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Abstract
This paper presents a design scheme of a minimal order observer-based guaranteed cost
controller for uncertain neutral systems, in which some state variables can not be measured. The
uncertainties are assumed to be norm-bounded. The initial state is assumed unknown but their mean and
covariance are assumed known. A sufficient condition for robust stability analysis and robust stabilization
are derived via linear matrix inequalities (LMls). To show the advantage of the proposed method, a
numerical example is given.
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1. Introduction

Due to the presence of the uncertainties may cause instability, bad performance and
lack of the exact model for the controlled systems, then considerable attention has been drawn
to the problem of robust stability and stabilization for systems with parameter uncertainties [1].
Moreover, it has been devoted to find a controller which guarantees robust stability. Especially
in a real plant control, it is also desirable to design a control system which not only achieves the
stability but also guarantees an adequate level of performance [2].The guaranteed cost control
is one approach to solve this kind of problem because it has an advantage in providing an upper
bound on the quadratic cost function of the closed loop system. Lyapunov method via linear
matrix inequality is often used to proof the stability criteria [3],[4]. Some research papers on
guaranteed cost controller design can be found in [5],[6] and references therein.

In practical use, it is difficult to measure all system states that are needed in controller
design because of some reasons such as poor plant knowledge, sensor avaibility, etc. On the
other hand, the observer based control may be better than a state feedback one because it may
not be possible to measure all system states. The observer could be embedded in the systems
for either systems without all available states or systems with partially available states. A full
order observer and a minimal order observer are applied to reconstruct the system states [7],
[8]. However, a minimal order observer and reduced order observer are fewer investigated than
a full order observer based guaranteed cost control research [9].

This paper will consider a minimal order observer based control to develop guaranteed
cost control for uncertain neutral systems. The neutral system is system that depends on the
delay of the state and its derivative. This type can be found in many fields of engineering and
technology application such as in chemical process, networked control systems, robotic
implementation etc [10]. The uncertainties are assumed to be norm-bounded with unknown
initial state but their mean and covariance are known. Since the inverse relations are appeared
in LMI solution, an iterative algorithm is used [11].

Notations. Throughout the paper, the superscripts "T" and "-71” stand for matrix

transpose and inverse, R " denotes the n-dimensional Euclidean space, X >Y or X = Y means

that X-Y is positive definite or semi-positive definite, / is an identity matrix with appropriate
dimensions, and * represents the symmetric elements in a symmetric matrix.
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2. Problem Statements
Consider an uncertain neutral system with

e = Al xle) + 4, (xle - pled )+ AlEd2le - 23 + Bl uE) (1)
»(&} = Cafg) (2)
x(E) = @), £ 2 {—h 0} (3)

where @ = ki) = h, Al =&, h and 7 are the given constant time delay in the states
and their derivatives, xit}s ®* is the state vector, %(tl & K" is the control input vector,
() € B™ is the measured output vector, &. 4, &5 B. € are known constant real-valued matrices
and ¢ is restricted to the form of € = [# Iy]. The uncertainties in the states are written in

ACE) = A+ Dl (508, (e} = Ay + Dy Fyy (815, A:08) = A + Dy By ()5, 2,
g(g) = B + U, F (2185 which satisfy
F(ER Gy < |, B @<, B (e @ «<f, BEE < (4)

where Iy, 8y &gy, By, &gz, Br-, Ds, By are constant real-valued known matriceswith appropriate
dimensions, and F; £}, Fyy (E) Fy i) 08} are real time-varying unknown continuous and
deterministic matrices.

We further assume that the initial state variable x{lijis unknown, but their mean and
covariance are known, equivalently

Elx(0)] = w3, (5)
El0c(0} — g0} — g™ =T = 0 (6)
giD} - Twm, = 0 (7)

where El] is the expected value operator.
The problem determined here is to design a minimal order observer

2(€) = Dz + Byle) + Fu(t) )

£} = Paled + We(t) 9)
and a controller

ul) = KE2(8) (10)

With D = Ay, + Edyy, FT+WE =, F=mTB, T4 - DT =EC,

anfpt 3] polw 0P, 7T=0 1)
-3 1 2

to achieve an upper bound of the following quadratic performance index

Ell = BIf; x"(£0@x (&) + u" (ORu () dt] (11)
associated with the system (1)-(2) where & & are given symmetric positive definite matrices.
3. Main Result

In this section, a sufficient condition is established for the existence of a minimal order

observer-based guaranteed cost controller for the uncertain system (1) and (2).
The gain of controller is formulated in:
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K= -R-'BTS, (12)

where 5 is a symmetric positive definite matrix.
The main result of this study is given by Theorem 1.
Theorem 1. If the following matrix inequalities optimization problem;
min iy 4+ 1 +re 41 + 3+ 0l 4 a0 ) 4 6000 ) + E0(24,70 subject to

A, A, A, A, O 0 A 0
A, 0 A, 0 O Ay A,
AlO All 0 O A12 Al3
A14 O O A15 Ale
A, O 0 0
-U, 0 0
-Ut 0
_UZ—1
A, ]
diagA, A, |<0 (13)
diagA,

Ehas 6l Opnr < Fo, Ll B Pubn = 7y, Ly ehaPeen < 7y, Sy e Podon <12 (14)

—y, VYT VYT VIY T
Y, =S, :
Yv, ;<0 (15)
L Yv, =S, |
[— M E

! * 1<0 (16)
L * _Hlinv
- M F

2 * 1<0 (17)
L * _H2inv
-M, G

3 * 1<0 (18)
L * _Ulinv
-M, H

‘ *1<0 (19)
L * _U2inv
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Where
&) =5 A+ B} + (A +BEV" S, + By + G+ K'RK + (a4 oy + f + 2)ET B,
Sy =5y Ay, iy = 5y 4z, 8 = 5, BEP, &y = T4 + BE)Y,,
Gig=—(1 -, + (8 4 s+ oy + BB By, By = —ALTT S,
he =AU, B = —ATTE byp= - + (e +a +ag+ FET B, 8y =—-ATT S,
by = ALYy, By = —4LTTU, &y, = 5.0 + D75, + By + FFETREP,
Syp = (BEFITU, Ay = BEFTTTUG, 8y = -1 — dJH,,
&, =508, = 5,000, 8; =5, 000, 8, = 5.0, 8, =KTEZ,
dg = Uy, &y = Uyl &g = Uyllyy , 8y = Uyllys,
dyp = U T 8y = WTDp &yp = U Thgy, 8y =WpThyy &y = PTET 5';,
Gyp = 3: Ty Sy = 32T D0p Byw = 35Ty, Syp = 52T Dy,
B =08y B e Bk, By = (Byp 8y . Byl
dfagd,= diagi—c~ L=t — e~ =g L —la, + art 4 G50 = (o + all,
—oigh, —cegf, —uk. By + B ok —Bal}
diagd,= dfag{—(c + v + ag®+ Fp . —pf. —(L + v~ 40, —puf, —ad,
has a set of solutions &, = 0. 5 = O Hy = ORHL F = 0 =0
satisfy the inverse relations Hyz, = 0% Hype = H® Uy = 305 Uagee = UF5
Orop = 075 Aoy = 4750y = vl = a5 ™

then the minimal order observer law (8)-(10) is a guaranteed cost controller with a minimum
expected value of guaranteed cost

Elfl=¢ [w-’m:t [SUL ISE]W 0+ F W (g [‘% é]wcjn:t gt + r W (0] 'E’SL gg]w{n:lcr:]

ol (20)

where w il = [;TE and nit} = z{gl — Tx(t} is the estimated error of the minimal order

observer.

Remark 1. Since (13)-(19) have constraints in inverse relations, an iterative LMI approach is
applied to solve [11].

Before giving a proof of Theorem 1, a key lemma is introduced ([12]).
Lemma 1. Let D and E be matrices of appropriate dimensions, and F be a matrix function
satisfying F¥ (£}F &} = I. Then for any positive scalare, the following inequality holds

ODFE +E'FFDT waDDY + o~'BTE (21)
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Proof of Theorem 1
The closed loop system is obtained by mathematical substitution of (1)-(2) and (8)-(10)

x(t)
x®)] [ AD+BMK A At BOKP | xt-h()
{ﬁ(t)} —(TAA+TABK) —-TA, -TA, D-TABKP| x(t—7)

n(t)

(22)

Define a candidate of Lyapunov function
re =w @ & ]w@ s Fagwr@ B Je@ars foro[f §lew@a @3

where wT (g} = [;:E:J

Then, the time derivative of (23) along to (22) is calculated as
v@ =2 @fg glr@+w @y gJwe -G -s@herG-a@n i 7]

wle- @) ew@[¢ plew-v-a[ lee-a

=5’ (E) R{EkRE(E) — (xT (E1le) + o™ (€] Ruc )] (24)

AT(E) T Q, Q, Q, Q, 0 0 |
=z = Al Q. 0 Q 0 0
rrya| AR Q, Q 0 0
where @ {£) '??'} ) C Q) = 7 Qs ) )

(- hld) °

AT -1 4 -H,@-d) 0

_UZ_

&, = 5,040 + BOK) + (408 4+ BOER)TS, + (40 + BIOR)TU (4() + BOK)
—(Taale) + TaB IRV U (TEAW) + TEB(KY, 0, =5, A,(E), Q; =5, 4;(E),

2, =5 5P - (Faa(e) + Ta5EETS,, 8, = —H, (1 - & + AL 4,060 - ALOT T4, (8,
0, = —AL(OT75,, 8, = —U, + ALK - LETTUTAE, B, = - (OT'S,,

&, = 5,(D - T&B(KP) + (D - TEB(EIKFY S, + Hy + (B(UKFITU BEKEP
+(D — TEB{OREF/ (D — TAE(EIEP),

Under condition

e} « 0 (25)
equation (24) leads to

M) @ =T (220l + uf (HRuE)) < 0 (26)

for any xig} = J and the closed loop system is asymptotically stable.
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Here, condition (24) is investigated by applying lemma 1 as follows
2xT ()5, BAlE) (e} = 25T (S, D, (b By x(E) =8 aex® (235, 0. DT 5, xle) + a~La® (O8] Bya(E)  (27)

25T (5,84, ExE — RED = 2T 8Dy Fyy E 8 508 — RED

% @x7 (£)8, 0., BT 5, x(E) + #-4x7 (t — h(E) )BT, Bpy x(E = BEN) (28)
2-":? {tlg’_&fj!: {ﬂ:ﬁ{t - 'Fj = ExT 'f.t:[.?,_ﬂ_,ﬂﬁ_f;: {ﬂ -E;t: -'%J:{t - 'Fj

% ex” (E15y Dpe DA 5y xlE) + e~ 2T (¢ — TIER By o atle — 70 (29)
2x7 (5 B K FR(€) = 2x7 (E5, DB (EF B K Pn (£}

= ax’ (€15, D08 5x(8) + o T (EPT KT BLEzKPnit) (30)
—2xT (ESAT (1 TT Sunle) = —2xT (EIETFY (£)RI T Sanle)

< pxt (BIET By xlt) + p~tnT (L) 8, TD, DI TT Sun (£) (31)
—2x7 (EIRT SETETT Synle) = - 25T (ERT BL RS (EXDETT SumlE)

5 At (EIKT BB Kxlt) 4 - ()5, TDDEITT Sunit) (32)
-ax" {E — R{ENISALEIT Fanfe) = — 2" (& — REEVB{LFL (BI04, T ol

< i’ (& — R{EVE] By xlE — REEX) + o=t (LS T Dy DF TT Senp(E) (33)
-25T (¢t — P8 (T Sne) = =257 (¢ — DELEL (0L TT Sl

% t” (¢ — TIEL Bt — 7} + e ' (ST D DETT San(t) (34)
—2n" (£S5, TaB(EEPy L} = —2nT (B8, TDFp (&) Bp KPn (£}

= vy’ (£S5, FODITY Sn (e} + v~y  (E1PT KF BL Epnit) (35)
2x" (a4 (B Uy x(e} = 27 (E)E] B (£)0] Uyxle)

% oy x” (BT By x(E) + oy ~*x7 (EYEF, D, D L x(E) (36)
2 (ERT 8ET U, x(E) = IxT (KT EL B (1D vx(e)

& oegx? (KT EL EpEx(E) + ey~ (E1U, DD Uy xlE) (37)

2x7 (¢ — h(e 8L (W x (& = 267 (& — R(EVET BT, (£)DF, Uyacle)
o aegaet (& — RQEER EqywlE — R{ED 4 oy~ LT (A, By B, Vi) (38)

247 (¢ — DIEAL (U, () = 227 (¢ — )BT, BL (6105, Facle)
8 agtT (8 — TIER B bl — =) 4 oy~ T (EF, Dy, O Uy w0t}

In" (P KT BT (hEnn(e) = InT (P K¥ EE K (8302 Uyn(e)

& IFEI.'?'}T ':ﬂ PTEY E‘; Fpﬁﬁ}{ﬂ + I'-?El.-:'xr! ':tl‘&ﬁ_ﬂ_a-ﬂ; 'Erfo'::tll (39)
= 2T (a7 T Upae] m - 2T (B FF (£30f TT W)

s BT (ET Bl + g~ T g T, 0T TP iE x (2} (40)
—2x7 (EIRT BT ETT thxlt) = —2xT (EIKT B A (E)DE TT Uit}

& font (KT BB Kxlt) + f s (LT LDETT thoa(t) (41)
—2x7 (¢ — R()AAE (TR = — 207 (¢ — R(EIEL EL OF, TT i x(e)

= Fox’ (t — R(EVER B xle — BEN + B 5" (W TDy DA, T Uaale) (42)
=27t = )AL WOTTU () = =247 (¢ = PIEL EL BT TFui x(e)

% @ a7t = IER B e — 1) + 8 T (AT D DL TT () (43)
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—2nT (P ET sBT(ETT hnle) = - 2T (PTET BT (@) DI TTUn(e)
= fenT ) FTKTET Bl ) + fy AT LT DT TT WA E) (44)

Applying lemma 1., denoting Hypmy = BIS Bype = H5% Uy = B75 Wiy = IS
Ty = 6%, dgp = 475wy = v~ 4 e, = ag >, and using schur complement lead to (13)

Further, integrating (26) from O to T infinity, we have

= TGT QR + T R} a
B
< T OIS, (00 4 OIS, 8 + Ly o GHE e b [y T G mets &
[ a7t a(sds + [0, 47 G nisids = (45)

Consider the optimal expected value of the guaranteed cost, we have

P

)= -5, B0 @) + b5, Bln @ @0 + e[| 26607 e

ity B[ [y gn(einT (s ] + ot B [[L 2 (02T (has] + e [ConledT(as]  (46)
A relation between mean st} and covariance I {£} of the expected value is

T} = Blaofgha® g1 — migpn® (&) (47)
Substituting (47) into (46), we obtain

Elf*] = & 5, BIZy + mgmb] + & 52 Eliz (0} — Tx(01(z (0¥ = Tx(07)7]
+trHLE [[CpfZ06 4 mish® (D)ds] + e B [, 0, nlsInT (s)as]
U E [ [0, 2017 shds] + el E [ [, s (s)ais] (48)

It is easily seen that

El(z ) — Tw((a () - TR0 = TLT™ + (@00 - Ta(@0@W) - Tx(@))" (49)

tr B [y 2(1a7 ()ds] = tr By B E] (50)
ool B [y ™ (s | = o B AT (51)
erth, B [, 2047 Ghas] = tr U6 6F (52)
erthy B [ (T (sdas] = o Ul HE (53)

Here, we consider positive scalars

tr 5, EIZ, + mgmd] = 7, (54)
tr eIy, =, (55)
N A S (56)
tr S Da LT < 1 (57)
tr Fallns 7 % ¥y (58)
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tr Hy B Ef = tr M, (99)
tr Ho 5 F5 = tr M (60)
b Uy G GF = & My (61)
tr LR HE = i M, (62)

Minimizing pp47 + 73 + ¥y + Fa + &0 By + &0 M + &0 M + &3 results in min E[J7]. By recalling
er(48) = tr(BAY, (54)-(57) lead to (14) and (59)-(62) to (16)-(19).
i

By denoting IZ, = [wy, vz, . vy, (58) is calculated as
i Syl Tag kT = vT¥TSE W0, £ vl VT SE Wy 4 oo+ v P75 Wi,
FV"L
O sl G i el M T (63)

-
F v,

Schur complement derives (15) from (63)

4. Numerical example
Consider system (1)-(2) with

A= :3 ?],.-’:,_:[g :i],a,:[é ?],B:['zl],f.ﬂu 1], mg = 0g, Iy = I,

R=2, =[§ g],ﬁ=|ﬂ.5,t=ﬂ.4~,d=ﬂ.5
5= [ _gal B =T g e =[G gl 2 =[5 331

B = [_gll El?l]’ B = [Ul:]: _EI:IES] Lz = [GI:]3 E] = I—ll]

Applying the minimal-order observer-based approach [8],[9], we obtain the solutions of
controller and observer gain:

K =[ooses —-oaoss], I = -01132,

guaranteed cost value ' = T.9%Z¥ and other set of solutions as follows

— [On1F4 =0.000

=1 o0002 -0.176

N o _gogom p o [L1125 —0.0843) o _
gl 5a= 02928, = [0 00, 4, =0.0188

097G Q0993
v =|

0.0995 1 134&'J, U = 0,2321, e 03707, ¢ = 20403, ¥ = 00331,

I=[02928 =0.0331].

Figure 1 shows the trajectory of states with initial condition for nominal and neutral
systems =0 =01 =117, =M=z oF, =00 =0 o]¥. It is shown that the states
converge to the stable condition. Hence the controller and observer gain are designed well for
the uncertain neutral systems with a minimal order observer.
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States
\

0 10 20 30 40 a0 B0 7 80 90 100
Time (sec)

Figure 1. Trajectory of states x, (=) and x, (- -)

5. Conclusion

This paper discusses a guaranteed cost controller design for uncertain neutral systems
with a minimal order observer. The stability on the LMIs forms is determined by deriving a
sufficient condition for the existence of state feedback controller. To illustrate the proposed
method, a numerical simulated example is presented. The problem of the guaranteed cost
controller for uncertain systems is still open according to the advantage of this method. In the
future work, we will investigate the problem of discrete systems.
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