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Abstrak 
Makalah ini menyajikan sebuah metode chaotification berdasarkan kendali umpan-balik waktu-

tunda langsung untuk sistem isolasi kuasi-kekakuan-nol. Fungsi analisis kendali umpan-balik waktu-tunda 
diturunkan berdasarkan teori kendali geometri-diferensial. Selanjutnya, kelayakan dan efektivitas metode 
ini telah diverifikasi dengan simulasi numerik. Simulasi numerik menunjukkan bahwa metode ini memiliki 
aspek yang menguntungkan, termasuk keuntungan pada penguatan kendali kecil, kemampuan 
menhindari kekacuan di berbagai macam domain parametrik dan kelayakan tinggi pada implementasi 
kendali. 
 
Kata kunci: kuasi-zero-kekakuan sistem isolasi, waktu-delay kontrol umpan balik, chaotification 
 
 

Abstract 
This paper presents a chaotification method based on direct time-delay feedback control for a 

quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived 
based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method 
was verified by numerical simulations. Numerical simulations show that this method holds the favorable 
aspects including the advantage of using tiny control gain, the capability of chaotifying across a large 
range of parametric domain and the high feasibility of the control implement.  
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1. Introduction 

Isolation of undesirable vibrations is a problem in many engineering structures. In the 
ideal case when a mass m is supported by a linear spring with stiffness k on a rigid foundation, 
but the efficient attenuation of vibration does not occur until a frequency of ඥ2k/m [1-2]. This 
indicates that the smaller stiffness and the wider isolation region. However, small stiffness 
causes a large static deflection. This limitation can be overcome by adding oblique springs in 
order to obtain a high static stiffness, small static displacement, small dynamic stiffness, and 
low natural frequency. Moreover, it is possible to achieve an isolator with zero dynamic 
stiffness by careful choice of system parameters, the so-called quasi-zero-stiffness (QZS) 
mechanism [3-5]. The fact about the benefits of QZS, has given rise to a growing interest in 
the study of it. Application of QZS mechanisms range from space field to machinery  
isolation [6-8]. 

Over the last two decades, the utilization of chaos has been greatly interested among 
researchers across various disciplinary fields [9-10]. Lou et al [11-13] reported that the power of 
a chaotic state may present a continuous spectrum and the intensity of line spectrum could be 
decreased during the chaotification process. With this motivation, an important application of 
chaos is of improving the concealment capability of underwater object.  

In recent years, a different chaotification strategies has been introduced. Li et al [14] 
used the idea of generalized chaos synchronization to chaotify a nonlinear VIS, but the 
persistence of chaotification is not guaranteed since this method is sensitive to parameters 
settings. Tao et al [15-17] employed a modified projective synchronization for chaotification via 
a coupling control. However, it requires a large control and is seemingly impractical for 
applications. Zhang [12,18-19] proposed a control method to chaotify a damped linear harmonic 
oscillator with or without impulses. The key step of this method was to discretize a continuous-
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time system into a discrete-time system within each driving period, and there are also some 
difficulties in application. It is well known that an appropriate time-delay can extend a simple 
dynamic system into high dimensional one, making chaotification readily achievable.  

With focus on the enhancement of the concealment capability of underwater object, in this 
paper, we shall introduce a method of time-delay feedback control to chaotify a QZS system. 
Numerical simulations show that this method holds the favorable aspects including the availability 
of chaotification across a large range of parametric domain, and the ability to use small control 
gain. 

This paper is organized as follows. Section 2 presents the mathematical model of QZS 
and the dimensionless motion of system after transformation. In section3, an analytical time-
delay feedback control function is derived based on differential-geometry control theory. In 
section4, the validity of analytical of time-delay feedback control for QZS system chaotification 
was verified. In section5, discussion and conclusion are given. 

 
 

2. Mathematical Model of QZS System 
    The QZS isolator considered is shown schematically in Fig.1. The system consists of a 

vertical spring connected at point P with four oblique springs. The vertical spring is of stiffness k1, 
four oblique springs are linear with the same stiffness k2, in addition, they are pre-stressed, i.e. 
compressed with . The geometry of the system is defined by the parameters a and h . It provided 
that the coordinate x defines the displacement from the initial unloaded position. The relationship 
between the vertical applied force f and the resulting displacement x can be found as Equation (1).  

 
 

 
 

Figure 1. A five-spring model of a QZS system 
 
 

1 2( 4 ) 0xf f f x  
 (1)

 

 

The reaction of the vertical spring 1f  is given by 

 

1 1f k x    (2) 

 
The scalar component of the oblique spring restoring force in the x direction is 
 



TELKOMNIKA  ISSN: 1693-6930  
 

Chaotification of Quasi-zero Stiffness System via Direct Time-delay…(Qing-chao Yang) 

65

2 2

2 2 2 2
( ) 1

( )
x

a h
f k h x

a h x

  
    
   

  (3) 

 
Combining Equations (1)-(3) gives 
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   (4) 

 
Provided the coordinate y defines the displacement from the position x=h, i.e. the static 

equilibrium position when the oblique springs lie horizontally, Equation (4) can be written as 
 

2 2

1 2 12 2
4 1

a h
f k y k y k h

a y

      
  

  (5) 

 
Equation (5) can be written in non-dimensional form as 

 

2 2

ˆ1ˆ ˆ ˆ4 1
ˆ ˆ

F y ry
a y

    
  

  (6) 

 
where  
 

2 2
1f̂ f k a h  , 

2 2ŷ y a h  , 1 2r k k , 
2 2â a a h  , 

2 2ĥ h a h   
 

Differentiating Equation (6) with respect to ŷ gives the non-dimensional stiffness of the 

system 
 

2

3 2 22 2 2

ˆ ˆˆ4 (1 ) 1ˆ 1 4 ( 1 )
ˆ ˆˆ ˆ( )

ry
k r

a ya y

  
    


                   (7) 

 
In operation, the system is loaded with a mass such that at the static equilibrium position(

ˆ 0y  ) the oblique springs are horizontal. The stiffness of the system is zero provided that  

 
ˆ

ˆ ˆ4(1 )
ar

a


 
                            (8) 

 
Assuming that displacements are small, the non-dimensional force can be expanded 

using the Maclaurin series up to the third order. Furthermore, taking into account the QZS 
condition (8), Eq.(6) can be expressed as 

 

2 3 3
3

ˆˆ ˆ''(0) '''(0) 2 (1 )ˆ ˆ ˆ ˆ ˆ ˆ ˆ(0) '(0)
ˆ2! 3!

F F r
F F F y y y y

a


                 (9) 

 
When in operation, the isolator considered supports a mass m , initially at the static 

equilibrium position as shown in Figure 2.  
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To consider the influence of damping, a viscous damper with 2c  is added in parallel 

with the QZS isolator. Ideally, the system is subjected to harmonic excitation 0 cosF wt , the 

non-dimensional equation of motion can be approximated as 
 

3 ˆˆ ˆ ˆ2 cosy y y F                                (10) 

 

 
 

Figure 2. Structural model of the isolator in operation 
 
 

where 

 2
0 1w k m , 0wt  , 0w w , 0 12cw k  , 3ˆ ˆ2 (1 )r a   , 2 2

1F̂ F k a h 
 

 
 
3. Derivation of Time-delay Feedback Control Function 

In this section, an analytical time-delay feedback control function is derived based on 
differential-geometry control theory. We intend to present the standard procedure about how to 
design a time-delay controller for chaotifying the nonlinear isolation system. Based on the 
theory of nonlinear control, a stable nonlinear system can be exactly linearized if the relative 
degree of the system is exactly equal to the order of the system. The availability of the 
linearization implies that this method can be employed to design controller of the nonlinear 
system.  

Based on the structure of the QZS system. Denote  1 2ˆ ˆ ˆ
T

y y y , 1ŷ and 2ŷ are the 

displacement and velocity of the mass. ˆ( )h y is the output function of the system, and the ˆ( )y t
is the control function that we want to design. The controlled system can be expressed as 

 

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆˆ ( )

y f y g y y t

z h y
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
                          (11) 

 

where  
2
3

2 1

ˆ
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ˆ2 cos

y
f y
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, 

0
ˆ( )

1
g y

 
  
 

. 

 

Firstly, we will obtain the function of ˆ( )h y based on the nonlinear control theory[20], 

and design the control function of ˆ( )y t subsequently. We will get the ˆ( )h y with the help of Lie 

derivative and Lie bracket. 
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The Eq.(14)have multiple solutions, one of the solutions is given by 
 

1ˆ ˆ( )h y y                                 (15) 

 
Therefore, we may take Eq.(16) as the control function. 
 

1ˆ ˆ( ) ( )ty k y t                                (16) 

 
 
4. Dynamic Analysis of QZS System 

In this section, numerical simulations will be conducted to verify the effectiveness of the time-
delay feedback function for chaotifying QZS system. The effects on chaotification related of the 

parameters ( , )tk t provide clues about how to optimize controller to improve the quality of 

chaotification. For the convenience, we fix the system’s parameters as follows, 0.1  , 1  ,

ˆ 0.5F  , 0.6  . 
 

4.1. Effect of Feedback Control Gain tk  

We now study how the feedback control gain tk affects the system behaviors through 

bifurcation analysis. The parameters of the controller is set as 0.66t  , and tk  is varied within the 

interval of ( 10,10) . The global bifurcation diagram of the state variable 2ŷ versus tk  is depicted in 

Figure 3. 
Figure 3 depicts the global bifurcation where the cloud dots correspond to chaotic or high-

order harmonic motions and the line dots are related to simple periodic motion in the interval
( 0.22,5.8) . We can study characteristics of the system response by scanning the whole 

parametric domain of tk . The control gain tk is associated with the control energy required for 

chaotification. From the Fig.3, the minimum feedback gain that provoking chaos is the value of 

0.23tk   if setting the control gain in the negative parametric domain, and the minimum one 

is the value of 5.9tk  if setting the control gain in the positive parametric domain. The tiny 

requirement of the minimum control gain in the negative domain make this method much 
attractive, since the use of small control energy is particularly desirable in practical applications. 

 
4.2. Effect of the Control Time-Delay t  

The purpose here is to examine how the time-delay t  affects the system behaviors. We 
are interested in whether chaotification is widely available in parametric domain of time-delay t . 
The system configuration remains the same as above, however, the parameter of the controller 

is set as 1tk  , and t is varied within the interval of (0,20) . The global bifurcation diagram of 

the state variable 2ŷ versus t  is shown in Figure 4.  
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Figure 3. Global bifurcation diagram versus tk
 

 
 

 

 
 

Figure 4. Global bifurcation diagram versus t  
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Figure 4 shows a bifurcation diagram to illustrate the behaviors of the QZS system 
when the time-delay t varies across a wide range of (0,20) . We observe that the first bifurcation 

occurs around 1.8t  . The system thereafter undergoes chaotic state as the time-delay 
increase. In general, it can be seen that the chaotic state widely exists in the parametric domain 
of (0,20) . 

 
 

5. Conclusion 
In this paper, we introduced a method based on feedback time-delay control theory to 

the research area for a QZS system chaotification. The analytical solution of control function 
was derived based on differential-geometry control theory. Furthermore, the feasibility and the 
effectiveness of this method was verified by numerical simulations. Through the study of the 
control parameters of the control gain and time-delay, we know that chaotification is possible 
when control gain and time-delay exceeds a threshold. The most favorable feature we found is 
the availability of using tiny control for chaotification, the accessibility of chaotification to a wider 
parametric domain and the high feasibility of the control implement, these factors make this 
method greatly attractive to applications. 
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