
removing the first column in Ge results in a dfree of 6. On the contrary, puncturing the ninth bit of 
the codeword, will yield a dfree of 8 although the code rate is maintained at 3/8.  This means 
puncturing the ninth bit is favorable to puncturing the first bit of the codeword.  Puncturing the 
first bit will yield a code which free distance is the same as the code yielded by puncturing the 
third bit. However the code weight cd will differ between the two, and the total number of bit 
errors in the latter code is higher than that of the code where the first bit is punctured. 
 The simulation result for a punctured code with Rc=3/7 is given in Table 3. To achieve 
Rc=3/7, 2 bits in the resulting codeword from a mother code with Rc=3/9 are punctured. This is 
equal to removing two columns from the expanded generator Ge. It is shown that consistent with 
the result shown in Table 2, different puncturing patterns will affect the code performance. 
   

Code Rate: 3/8 
Bit(s) Punctured: 1 

Column(s) 
removed 

 
1 
 

2 3 4 5 6 7 8 9 

 
dfree 

 
6 7 6 6 7 6 7 7 8 

 
Cd 

 

 

[2 2 3 10 
18] 

[2 6 7 14 
47] 

[2 0 10 0 
25] 

[2 2 0 7 
17] 

[4 0 4 
22 22] 

[2 0 10 0 
31] 

[4 7 13 25 
18] 

 
[2 5 

11 15 
10] 

[7 0 29 
0 101] 
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Table 3. Punctured code with Rc=3/7 

 
 
 
It is further noted that puncturing dispersed bits yield better performance, in this case 

larger dfree, compared to puncturing adjacent bits. From Table 3 it is observed that by puncturing 
bits 1 and 2 of a codeword, the resulting dfree is 5, while puncturing bits 1 and 9 will yield a dfree 
of 6.  Furthermore, puncturing bits 2 and 9 will yield a dfree of 7 while puncturing bits 2 and 3 will 
result in a dfree of 5.  The variations of dfree resulting from different puncturing patterns are 
observed in the other instances in Table 3.  In all instances, it is seen that puncturing adjacent 
bits will yield poorer performance compared to puncturing highly-dispersed bits. This is due to 
the fact that puncturing adjacent bits emulates a burst error, while puncturing highly-dispersed 
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bits emulates an intermittent error.  The convolutional decoder used in the model system of this 
paper performs better to mitigate intermittent error, and therefore punctured bits located more 
dispersedly will contribute to better performance compared to ones located next to each other. 
The best performances, however, are obtained by puncturing bits 2 and 8; 2 and 9; and 5 and 9. 
This implies that puncturing the first significant bit (bit 1) will degrade the code performance. 
Therefore, dispersing the punctured bits as well as keeping the first bit unpunctured will assist in 
keeping a good code performance.   
  
 

Table 4. Punctured code with Rc=3/6 
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Puncturing several bits at the same time might also change the constraint length of the 
code. To preserve consistency, code words requiring a constant length exceeding or below [3 3 
3] are not included in the simulation. 
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 The simulation result for a punctured code with Rc=3/6 is given in Table 4. To achieve 
Rc=3/6, 3 bits in the resulting codeword from a mother code with Rc=3/9 are punctured.  The 
puncturing process is equal to removing 3 columns from the expanded generator Ge of the 
mother code. It is observed that consistent with the previous results, different puncturing pattern 
will yield different code performance, suggesting that by choosing a particular puncturing 
pattern, the code rate can be maintained yet the code performance can be optimized. 

  
 

Table 4. Punctured code with Rc=3/6 (cont.) 
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The best dfree for Rc=3/6 is 6, attainable through puncturing bits 2, 3, 6; 2, 5, 8; 2, 5, 9; 2, 
6, 9; 3, 6, 9; and 3, 8, 9.  This implies that both dispersing the punctured bits and keeping the 
most significant bit intact will contribute to improve the code performance. It is also shown that if 
two out of the three punctured bits are adjacent, the code can still yield good performance. This 
is not the case if all three punctured bits are adjacent. 

For rates Rc=3/7 and Rc=3/6, there are several catastrophic codes. This is unavoidable 
as puncturing might change the structure of the matrix generator into a non-invertible generator 
polynomial. As the case with  Rc=3/7,  several codes with Rc=3/6 requires a constraint length 
other than [3 3 3] and therefore the simulation for their dfree is excluded. 
 The worst dfree for Rc=3/6 is 3, which is obtained by puncturing bits 1, 2, 3; 1, 3, 4; 1, 3, 
5; 1, 4, 6; 4, 5, 6; and 4, 5, 7. This concurs with our previous observation that puncturing 
adjacent bits, especially if one of the bits happens to be the most significant bit of the 
mothercode, may lower the code performance. It is noticed however that puncturing bits 6, 7, 8, 
which are adjacent bits, still yield a dfree of 5. Therefore whilst there is no systematical way to 
determine a puncturing pattern which is beneficial to the code performance, dispersing the 
punctured bits is more favorable than keeping the punctured bits adjacent. 

Table 5 summarizes the results in Tables 2, 3 and 4. For rate 3/8, as only one bit is 
punctured, only the average value of dfree is given. For rates 3/7 and 3/6, it is shown that 
puncturing adjacent bits will yield the worst dfree, whereas puncturing dispersed bits yields the 
best dfree. 
 
 

Table 5. Summary of performance 
Code rates 3/8 3/7 3/6 

Average dfree 6.67 5.5 4.53 
 

Worst dfree (obtained by puncturing adjacent bits) 
Not 

applicable 
as only 1 bit 
is punctured 

5 
 (9% below average) 

3 
 (33% below average) 

Best dfree (obtained by puncturing dispersed bits) 
 

7 
(27% above average) 

6 
(32.45% above average) 

 
 
4. Conclusion 

New punctured convolutional codes with rates of 3/8, 3/7 and 3/6, yielded from a mother 
code of rate 3/9 have been proposed.  Non-punctured equivalent codes are used to represent 
the punctured codes, to simplify the process of calculating the parameters of the code 
performance. These parameters are free distance and error weights.  

Simulation results show that while using different puncturing patterns may retain the 
code rate, the code performance will vary according to the puncturing pattern used. It is shown 
that dispersing the punctured bits, in many cases will assist in improving the code performance, 
as opposed to puncturing adjacent bits. Dispersed punctured bits resemble intermittent error 
which a convolutional encoder/decoder is capable to mitigate. On the contrary, puncturing 
adjacent bits emulates a burst error which in turn degrades the encoder/decoder ability to 
recover lost bits. Further researches are needed to statistically predict how certain puncturing 
patterns affect the performance of punctured convolutional code. 
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