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Abstrak  
Makalah ini menyajikan suatu algoritma simulated annealing (SA) yang efisien untuk 

penyelesaian masalah economic load dispatch (ELD) pada sistem tenaga listrik. Filosofi melibatkan 
pengenalan variabel keputusan baru melalui transformasi matematika secara bijaksana hubungan antara 
variabel keputusan dan pembangkitan optimal. Tujuan dari masalah ELD dalam pembangkit tenaga listrik 
adalah pemrograman khusus keluaran unit pembangkit sehingga dapat memenuhi kebutuhan beban 
dengan jumlah biaya operasional terendah yang memenuhi semua unit dan kendala persamaan dan 
pertidaksamaan sistem. Pendekatan optimisasi global terinspirasi oleh proses pendinginan termodinamika. 
Algoritma SA yang diusulkan disini diterapkan pada dua studi kasus, yang menganalisis sistem tenaga 
yang memiliki tiga dan enam unit pembangkit. Hasil yang diperoleh dengan pendekatan yang diusulkan 
dibandingkan dengan pemrograman kuadratik konvensional (QP) dan algoritma genetika (GA). 
 
Kata kunci: economic load dispatch, simulated annealing, pemrograman kuadratik, algoritma genetika, 
efisien, optimisasi global 

 
 

Abstract 
 This paper presents an efficient simulated annealing (SA) algorithm with a single decision 

variable to solve the economic load dispatch (ELD) problems. The philosophy involves the introduction of a 
new decision variable through a prudent mathematical transformation of the relation between the decision 
variable and the optimal generations. The objectives of ELD problems in electric power generation is to 
programmed the devoted generating unit outputs so as to meet the mandatory load demand at lowest 
amount operating cost while satisfying all units and system equality and inequality constraints. Global 
optimization approaches is inspired by annealing process of thermodynamics. The proposed SA algorithm 
presented here is applied to two case studies, which analyze power systems having three, and six 
generating units. The results determined by the proposed approach are compared to those found by 
conventional quadratic programming (QP) and genetic algorithm (GA). 

  
Keywords: economic load dispatch, simulated annealing, quadratic programming, genetic algorithm, 
efficient, gobal optimization 
  
 
1. Introduction 

Economic load dispatch (ELD) is one of the most important problems in power system 
operation and planning. The main objective of ELD is to determine the optimal combination of 
power outputs of all generating units to meet the required load demand at minimum operating 
cost while satisfying system equality and inequality constraints [1]. In this problem, fuel cost of 
generation is represented as cost curves and overall calculation minimizes the operating cost by 
finding a point where total output of generators equals to total system load that must be 
delivered plus losses. In the traditional ELD problem, the cost function for each generator has 
been approximately represented by a single quadratic function and is solved using 
mathematical programming based on the optimization techniques such as lambda-iteration 
method, gradient-based method, etc. [2]. 

Classical methods like Newton-based and gradient methods cannot perform very well 
for problems having highly nonlinear characteristics with large number of constraints and many 
local optimum solutions. Dynamic programming is one of the approached to solve non-linear 
and discontinuous ELD problem, but it suffers from problem of curse of dimensionality or local 
optimality [3]. Methods based on artificial intelligence techniques, such as artificial neural 
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networks, are presented [4-6]. However, neural network-based approaches may suffer from 
excessive numerical iterations, resulting in huge calculations. Heuristic search techniques, such 
as evolutionary programming [7], particle swarm optimization [8], genetic algorithms [9-11], 
differential evolution [12], tabu search [13] and ant colony optimization [14] have also been 
successfully applied to ELD problems. 

Simulated annealing (SA) algorithm is a promising heuristic algorithm for handling the 
combinatorial optimization problems. It has been theoretically proved that SA algorithm 
converges to the optimal solution. Another strong feature of SA algorithm is that a complicated 
mathematical model is not required and the problem constraints can be easily incorporated. In 
power systems, SA has been applied to a number of power system optimization problems with 
impressive successes [15, 16].  

In this paper, the proposed SA is discussed to solve the ELD problem by considering 
the linear equality and inequality constraints for the three units and six units system and the 
results were compared with conventional quadratic programming and GA. The algorithm 
described in this paper is capable of obtaining optimal solutions efficiently. 
 
 
2. Research Method 
2.1. Economic Load Dispatch Formulation 

The objective of an ELD problem is to find the optimal combination of power 
generations that minimizes the total generation cost while satisfying an equality constraint and 
inequality constraints. The fuel cost curve for any unit is assumed to be approximated by 
segments of quadratic functions of the active power output from the generating units. For a 
given power system network, the problem may be described as optimization (minimization) of 
total fuel cost as defined by (1) under a set of operating constraints. 
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where TF is total fuel cost of generation in the system ($/hr), ai, bi, and ci are the cost coefficient 

of the i th generator, Pi is the power generated by the i th unit and N is the number of 
generators. 

The cost is minimized subjected to the following power balance and generator capacity 
constraints.  

 
2.1.1. Power Balance Constraint: 
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where PD is the total power demand and PLoss is total transmission losses. 

The transmission loss PLoss can be calculated by using B matrix technique and is 
defined by (3) as, 
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where Bij ‘s are the elements of loss coefficient matrix B. 
 
2.1.2. The Generator Capacity Constraint: 
 

NiPPP iii ,,2,1for    max,min,    (4) 

 
where Pi, min and Pi, max are the minimum and maximum power output of the i th unit. 
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The conditions for optimality can be obtained by using Lagrangian multipliers method 
and Kuhn Tucker conditions as follows [1]: 
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The following steps are followed to solve the economic load dispatch problem with the 

constraints: 
 

Step-1: Allocate lower limit of each plant as generation, evaluate the transmission loss and 
incremental loss coefficients and update the demand. 
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Step-2: Apply quadratic programming to determine the allocation new
iP of each plant. If the 

generation hits the limit, it should be fixed to that limit and the remaining plants only 
should be considered for next iteration. 
 

Step-3: Check for the convergence: 
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where is the tolerance. Repeat until the convergence criteria is meet. 
A brief description about the quadratic programming method is presented in the next 
section. 

 
2.2. Quadratic Programming Method 

A linearly constrained optimization problem with a quadratic objective function is called 
a quadratic programming (QP) [17]. Due to its numerous applications; quadratic programming is 
often viewed as a discipline in and of itself. Quadratic programming is an efficient optimization 
technique to trace the global minimum if the objective function is quadratic and the constraints 
are linear. Quadratic programming is used recursively from the lowest incremental cost regions 
to highest incremental cost region to find the optimum allocation. Once the limits are obtained 
and the data are rearranged in such a manner that the incremental cost limits of all the plants 
are in ascending order. 

The general quadratic programming can be written as: 
 

             Minimize Qxxcxxf T

2
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)(   (8) 

 
             Subject to  0  and   xbAx    (9) 
 
where c is an n-dimensional row vector describing the coefficients of the linear terms in the 
objective function, and Q is an (n × n) symmetric matrix describing the coefficients of the 
quadratic terms. If a constant term exists it is dropped from the model. As in linear 
programming, the decision variables are denoted by the n-dimensional column vector x, and the 
constraints are defined by an (m× n) A matrix and an m-dimensional column vector b of right-
hand-side coefficients. We assume that a feasible solution exists and that the constraint region 
is bounded. When the objective function f(x) is strictly convex for all feasible points the problem 
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has a unique local minimum which is also the global minimum. A sufficient condition to 
guarantee strictly convexity is for Q to be positive definite. 

If there are only equality constraints, then the QP can be solved by a linear system. 
Otherwise, a variety of methods for solving the QP are commonly used, namely; interior point, 
active set, conjugate gradient, extensions of the simplex algorithm etc. The direction search 
algorithm is minor variation of quadratic programming for discontinuous search space. For every 
demand the following search mechanism is followed between lower and upper limits of those 
particular plants. For meeting any demand the algorithm is explained in the following steps: 
(i) Assume all the plants are operating at lowest incremental cost limits. 

(ii) Substitute iiiii XLULP )(  , 

(iii) Where 10  iX  and make the objective function quadratic and make the constraints 

linear by omitting the higher order terms. 
(iv) Solve the ELD problem using quadratic programming recursively to find the allocation and 

incremental cost for each plant within limits of that plant. 
(v) If there is no limit violation for any plant for that particular piece, then it is a local solution. 
(vi) If for any allocation for a plant, it is violating the limit. It should be fixed to that limit and the 

remaining plants only should be considered for next iteration. 
(vii) Repeat steps 2, 3, and 4 till a solution is achieved within a specified tolerance. 
 
2.3. Simulated Annealing Algorithm 
2.3.1. Overview 

Simulated annealing is an optimization technique that simulates the physical annealing 
process in the field of combinatorial optimization. Annealing is the physical process of heating 
up a solid until it melts, followed by slow cooling it down by decreasing the temperature of the 
environment in steps. At each step, the temperature is maintained constant for a period of time 
sufficient for the solid to reach thermal equilibrium. At any temperature T, the thermal 
equilibrium state is characterized by the Boltzmann distribution. This distribution gives the 
probability of the solid being in a state i with energy Ei at temperature T as 

 

 TEkTP ii /exp)(          (10) 

 
where k is a constant. 

Metropolis et al. [18] proposed a Monte Carlo method to simulate the process of 
reaching thermal equilibrium at a fixed value of the temperature T. In this method, a randomly 
generated perturbation of the current configuration of the solid is applied so that a trial 
configuration is obtained. Let Ec and Et denote the energy level of the current and trial 

configurations, respectively. If ct EE  ; then a lower energy level has been reached, and the 

trial configuration is accepted and becomes the current configuration. On the other hand, if 

ct EE   the trial configuration is accepted as current configuration with probability proportional 

to exp(∆E/T), ∆E = Et-Ec. The process continues until the thermal equilibrium is achieved after a 
large number of perturbations, where the probability of a configuration approaches Boltzmann 
distribution [19, 20]. 

By gradually decreasing the temperature T and repeating Metropolis simulation, new 
lower energy levels become achievable. As T approaches zero least energy configurations will 
have a positive probability of occurring. The flowchart of simulated annealing (SA) is shown in 
Figure 1. The general algorithm of SA can be described in steps as follows: 
Step 1: Set the initial value of Cp0 and randomly generate an initial solution xinitial and calculate 

its objective function. Set this solution as the current solution as well as the best 
solution, i.e. xinitial = xcurrent = xbest 

Step 2: Randomly generate an n1 of trial solutions in the neighborhood of the current solution. 
Step 3: Check the acceptance criterion of these trial solutions and calculate the acceptance 

ratio. If acceptance ratio is close to 1 go to Step 4; else set Cp0 = α.Cp0; α > 1; and go 
back to Step 2. 

Step 4: Set the chain counter k = 0. 
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Step 5: Generate a trial solution xtrial. If xtrial satisfies the acceptance criterion set xcurrent = xtrial, 
J(xcurrent) = J(xtrial) and go to Step 6; else go to Step 6. 

Step 6: Check the equilibrium condition. If it is satisfied go to Step 7; else go to Step 5. 
Step 7: Check the stopping criteria. If one of them is satisfied then stop; else set k = k + 1 and 

Cp = μ.Cp; μ < 1; and go back to Step 5. 
 
2.3.2. Proposed SA 

In all the existing SA algorithm based approaches for solving ELD problems, the real 
power generation of all generating units are considered as the decision variables that makes the 
size of the problem vary large, slow down the speed of these algorithms and hence not suitable 
for systems having larger number of generating units. In the proposed approach, the penalty 
factor λ of the classical λ - iteration is considered as the only decision variable irrespective of the 
number of generating units. The real power of all the generating plants are considered as the 
problem dependant variables and expressed as a function of λ. The real power generations are 
computed using (5) for each λ value obtained during the SA iterations.  

The lower and upper limits of the decision variable-λ depend on the minimum and 
maximum power demands that the system can supply. The first step in obtaining these values is 
to compute the lower and upper incremental cost values by substituting the respective to real 
power limits in (5) for all the plants as 
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The next step is choosing the lowest and highest incremental cost value, obtained from 

(11), as the limits for λ. 
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The SA searches for the optimal solution by minimizing a cost function. In the proposed 

formulation, the net fuel cost of all the generating plant is considered as the cost function. 
However, a penalty term is included in the cost function to handle the explicit power balance 
constraint. The penalty term increases the cost function for infeasible solutions. The cost 
function is therefore built as a blend of fuel cost function and the power balance constraint 
through the use of a penalty factor as 
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The number of decision variables in this formulation is always one, whereas the existing 

SA based approaches require the generation of all the plants as the variables. This reduction in 
decision variables will reduce the overall computational burden and improves the convergence 
rate. The algorithm of the proposed SA for solving the ELD problem is outlined.    
1. Read the input data of the ELD problem 
2. Set k = 0 
3. Choose initial temperature Tt, cooling coefficient α, number of iterations for each temperature 

Nt and maximum number of iterations Nmax. 
4. Choose a random start point λ0 within the specified range 
5. Repeat the following:  

a. Select a random point λk from the neighbourhood of λ0 within the specified range 
b. Solve (5) for Pi while imposing the limits given by (4) 

c. Calculate k
TF  using (13)  

d. If  0
T

k
T FF   then accept the trial solution by setting k 0  
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Else select a random number  in the range [0, 1] 

If )(TP , then  k 0 , otherwise discard the trial point 

e. Check convergence by comparing the number of iterations k with Nmax   
If converged, stop and print the ELD corresponding to the λ0. Otherwise, set k = k + 1  

6. Reduce the temperature by the factor α and go to step 5.  
 
 
3. Results and Analysis 

To verify the feasibility and effectiveness of the proposed SA algorithm, two different 
power systems were tested consisting of three and six generating units [21, 22]. Results of the 
proposed SA algorithm are compared with conventional quadratic programming (QP) and 
genetic algorithm (GA) methods. A reasonable B-loss coefficients matrix of power system 
network has been employed to calculate the transmission losses. The software has been written 
in the MATLAB-7 language.  
 
Case 1: 3-Generating Units 

In this case, a simple power system consist of three-generating units is used to 
demonstrate how the work of the proposed approach. Characteristics of thermal units are given 
in Table 1, followed by coefficient matrix Bij losses. 

 
 

Table 1. Generating unit capacity and coefficients 

Unit 
min

iP  

(MW) 

max
iP  

(MW) 

ai 
($/MW2) 

bi ($/MW) ci 
($) 

1      50 250 0.00525 8.663 328.13 
2        5 150 0.00609 10.04 136.91 
3      15 100 0.00592 9.76 59.16 
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For the system loads of 275 MW, 300 MW, 350 MW, and 400 MW, the conventional QP 
method is applied and results obtained are shown in Table 2. 
 
 

 
 

Figure 1. Flowchart of simulated annealing 
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The optimal scheduling of generators obtained by the proposed SA algorithm for three 
unit systems is shown in Table 3. The comparison of results between conventional QP method 
and the proposed SA method are shown in Table 4. The comparison of results shows that the 
proposed SA algorithm is better than conventional QP method for each loading and it is very 
reliable in the aspect of solution quality. 

 
 

Table 2. Economic dispatch for 3-generating units using QP method 
PDemand 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

PLoss 
(MW) 

Fcost 
($/hr) 

275 193.8232 74.7838 15.0000 8.6070 3333.10 
300 207.6799 87.4010 15.0000 10.0808 3621.50 
350 235.5798 112.8921 15.0000 13.4720 4215.20 
400 250.0000 150.0000 19.2169 19.2169 4850.80 

 
 

Table 3. Economic dispatch for 3-generating units using the proposed SA 
PDemand 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

PLoss 
(MW) 

Fcost 
($/hr) 

275 193.6474 74.8906 15.0002 8.5383 3332.43 
300 207.6336 87.2867 15.0000 9.9203 3619.76 
350 235.7958 112.2489 15.0006 13.0452 4210.25 
400 249.9998 150.0000 16.6752 16.6750 4825.49 

 
 

Table 4. Comparison of results between QP and the proposed SA for 3-generating units 
PDemand 
(MW) 

Methods 
PLoss 
(MW) 

Fcost 
($/hr) 

275 
QP 
SA 

8.6070 
8.5383 

3333.10 
3332.43 

300 
QP 
SA 

10.0808 
9.9203 

3621.50 
3619.76 

350 
QP 
SA 

13.4720 
13.0452 

4215.20 
4210.25 

400 
QP 
SA 

19.2169 
16.6750 

4850.80 
4825.49 

 
 
Case 2: 6-Generating Units 

In this case, a standard of six-generating units (IEEE 30 bus test systems) is used to 
demonstrate how the work of the proposed approach, as shown in Figure 2. Characteristics of 
thermal units are given in Table 5, followed by coefficient matrix Bij losses. 

The simulation results using the proposed SA algorithm are shown in Table 6 and Table 
7 respectively for the load variation of 700 MW and 800 MW. The simulation results show that 
the generation outputs of each unit obtained were smaller than those of the genetic algorithm 
(GA), which is taken from [22]. Further, as a result, there was some reduction of the total 
generation cost and transmission losses.  

 
 

Table 5. Generating unit capacity and coefficients 

Unit 
min

iP  

(MW) 

max
iP  

(MW) 

ai  
($/MW2) 

bi 
($/MW) 

ci  
($) 

1 10 125 0.0033870 0.856440 16.817750 
2 10 150 0.0023500 1.025760 10.029450 
3 35 225 0.0006230 0.897700 23.333280 
4 35 210 0.0007880 0.851234 27.634000 
5 130 325 0.0004690 0.807285 36.856880 
6 125 315 0.0003998 0.850454 30.147980 
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Figure 2. IEEE 30-bus 6-generator test systems 
 
 

Table 6. Economic dispatch for 6-generating units (PD = 700 MW) 
Unit Output GA [22] SA 

P1 (MW)      27.3010      26.7391 
P2 (MW)      15.6124      12.2597 
P3 (MW)    120.3109    126.3482 
P4 (MW)    116.7756    117.6017 
P5 (MW)    226.8377    230.3174 
P6 (MW)    212.4050    205.9579 
Total power output (MW)    719.2426    719.2241 
Total generation cost 
($/hr) 

   820.4200    820.3707 

Power losses (MW)      19.2426      19.2241 
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Table 7. Economic dispatch for 6-generating units (PD = 800 MW) 

Unit Output GA [22] SA 
P1 (MW)      32.6737     32.5980 
P2 (MW)      15.8161     14.5035 
P3 (MW)    141.6623   141.5182 
P4 (MW)    131.3117   136.0152 
P5 (MW)    252.3711   257.6949 
P6 (MW)    251.5507   243.0010 
Total power output (MW)    825.3855   825.3309 
Total generation cost 
($/hr) 

   931.1060   931.0322 

Power losses (MW)      25.3855     25.3309 

 
 
4. Conclusion 

In this paper, an efficient simulated annealing (SA) algorithm with a single decision 
variable has been successfully introduced to obtain the optimum solution of economic load 
dispatch problem. The proposed SA method has been tested on two test cases consisting of 3-
generating units and 6-generating units systems and the results are compared to those of the 
conventional quadratic programming method and the GA method. Test results have shown that 
the proposed method can provide better solution than above mentioned methods.    
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