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Abstract 
In recent years, many applications have been implemented in embedded systems and mobile 

Internet of Things (IoT) devices that typically have constrained resources, smaller power budget, and 
exhibit "smartness" or intelligence. To implement computation-intensive and resource-hungry 
Convolutional Neural Network (CNN) in this class of devices, many research groups have developed 
specialized parallel accelerators using Graphical Processing Units (GPU), Field-Programmable Gate 
Arrays (FPGA), or Application-Specific Integrated Circuits (ASIC). An alternative computing paradigm 
called Stochastic Computing (SC) can implement CNN with low hardware footprint and power 
consumption. To enable building more efficient SC CNN, this work incorporates the CNN basic functions in 
SC that exploit correlation, share Random Number Generators (RNG), and is more robust to rounding 
error. Experimental results show our proposed solution provides significant savings in hardware footprint 
and increased accuracy for the SC CNN basic functions circuits compared to previous work. 
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1. Introduction 

Deep learning has emerged as a new area of machine learning research, which 
enables a system to automatically learn complex information and extract representations at 
multiple levels of abstraction. Convolutional Neural Network (CNN) is recognized as one of the 
most promising types of Artificial Neural Networks (ANN) and has become the dominant 
approach for almost all recognition and detection tasks [1] such as face recognition [2], 
handwritten digit recognition [3], target recognition [4], and image classification [5]. To achieve 
acceptable classification results, CNN performs a massive number of convolutions and sub-
sampling operations with significant amounts of intermediate data results. Despite its high 
classification accuracy, a deep CNN is highly demanding in terms of energy consumption and 
computation cost [6]. To bring the success of CNNs to resource-constrained mobile and 
embedded systems, designers must overcome the challenges of implementing resource-hungry 
CNNs in embedded systems with limited area and power budget [7]. 

Stochastic Computing (SC), which represents and processes information in the form of 
a probability of ones in a bit-stream, has the potential to implement CNNs with significantly 
reduced hardware resources and achieve high power efficiency. In SC, arithmetic operations 
like multiplication can be performed using simple AND or XNOR logic gate in Uni-Polar (UP) or 
BiPolar (BP) representation, respectively, and scaled addition is done using Multiplexers (MUX). 
Also, in SC, there are no positional weights among bits; therefore, SC circuits are better in  
soft-error resilience and have a free dynamic trade-off between performance, accuracy, and 
energy. Fortunately, neural networks have high error-tolerance at the algorithmic level, which 
allows using SC for CNN implementation [8]. Opposite to what was previously believed, the 
correlation among Stochastic Numbers (SN) can serve as a resource in designing stochastic 
circuits. A comparative study [9] reported that the circuits exploiting correlation are generally 
smaller, more accurate, and have lower latency than those with independent inputs. However, 
previous SC CNN works [7, 8, 10, 11] did not explore correlation in their implementation. 
Besides, these works did not consider the conversion circuits between SC and conventional 
binary in their estimates as RNGs can take up to 80% of the circuit cost [12]. Also, long bit 
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streams up to 8192 bits are used to obtain acceptable accuracy which significantly increases 
the latency. This work has the following contributions: 
1. SC CNN basic functions (inner product, pooling, and ReLU activation function) that exploit 

correlation is proposed. The obtained functions had significant lower resource utilization, 
higher accuracy, and more robust to rounding error compared to previous SC work. Also, it 
shows significant area reduction compared to binary implementation [13]. 

2. A new method that generates uncorrelated bit streams for MUXs selectors to enhance the 
accuracy of scaled addition using Toggle Flip-Flops (TFF) is presented. Also, this method 
reduces the number of used RNGs. 

The rest of this paper is organized as follows. Section 2 overviews CNN and explains its 
basic functions. Section 3 reviews SC basics. Section 4 presents the CNN basic functions (inner 
product, pooling, ReLU activation function) design method. Section 5 presents experimental 
results to show the effectiveness of the proposed design with respect to compactness and 
accuracy, and finally, Section 6 concludes the paper. 
 
 
2. Convolutional Neural Network 

Previously, hand-engineered features development had been the primary source of 
difficulty in computer vision, like sophisticated feature extractors, to identify higher-level patterns 
that are optimal for machine vision tasks, such as object recognition. However, convolutional 
neural networks aim to solve this problem by learning higher-level representations automatically 
from data [14]. As a supervised learning algorithm, CNN employs a feedforward process for 
recognition and a backward path for training. In industrial practice, many application designers 
train CNN off-line and use the off-line trained CNN to perform time-sensitive jobs. Thus, the 
speed, area, and energy consumption of feedforward computation are to be considered. This 
work is scoped to the feedforward computation hardware implementation on FPGA.  

A typical CNN, as shown in Figure 1, is composed of multiple computational layers that 
can be categorized into two components: a feature extractor and a classifier. The feature 
extractor is used to filter input images into "feature maps" that represent features of the image 
such as corners and edges which are relatively invariant to position shifts or distortions. The 
feature extractor output is a low-dimensional vector containing features. Then, the vector is fed 
into the CNN second component classifier, which is usually a traditional fully connected artificial 
neural network. The classifier decides the likelihood of categories that the input image might 
belong to [15]. 

 
 

 
 

Figure 1. CNN architecture proposed in [13] 
 

 
The CNN layers can be one of three types: convolutional layer, pooling layer, or fully 

connected layer. The convolutional layer is the core building block of the CNN whereas the main 
operation is the convolution that computes the inner-product of receptive fields, a window of the 
input feature map, and a set of learnable filters. This layer is the most time and resource 
consuming operation in CNN, occupying more than 90% overall computation dominating 
runtime and energy consumption as shown in [16]. The convolutional layer has N feature map 
batch size, M output feature maps, Ch input feature maps, H/W size of output feature map,  
K weights kernel size, and S stride. To compute one element in the output feature map of the 
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convolutional layer (1) is evaluated. This layer is of 4-D operation and to calculate all output 
values (1) is looped for N, M, H, and W . The convolutional layer contains two functions, the 
convolution, and activation. The convolution is loops of multiply-accumulate (MAC) operations 
(or inner product). The activation functions conduct non-linear transformations such as Rectified 
Linear Unit (ReLU), Sigmoid function, and hyperbolic tangent function. This work implements 
only ReLU activation function since it is the most popular one. ReLU compares the input to zero 
and outputs the maximum value as shown in (2). 
 

𝑂[𝑛][𝑚][𝑟][𝑐] = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐵[𝑚] + ∑ ∑ ∑ 𝑥[𝑛][𝑐ℎ][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗] ×𝐾−1
𝑗=0

𝐾−1
𝑖=0

𝐶ℎ−1
𝑐ℎ=0

𝑤[𝑚][𝑐ℎ][𝑖][𝑗]  
 

(1)  

𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝑥, 0)  (2)  
 

The pooling layers perform nonlinear down-sampling for data dimension reduction. 
Commonly, max pooling and average pooling are used for this purpose. The max pooling layer 
is shown in (3) which output the max value in a 2D window of K size and S stride. The average 
pooling is to compute the average value of the same window as shown in (4). To complete the 
layer operation, this equation is repeated for all N, M, H, W. The output feature map of the 
pooling layer has a 1/𝑆 dimension reduction in height and width. Finally, the high-level 
reasoning is completed via the classifier which is a fully connected layer. Neurons in this layer 
are connected to all activation results in the previous layer which is an inner product with a filter 
size of one element. 

 
𝑂[𝑛][𝑚][𝑟][𝑐] = 𝑚𝑎𝑥(𝑥[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗])  𝑓𝑜𝑟 (0,0) ≤ (𝑖, 𝑗) < (𝐾 − 1, 𝐾 − 1) (3) 
 

𝑂[𝑛][𝑚][𝑟][𝑐] =
1

𝐾2
∑ ∑ 𝑥[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗]𝐾−1

𝑗=0
𝐾−1
𝑖=0  (4) 

 
The basic operations in CNN are the inner product, pooling, and activation function 

operations. Any CNN neuron may consist of one or multiple basic operations. For instance, 
neurons in convolutional layers implement inner product and activation operations only; those in 
pooling layers implement pooling only, and those in fully connected layers implement inner 
product and activation operations. 
 
 
3. Stochastic Computing 

Stochastic computing (SC) represents and processes information in the form of digitized 
probabilities. In SC, numbers called stochastic numbers SNs are represented by binary bit 
streams. The SN donate the probability p, the probability of 1s in the SN [17]. SN has no fixed 
length nor structure. The stochastic representation can be One-line UP, One-line BP, and  
Two-line. This paper uses BP representation since it allows negative values, but UP do not. The 
UP and BP stochastic representations are clarified in Table 1 where N0, N1, and N represents 
the number of zeros, ones, total bits in SN respectively. To convert from binary to stochastic a 
stochastic number generator (SNG) is used which is a random number generator RNG and a 
comparator. On the other hand, to convert from Stochastic to binary, a counter is used. 
According to [18], SNs should be independent and uncorrelated bit-streams. However, recent 
studies [9] showed that the correlation could serve as a resource in designing stochastic 
circuits. In that study, Alaghi and Hayes introduced a parameter that determines the significance 
of the correlation between two SNs called stochastic computing correlation (SCC) as  
shown in (5). The major advantage of SC is that it employs very low-complexity arithmetic  
units [17], as shown in Table 1. The AND or XNOR gates perform the multiplication operation in 
SC using UP or BP representation. There is no direct addition in SC; instead, a scaled addition 
is used. 2-to-1 MUX performs the scaled addition having 𝑝𝑠 = 0.5 or s = 0 selector bit stream 
value in UP and BP representation respectively. It should be noted that the MUX selector should 
be uncorrelated with the MUX inputs to prevent correlation-induced error. However, the MUX 
inputs are correlation-insensitive and can have any value of correlation. To perform subtraction 
NOT gate can be used to negate the subtracted value and then it will be added by 2-to-1 MUX 
to the other value. 
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Table 1. The SN Representations and Basic Operations 
 Value Interval Relation Negation Multiplication Scaled Addition 

UP 
𝑝 =

𝑁1

𝑁
 

[0,1] 
p =

1 + 𝑥

2
 

𝑝𝑁𝑂𝑇

= 1 − 𝑝 
𝑝𝐴𝑁𝐷 = 𝑝1𝑝2 𝑝𝑀𝑈𝑋 = 𝑝𝑠𝑝1 + (1 − 𝑝𝑠)𝑝2 

BP 𝑥

=
𝑁1 − 𝑁0

𝑁
 

[-1,1] x = 2p − 1 𝑥𝑁𝑂𝑇 = −𝑥 𝑥𝑋𝑁𝑂𝑅 = 𝑥1𝑥2 
𝑥𝑀𝑈𝑋 =

1

2
[(1 + 𝑠)𝑥1 + (1

− 𝑠)𝑥2] 

 
 

One source of inaccuracy in SC is rounding. If we wish to eliminate the rounding error, 
the SN length L, and the binary precision, the number of bits, n should satisfy L = 2𝑛. Suppose 
the precision in binary computing is n = 8 bits, so the full SN length L = 256 bits. Each bit 
requires one clock cycle to be processed causing the SC latency. As precision increases, L and 
latency increase exponentially which is a significant drawback in SC. To reduce the number of 
clock cycles needed, the full SN length is not used producing rounding error. 

 

𝑆𝐶𝐶(𝑋, 𝑌) = {

𝑝𝑋∩𝑌−𝑝𝑋𝑝𝑌

𝑚𝑖𝑛(𝑝𝑋,𝑝𝑌)−𝑝𝑋𝑝𝑌
                       𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 > 0 

0                                                          𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 = 0
𝑝𝑋∩𝑌−𝑝𝑋𝑝𝑌

𝑝𝑋𝑝𝑌−𝑚𝑎𝑥(𝑝𝑋+𝑝𝑌−1,0)
      𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 < 0

 (5) 

 

For SC addition operation, it is required to produce a 0.5 bit-stream that has 𝑆𝐶𝐶 ≈ 0 
with respect to the inputs. Theoretically, the independent RNGs generates uncorrelated 
bitstreams, but the growing circuit size will require many independent RNGs affecting the area 
cost. In this study, we propose using flip-flops (FF)s to obtain uncorrelated bit-streams for SC 
scaled addition. T-FF is a JK-FF where T is connected to both inputs of the JK-FF. Based on 
Gaudet and Rapley [19] the JK-FF output follow (6). In the case of T-FF 𝑝𝑇 = 𝑝𝐽 = 𝑝𝐾, then 

always 𝑝𝑄 = 0.5 for any value of T and always SCC(T, Q) ≈ 0. Using T-FF will allow using one 

RNG for all SNGs to generate the MUX inputs and the uncorrelated selector as shown in  
Figure 2a. Similarly, SC addition accuracy will be increased as shown in Figure 2b. 

 

𝑝𝑄 =
𝑝𝐽

𝑝𝐽+𝑝𝑄
 (6) 

 
 

 

 
 

(a) SC scaled addition using T-FF for MUX 
selector generation 

 

(b) Accuracy comparison between T-FF and 
independent RNG for selector generation 

 

Figure 2. More accurate SC scaled addition by using T-FF 
 
 

4.    Design of Stochastic Computing Based Convolutional Neural Network Basic         
       Functions 
4.1. Inner Product 

The inner product is a MAC operation which is the basic function of convolution in CNN. 
The number of elements in the inner product is determined from the "for loop" unroll factor. To 
perform inner product in SC, the standard blocks are XNOR to perform multiplication and MUX 
or Approximate Parallel Counter (APC) [20] to perform addition as proposed in previous SC 
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CNN works [7, 8, 10]. However, XNOR gate requires long uncorrelated bit-streams which will 
affect latency and area cost by using one RNG per SNG. On the other hand, MUX tree 
approach proposed in [21] to perform inner product in digital filter case study can be adapted to 
this application. MUX tree allows sharing RNG among all inputs and is more accurate compared 
to previous XNOR-MUX and XNOR-APC approaches as to be shown in Section 5. 

One MUX can be used for inner product of 2-elements vectors x and h as shown in 
Figure 3 and following (7), where the real operation does not involve multiplication or  

 

𝑧 =
1

∑|ℎ|
(ℎ ∙ 𝑥) =

1

|ℎ1|+|ℎ2|
(ℎ1𝑥1 + ℎ2𝑥2) (7) 

 

addition. The selector bit-stream of probability 
|ℎ1|

|ℎ1|+|ℎ2|
 which follows (8) and  

 

𝑠𝑙𝑀 =
∑(ℎ1𝑀)

∑(ℎ1𝑀∪ℎ0𝑀)
 (8) 

 
sign(ℎ𝑖) will be denoted by 𝑠𝑖. The same equation shows the MUX tree output for inner 

product of two vectors x and h with any length, but scaling seems to be a problem. Taking 
advantage of learning, the backward phase of the network is modified to adapt the scaling. 
 
 

 
 

Figure 3. SC inner product circuit [21]  
 

 

To create a mathematical model for SC inner product using the MUX tree and adapt it 
to CNN, the MUX tree will be changed to the sum of products. For 𝑁𝑖𝑛 inputs, the MUX tree has 

𝑁𝑖𝑛 − 1 MUXs. We define the SM array which is a multi-dimensional array created from the 

selector probabilities. This array will be of dimensions 𝑁𝑖𝑛. Each element is a binary ANDing of 
selector bits related to the specific input until the output (9) shows the general SM array and an 

example of OL-MUX tree if 𝑁𝑖𝑛 = 5 where 𝑠𝑙𝑖 is a bit of the selector bit-stream of the 𝑖𝑡ℎ MUX. 
For more information about constructing optimum OL-MUX trees we refer to [21].  

 

𝑆𝑀 =

[
 
 
 
 
𝑠𝑙𝑁𝑖𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ ⋯ ∩ 𝑠𝑙1̅̅ ̅̅

𝑠𝑙𝑁𝑖𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ ⋯ ∩ 𝑠𝑙1

⋮ ⋱ ⋮
𝑠𝑙𝑁𝑖𝑛−1 ∩ ⋯ ]

 
 
 
 

=

[
 
 
 
 
 
𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2̅̅ ̅̅ ∩ 𝑠𝑙1̅̅ ̅̅

𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2̅̅ ̅̅ ∩ 𝑠𝑙1
𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2
𝑠𝑙4 ∩ 𝑠𝑙3̅̅ ̅̅

𝑠𝑙4 ∩ 𝑠𝑙3 ]
 
 
 
 
 

 (9) 

 
Thus, the general equation of the MUX tree will become like that of (10) for evaluating 

one bit of the output bit-stream. 
 

𝑍 = ⋃ (𝑠𝑖 ⊕ 𝑥𝑖) ∩ 𝑆𝑀𝑖
𝑁𝑖𝑛−1
𝑖=0  (10) 

 
Suppose we want to use the SC inner product MUX tree to compute all elements (e.g. 

𝑁𝑖𝑛 = 𝐶ℎ × 𝐾 × 𝐾). The inner product in (1) can be changed to (11) by taking advantage of SC 
(7) and (10) and adding a new loop representing the SN bits. It should be noted that all the 
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variables are bits. The new index [b] is to evaluate the bit operation through the SNs from 0 to 
L − 1. It is apparent the amount of resource utilization reduced.  

 

𝑂[𝑛][𝑚][𝑟][𝑐][𝑏] = ⋃ ⋃ ⋃ ((𝑠𝑤[𝑚][𝑐ℎ][𝑖][𝑗] ⊕ 𝑥[𝑛][𝑐ℎ][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗][𝑏]) ∩𝐾−1
𝑗=0

𝐾−1
𝑖=0

𝐶ℎ−1
𝑐ℎ=0

𝑆𝑀[𝑚][𝑐ℎ][𝑖][𝑗][𝑏] (11) 
 
Instead of using a multiplier and an adder, by SC we use only some simple gates at the 

expense of latency. The resources used in a MUX tree inner product of 𝑁𝑖𝑛 number of parallel 

inputs are 𝑁𝑖𝑛 XOR gates and 𝑁𝑖𝑛 − 1 MUXs. In practical implementations, to highly reduce 
latency, some loops should be unrolled entirely.  

The inputs of CNN are of single size. To use the full SN length, L should be 
L = 232 = 4294967296 which is too long and will produce high latency. One approach to reduce 
L is to reduce n, binary precision that will cause the binary quantization. The other approach is 
to reduce L without changing n which will cause the SC rounding error. The accuracy of MUX 
tree inner product circuit is evaluated with respect to precision and number of inputs with 
rounding error as shown in Table 2. It can be concluded that the MUX tree has high accuracy 
and robust to rounding error. 

 
 

Table 2. MUX Tree Absolute Error × 10−2 with Respect to SN Length 𝐿 and Number of Inputs, 
𝑁𝑖𝑛, using Binary Precision 𝑛 = 64 

𝑁𝑖𝑛 , 𝐿 64 128 256 512 1024 2048 4096 8192 

2 3.3 2.2 1.49 1.02 0.73 0.51 0.36 0.25 
4 4.48 3.07 2.13 1.48 1.05 0.74 0.53 0.37 
8 5.03 3.6 2.47 1.74 1.22 0.86 0.62 0.42 
16 5.45 3.81 2.66 1.85 1.32 0.94 0.66 0.47 

 
 
4.2. Pooling and Activation Function 

 In SC, if the correlation is exploited, the OR gates act as the max function for SCC=1. 
Therefore, (3) can be modified to become as stated in (12). In SC, instead of using a compactor, 
the OR gate will perform the max operation leading to a significant reduction in hardware 
footprint. Usually, the max pooling stride S is 2 and kernel K is 2, so max pooling can be 
realized using only 3 OR gates using the proposed approach after unrolling i and j loops of (12) 
as shown in Figure 4a. Similar to max pooling, the ReLU activation function performs the max 
operation but compared to zero. Thus, the input is “ORed” with a correlated SN of x=0 in the BP 
domain. Figure 4b shows the ReLU circuit. 

 

𝑂[𝑛][𝑚][𝑟][𝑐][𝑏] = ⋃ ⋃ (𝑋[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗][𝑏]𝐾−1
𝑗=0

𝐾−1
𝑖=0  (12) 

 
 

 
 

(a) Proposed max pooling 

 
 

(b) Proposed SC ReLU circuit 

 
Figure 4. Proposed SC CNN pooling and activation function circuits 

 

 

The general scaled addition (using MUX) in SC for 𝑁𝑖𝑛 inputs follow (13) which is easily 

realized using 𝑁𝑖𝑛 − 1 2-to-1 MUXs tree with uncorrelated selector bit-streams of probability 0.5 
for each of the MUXs. Thus, average Pooling is straightforward in SC. For example, if we want 
to implement in SC average pooling with stride size 2 and kernel size 2, 3 scaled addition units 
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(2-to-1 MUXs) tree with selector probability p = 0.5 will be used. To increase the accuracy, TFF 
will be utilized for selector bit-stream generation. The average pooling block can be used with 
any SCC among inputs. Two versions of average pooling will be experimented, the average 
pooling using independent RNGs for MUX selectors (SC AP RNG) and the average pooling 
using T-FF to create the uncorrelated selector bit-stream (SC AP FF). 

 

𝑧 =
1

𝑁𝑖𝑛
∑ 𝑥𝑖

𝑁𝑖𝑛−1
𝑖=0  (13) 

 
 
5. Experimental Results and Discussion 

To clarify the effectiveness of the proposed SC CNN basic functions, they were 
compared with previous SC work and the respective binary computation. The accuracy and the 
resource utilization are the measured metrics. To evaluate the accuracy, the absolute error is 
computed for 10000 attempts of randomly generated inputs where the conventional binary result 
is the golden reference. From these attempts, we obtained the average output absolute errors. 
Then different SN lengths L were used to observe the error behavior and the robustness to 
rounding error as the input binary precision n = 32 bits. On the other hand, to evaluate the area 
of the basic functions designs, we synthesize the circuits using Vivado Design Suite targeting 
Xilinx ZYNQ Z706 FPGA. 

Previous SC CNN used XNOR-MUX or XNOR-APC for the inner product operation in 
convolutional layers of CNN [7, 8, 10]. This work proposed MUX tree for the inner product 
shown in Figure 5, and the selector probability values follow (8) [21]. The number of inputs 𝑁𝑖𝑛 
used in this experiment is 16 since it is more optimum for XNOR-APC SC inner product. The SN 
length is varied through 64, 128, 256, 512, 1024, 2048, 4096, and 8192 bits since 8192 bits is 
used in [10] and 1024 bits in [8]. Figure 6(a) shows the mean absolute error of MUX tree, 
XNOR-MUX, and XNOR-APC approaches for inner product. To make a fair comparison, the 
results of each SC circuit is multiplied by its scaling factor. For example, the MUX tree output is 
multiplied by ∑|ℎ|. The MUX tree obtained the least error. Therefore, the MUX tree SC inner 
product is more accurate than previous works approaches with respect to different SN lengths. 

 
 

 
 

Figure 5. MUX tree used for 4 × 4 inner product 
 
 

The resource utilizations of the three SC inner product approaches MUX tree, XNOR-
MUX, and XNOR-APC are compared along with conventional binary (bin) inner product (serial 
design) as shown in Table 3. The MUX tree shows lower resource utilization of 1.6 × and 2 × 
compared to XNOR-MUX and XNOR-APC. Also, significant savings compared to the binary 
inner product. Besides, MUX tree has more area savings since the MUX tree circuit requires 
one RNG for any number of inputs. However, XNOR-MUX and XNOR-APC SC inner product 
need 𝑁𝑖𝑛 RNGs. Therefore, the MUX tree obtains × 𝑁𝑖𝑛 RNG circuit savings. The RNG used is 
linear feedback shift register LFSR. 
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Table 3. Resource Utilization of Proposed Functions, Previous Work, and Conventional Binary 
Inner Product DSP FF LUT 

MUX tree 0 0 35 
XNOR-MUX 0 0 55 
XNOR-APC 0 0 71 

Bin 8-bit fixed point 1 26 18 
Bin 32-bit float 5 540 740 

 

Max Pooling (MP) DSP FF LUT 

Proposed SC MP 0 0 1 
Approximate SC MP [10] 0 32 65 

Bin MP 32-bit 0 0 134 
 

 

Activation function DSP FF LUT 

Proposed SC ReLU 0 0 1 
Bin ReLU 32-bit 0 0 16 

 

Average Pooling (AP) DSP FF LUT 

Proposed SC AP FF 0 3 4 
SC AP RNGs 0 0 2 
Bin AP 32-bit 0 0 95 

 

 
 
Using the proposed MUX tree for SC inner product operation of the CNN convolutional 

layer is more efficient compared to previous SC inner product circuits or the conventional binary. 
MUX tree is more accurate than other SC inner product and has less hardware footprint. Also, 
compared to conventional binary, using the MUX tree SC inner product will provide significant 
resource utilization savings. Without exploiting correlation, the max pooling operation in SC is 
hard to be designed. Ren et al. [10] proposed an approximate SC max pooling circuit. However, 
the proposed SC max pooling in this study outperforms the previous work in terms of accuracy 
and resource utilization. Figure 6 (b) shows that the proposed max pooling is more accurate for 
any SN length L. Also Figure 6 (c) shows the absolute error of proposed average pooling 
operation using independent RNG for each MUX selector and T-FF for selector bitstream 
generation. The average pooling using independent RNGs requires 𝑙𝑜𝑔2(𝑁𝑖𝑛) + 1 different 
RNGs, while the average pooling using T-FF and MUXs require 1 RNG for any number of 
inputs. This result a (𝑙𝑜𝑔2(𝑁𝑖𝑛) + 1) times savings in RNGs. The resource utilization of the 
proposed SC average and max-pooling functions and their binary counterparts are shown in 
Table 3 where all are of parallel architecture. The proposed SC ReLU circuit absolute error is 
shown in Figure 6(d). A very minimal accuracy loss in the proposed SC ReLU is obtained with a 
high resource utilization savings of 16 times. 

 
 

 
 

(a) SC inner product circuits absolute error 

 
 

(b) SC max pooling absolute error 

 

 
 

(c) SC average pooling absolute error 

 

 
 

(d) SC ReLU absolute error 
 

Figure 6. The absolute error of the proposed basic functions compared to previous works 
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6. Conclusion 
In this paper, the SC CNN basic functions exploiting correlation was proposed with 

reduced hardware footprint to be efficient in the resource-constrained mobile and embedded 
systems. These functions are inner product, max pooling, average pooling, and ReLU activation 
function. A combination of these basic functions when looped create a specific CNN layer. 
Experimental results demonstrate that the proposed SC functions achieved significant hardware 
footprint savings compared to equivalent binary functions. Also, the proposed functions 
outperformed previous works of SC CNN in terms of accuracy and resource utilization. Our 
future work will investigate the performance of a complete SC CNN which is composed of the 
proposed basic functions. 
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